T型接头焊接温度场ANSYS仿真分析报告

合集下载

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。

然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。

为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。

本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。

随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。

在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。

对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。

本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。

二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。

焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。

因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。

焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。

熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。

焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。

为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。

焊缝焊接收缩量的ANSYS仿真分析

焊缝焊接收缩量的ANSYS仿真分析

焊缝焊接收缩量的ANSYS仿真分析作者:张利来源:《城市建设理论研究》2013年第10期摘要:现代焊接技术趋于完善,对焊接变形的数值已有很多经验公式计算,但是都是实测数据,环境不一样,焊接收缩就不一样。

本文运用ANSYS的热分析功能对焊接的收缩进行仿真。

该仿真存在的难点是热结构耦合、单元生死、材料的弹塑性、APDL参数化设计。

关键词:焊缝焊接收缩量ANSYS中图分类号: P755.1文献标识码: A 文章编号:第一步:输入材料特性,建立模型,设定焊接速度,计算热源值。

输入材料特性;本计算模型采用Q345qD钢材的材料特性,设初始温度为室温25℃,且材料密度不变化。

材料密度设为7.85×103 Kg/m3,热膨胀系数为1.75×10-5,初始弹性模量为E=2.0×1011Mpa,泊松比0.25,初始导热系数为18.6W/m·℃,比热容设为502J/(Kg·℃),初始热焓值6.13×109,这些材料特性随温度变化而变化,如下表1、2、3所示:表1:钢材弹模与温度的关系表2:钢材导热系数、比热与温度的关系表3:钢材热焓值与温度的关系由于材料会进入塑性变形区,采用多线性随动强化和双线性随动强化两种方式定义材料在温度变化情况下的特性。

随着温度的升高,钢材的应力-应变曲线越来越平缓,即钢材的强度变低。

建立模型;钢板对接和T接的模型建立比较简单,鉴于需要分析的钢板板厚较多,所以采用参数化设计,方便修改模型。

定义的变量仅有板厚。

对接模型采用单边V形坡口,钝边固定为2mm,坡口角度60°。

单元类型先采用SOLID70进行热分析。

设定焊接速度;按照焊接经验,焊接速度取5mm/s,即热源移动速度为5mm/s。

计算热源值;本模型假设热源与时间成反比例,即热源hetg=a/△t,其中a与焓值、密度、温度相关。

考虑到实际施焊时,焊完一道有足够时间让母材冷却,本模型假设冷却30分钟,母材温度降至室温。

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。

然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。

因此,对焊接温度场和应力的研究具有非常重要的意义。

本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。

二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。

同时,设定焊接过程中的热源模型,如高斯热源模型等。

2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。

设定边界条件,包括环境温度、对流换热系数等。

3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。

分析温度场的变化规律,研究焊接过程中的热循环行为。

三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。

同时,导入温度场分析的结果作为应力分析的初始条件。

2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。

这些约束条件将影响应力的分布情况。

3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。

分析应力的变化规律,研究焊接过程中的残余应力分布情况。

同时,结合温度场分析结果,研究温度与应力之间的关系。

四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。

结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。

同时,随着时间的变化,温度场呈现出明显的热循环行为。

2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。

这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和机械工程的不断发展,焊接作为连接各种金属材料的主要方法之一,其过程和结果的研究显得尤为重要。

焊接过程中,由于局部高温和材料相变,会产生复杂的温度场和应力分布。

这些因素对焊接接头的质量、强度和耐久性有着重要影响。

因此,对焊接温度场和应力的数值模拟研究具有重要的理论和实践意义。

本文将基于ANSYS软件,对焊接过程中的温度场和应力进行数值模拟研究。

二、焊接温度场的数值模拟研究1. 模型建立在ANSYS中,我们首先需要建立焊接过程的物理模型。

根据实际焊接条件和材料属性,设定合理的几何尺寸和材料参数。

同时,考虑到焊接过程中的热源分布、热传导和热对流等因素,我们采用适当的热源模型和边界条件。

2. 网格划分与求解在模型建立完成后,我们需要对模型进行网格划分。

网格的精细程度将直接影响模拟结果的准确性。

接着,我们设定求解器,根据热传导方程和边界条件进行求解。

通过求解,我们可以得到焊接过程中的温度场分布。

三、焊接应力的数值模拟研究1. 热弹性-塑性本构关系焊接过程中,由于温度的变化,材料将发生热膨胀和收缩。

这种热膨胀和收缩将导致应力的产生。

在ANSYS中,我们需要设定合理的热弹性-塑性本构关系,以描述材料的热膨胀和收缩行为。

2. 应力求解与分析根据热弹性-塑性本构关系和温度场分布,我们可以求解出焊接过程中的应力分布。

通过对应力结果进行分析,我们可以了解焊接接头的应力分布情况,从而评估焊接接头的质量和强度。

四、结果与讨论1. 温度场分布通过ANSYS模拟,我们可以得到焊接过程中的温度场分布。

温度场分布将直接影响焊接接头的质量和性能。

我们可以观察到,在焊接过程中,局部高温将导致材料发生相变和热膨胀。

同时,热对流和热传导将影响温度场的分布。

2. 应力分布在得到温度场分布的基础上,我们可以进一步求解出焊接过程中的应力分布。

应力分布将直接影响焊接接头的强度和耐久性。

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着制造业和工业自动化技术的飞速发展,焊接技术已经成为一种关键的加工手段,被广泛应用于机械、船舶、航空和汽车等领域。

焊接过程中的温度场和应力分布直接影响焊接质量和性能。

因此,通过数值模拟研究焊接过程中的温度场和应力分布具有重要意义。

本文利用ANSYS软件对焊接过程进行数值模拟,分析温度场和应力的变化规律,为优化焊接工艺和提高焊接质量提供理论依据。

二、ANSYS在焊接模拟中的应用ANSYS是一款广泛应用于工程领域的有限元分析软件,具有强大的热-结构耦合分析能力。

在焊接模拟中,ANSYS可以通过建立三维模型、设定材料属性、加载边界条件等方式,对焊接过程中的温度场和应力进行数值模拟。

通过ANSYS软件,我们可以更加直观地了解焊接过程中的温度分布和应力变化,为优化焊接工艺提供理论支持。

三、焊接温度场的数值模拟研究(一)模型建立与材料属性设定在ANSYS中建立焊接过程的有限元模型,设定材料属性,包括热导率、比热容、热膨胀系数等。

根据实际焊接工艺,设定加热速度、焊接速度、电流等工艺参数。

(二)温度场模拟与结果分析在设定的边界条件下,模拟焊接过程中的温度场变化。

通过分析温度场的分布规律,可以得出焊接过程中各部位的加热速度、峰值温度等信息。

结合实际工艺参数,可以优化焊接工艺,提高焊接质量和效率。

四、焊接应力的数值模拟研究(一)模型建立与材料属性设定与温度场模拟类似,在ANSYS中建立焊接过程的有限元模型,并设定材料属性。

考虑到焊接过程中的热-结构耦合效应,需要设定材料的热弹塑性本构关系。

(二)应力模拟与结果分析在模拟过程中,考虑热-结构耦合效应,分析焊接过程中的应力分布和变化规律。

通过分析应力场的分布、大小和变化趋势,可以得出焊接过程中各部位的应力状态和变形情况。

结合实际工艺参数和应力分布规律,可以优化焊接工艺,减少焊接过程中的残余应力和变形。

五、结论本文利用ANSYS软件对焊接过程中的温度场和应力进行了数值模拟研究。

基于ANSYS软件的异种高强钢焊接接头温度场和应力场的模拟

基于ANSYS软件的异种高强钢焊接接头温度场和应力场的模拟

基于ANSYS软件的异种高强钢焊接接头温度场和应力场的模拟基于ANSYS软件的异种高强钢焊接接头温度场和应力场的模拟摘要:随着工业发展,异种高强钢焊接接头在工程结构中的应用越来越广泛。

为了研究焊接过程中接头的温度场和应力场分布情况,本文利用ANSYS软件进行模拟分析。

通过建立三维焊接模型,对不同焊接条件下的接头温度和应力进行了模拟计算,结果表明,在不同的焊接过程参数下,接头的温度分布和应力分布均有所差异。

该研究有助于优化焊接参数和改善接头的焊接质量。

1. 引言异种高强钢焊接接头由于其高强度和耐腐蚀性,在汽车、船舶等工程结构中得到了广泛的应用。

焊接过程中温度和应力的分布情况对接头的性能和寿命具有重要影响。

因此,对焊接过程中接头的温度场和应力场进行模拟分析,对于优化焊接参数和改善接头的焊接质量具有重要意义。

2. 方法本研究利用ANSYS软件进行异种高强钢焊接接头的温度场和应力场的模拟。

首先,根据焊接接头的几何形状和尺寸,建立三维的焊接模型。

然后,根据焊接过程的工艺参数和材料特性,设置相应的边界条件和材料模型。

最后,利用ANSYS软件对不同焊接条件下的接头温度和应力进行模拟计算。

3. 结果与分析通过模拟计算,得到了不同焊接条件下接头的温度分布和应力分布。

在不同的焊接过程参数下,接头的温度分布和应力分布均有所差异。

例如,在焊接电流增大的情况下,接头的温度分布更加均匀,而在焊接速度增大的情况下,接头的应力分布更加均匀。

此外,焊接过程中的冷却速率也会对接头的温度和应力产生影响。

4. 讨论与展望本研究对异种高强钢焊接接头的温度场和应力场进行了模拟分析,得到了接头在不同焊接参数下的温度和应力分布。

然而,由于模拟分析的复杂性和计算资源的限制,本研究仅考虑了一些典型的焊接参数和条件。

进一步的研究可以探讨更多的焊接参数和条件对接头性能的影响,以及其他因素对接头性能的影响,如焊接速度、热输入等等。

5. 结论本研究利用ANSYS软件对异种高强钢焊接接头的温度场和应力场进行了模拟分析。

基于ANSYS的温度场仿真分析

基于ANSYS的温度场仿真分析

基于ANSYS的温度场仿真分析引言:在工程领域中,温度场分布的仿真分析是一项重要的工作。

温度场分布的准确预测和优化设计对于许多工业过程和产品的设计和改进至关重要。

在这里,我们将介绍一种基于ANSYS软件的温度场仿真分析方法。

一、ANSYS软件简介ANSYS是一种广泛使用的通用有限元分析(FEA)软件。

它提供了强大的功能,可以进行多种物理和工程仿真分析。

其中,温度场分布的仿真分析是ANSYS的一个主要功能之一二、温度场仿真分析的步骤1.几何建模:使用ANSYS的几何模块进行物体的几何建模。

可以通过绘制二维或三维几何形状来定义和创建模型。

2.网格划分:对几何模型进行网格划分,将其划分为小的单元,以便进行离散化计算。

网格划分的质量直接影响到仿真结果的准确性和计算速度。

3.边界条件设置:根据具体的问题,设置物体表面的边界条件。

边界条件包括固定温度、传热系数、对流换热等。

边界条件设置的准确与否对温度场的分布有重要影响。

4.材料属性定义:为物体的各个部分定义材料属性,包括热导率、热容量等。

这些属性是模型中的重要参数,直接影响到温度场的分布。

5.求解和后处理:设置求解算法和参数,开始进行仿真计算。

求解器根据网格和边界条件,通过计算方程的数值解确定温度场的分布。

计算完成后,可以进行后处理,生成温度场分布的图表和报告。

三、温度场仿真分析的应用温度场仿真分析在多个工程领域中得到广泛应用。

以下是几个示例:1.电子设备散热优化:通过温度场仿真分析,可以评估电子设备中的热量分布,优化散热设计,确保电子设备的正常运行和寿命。

2.汽车发动机冷却系统:通过温度场仿真分析,可以预测汽车发动机冷却系统中的温度分布,优化冷却器的大小和位置,提高冷却效果。

3.空调系统设计:通过温度场仿真分析,可以预测房间内的温度分布,优化空调系统的风口布置和参数设置,实现舒适的室内温度。

4.熔炼和混合过程优化:通过温度场仿真分析,可以预测熔炼和混合过程中的温度分布,优化加热和冷却控制,提高生产效率和产品质量。

基于ANSYS的6082铝合金T形接头MIG焊的有限元模拟

基于ANSYS的6082铝合金T形接头MIG焊的有限元模拟

:堇望皇堕窒: !兰
2.2焊接工艺参数
采用如 图3所 示的焊接 方向,通过 一次施焊完
成,氩气流量为24 L/mi n,焊接工艺参数见表l 。现
有的焊接热源模型中,文中选择移动的双椭球热源
模型来模拟MI G焊。
衰1焊接工艺参数
l 序号
l
I
l
2
l
3
焊接电流//A 2 15 2 15 215
电弧 电压£ W
焊接冷却后,选取焊缝线中点为采样点,在不
同的焊接 速度下,其温度 循环曲线如图5所示。从
图5可以看出,随着焊接 速度的增大,采样点最 高 温度明显降低,并且由于峰值处附近的曲线越来越
陡峭,说 明该点到达最 高温度的时间也 越短。
圈3 边界约 束
摘要:借助有限元分析软件ANSYS.模拟了60 82铝舍金T形接头MI G焊的焊接温度场和应力应变场。采用移动的双椭球热源模型模
拟MI G焊过程.并考虑到了母材6 082和焊丝ER5356 这2种材料随温度变化的热物理性能参数。通过3种不同的焊接速度模拟比较
发现,随着焊接速度的增大.温度场区域面积减小,熔池温度降低, 焊缝处纵向和横向残余应力均增大,热影响区和垂直于焊缝方向
图1有限兀 模型
1.2材料特性参数 材料的热物理性能参数为温度的函数,它对模
拟结果的精度有着很大的影响。焊接过程中母材和 焊丝都会经历一个先加热后冷却的过程,因此,需 要考 虑母材 6082铝 合金和 焊丝ER5356动 态的热 物
型呈翌也曼 堡! 垫呈 竺! 竺旦 ! 型:丝型 竺:! 坚翌 :垫! !
100 200 300 400 500 600
温度" ac
( b) ER5356材料热物理性能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焊缝凝固过程的温度场分析
初始条件:焊接件的初始温度为25度,焊缝温度为3000;
对流边界条件:表面传热系数为5e-4,比热容0.2,材料密度0.28,空气温度为25度;求2000s后整个焊接件的温度分布
1、选择网格单元类型
Preprocessor>Element Type>Add/Edit/Delete>Add>Thermal Mass>Solid>Brick 8 node 70
图1-1 定义单元类型
2、设置钢板及焊缝材料属性
Preprocessor>Material Props>Material Models>Material Model Number 1>Thermal
a.设置焊件材料密度、热传导系数、比热容,设置焊缝材料密度、热传导系数、比热容及与温度相关的涵参数,如下图所示。

b.设置左右两道焊缝的焓参数,焓参数随温度变化曲线如图2-5所示。

图2-1 钢板热导率设置
图2-2 设置钢板比热容
图2-3 设置钢板密度
图2-4 焊缝焓参数设置
图2-5 左右焊缝焓参数
3、建立几何模型
Preprocessor>Modeling>Create>V olumes>Block>By Dimensions 建立焊件几何模型。

Preprocessor>Modeling>Create>V olumes>Cylinder>By Dimensions 建立焊缝几何模型。

建模过程如图3-1所示。

图3-1 几何模型建模过程1
图3-2 几何模型建模过程2
通过Reflect建立完整的几何模型,之后运用布尔运算中glue使整个模型成为一个
整体,如图3-3所示。

焊接模型几何参数:横板:2*1.2*0.4
竖板:0.4*1.2*1
焊缝:R0.2*1.2
图3-3 焊件几何模型
设置焊件及左右焊缝网格属性
Preprocessor>Meshing>Mesh Attributes>Picked 选择焊件或是焊缝,分别对其进行设置。

图3-4 焊件和焊缝的属性划分
4、划分网格
4.1 设置网格单元密度
Preprocessor>Meshing>Size Cntrls>Manual Size>Global>Size设置网格单元密度为0.05。

图4-1 网格单元密度设置
4.2 划分网格结果
图4-2 网格划分结果
5、求解
5.1 划分网格后杀死左焊缝单元
Solution>Load Step Opts>Other>Birth&Death>Kill Elements
图5-1 杀死左焊缝
5.2 设置温度偏移量
Solution>Analysis Type>Analysis Options,在体弹出的对话框Toffst中输入460,如图5-2所示。

图5-2 温度偏移量设置
5.3 稳态求解
a. 设置焊缝初始温度
Solution>Define Loads>Apply>Thermal>Temperature>On Nodes
图5-3 焊缝初始温度设置1
图5-4 焊缝初始温度设置2
b. 对两钢板施加初始温度
Solution>Define Loads>Apply>Thermal>Temperature>On Nodes
图5-5 钢板初始温度设置1
图5-6 钢板初始温度设置2
5.5 设置求解选项—时间
Solution>Load Step Opts>Time/Frequence>Time-Time Step
图5-7 求解时间设置
5.6 运算结果
Solution>Solve>Current LS
图5-8 1s稳态求解云图结果
5.7 右焊缝液固相变瞬态求解
进行瞬态求解,分析右焊缝液固相变过程,时间设置1~100s
删除焊缝温度载荷
Solution>Define Loads>Delete>Thermal>Temperature>On Nodes>TEMP>OK
图5-9 删除稳态载荷
施加对流换热载荷
Solution>Define Loads>Delete>Thermal>Temperature>On Nodes
图5-10 施加对流换热载荷
瞬态求解设置
Solution>Load Step Opts>Time/Frequence>Time-Time Step
图5-11 施加对流换热载荷
求解
Solution>Solve>Current LS
5.8 右焊缝凝固过程分析
Solution>Load Step Opts>Time/Frequence>Time-Time Step
图5-12 右焊缝凝固过程时间步设置
运行结果
Solution>Solve>Current LS
图5-13 右焊缝1000s云图显示
六、左焊缝固液相变过程分析
6.1 左焊缝凝固过程
左焊缝固液相变过程、凝固过程、求解过程同右焊缝设置和分析过程,在此之前应先将左焊缝激活Solution>Load Step Opts>Other>Birth&Death>Kill Element,然后进行节点设置、节点温度设置、瞬态求解设置。

Solution>Solve>Current LS
图6-12 a.1001s的温度云图b.1002s的温度云图c.1100s的温度云图d.2000s的温度云图
七、结果后处理
7.1 选择时间节点
General Postproc>Read Results>By pick
图7-1 左焊缝节点选择
General Postproc>Plot Results>Contour Plot>Nodal Solution>DOF Solution> Nodal Temperature 查看应变结果。

图7-2 左焊缝节点随时间的温度变化曲线。

相关文档
最新文档