专题7 动点与函数图象——初中几何与代数必考模型+例题+变式
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)

动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
中考数学三轮专题强化卷【专题7】函数与图象(含答案)

专题七函数与图象⊙热点一:图象信息题1.如图Z7-7,二次函数y=-x2-2x的图象与x轴交于点A,O,在抛物线上有一点P,满足S△AOP=3,则点P的坐标是()图Z7-7A.(-3,-3)B.(1,-3)C.(-3,-3)或(-3,1)D.(-3,-3)或(1,-3)2.(2013年山东菏泽)已知b<0时,二次函数y=ax2+bx+a2-1的图象是下列4个图之一.根据图象分析,a的值等于()A.-2 B.-1C.1 D.2⊙热点二:代数几何综合题1.(2013年湖南永州)如图Z7-8,已知二次函数y=(x-m)2-4m2(m>0)的图象与x轴交于A,B两点.(1)写出A,B两点的坐标(坐标用m表示);(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;(3)设以AB为直径的⊙M与y轴交于C,D两点,求CD的长.图Z7-82.(2013年四川资阳节选)如图Z7-9,四边形ABCD是平行四边形,过点A,C,D作抛物线y=ax2+bx+c(a≠0),与x轴的另一交点为E,连接CE,点A,B,D的坐标分别为(-2,0),(3,0),(0,4).(1)求抛物线的解析式;(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M,N分别是直线l和x轴上的动点,连接MN,当线段MN恰好被BC垂直平分时,求点N的坐标.图Z7-9⊙热点三:函数探索开放题(2013年四川雅安)如图Z7-10(1),已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图Z7-10(2),若E是线段AD上的一个动点(E与A,D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.(1) (2)图Z7-10函数与图象热点一 1.D 2.C 热点二1.解:(1)∵y =(x -m )2-4m 2, ∴当y =0时,(x -m )2-4m 2=0. 解得x 1=-m ,x 2=3m . ∵m >0,∴A ,B 两点的坐标分别是(-m,0),(3m,0). (2)∵A (-m,0),B (3m,0),m >0,∴AB =3m -(-m )=4m ,圆的半径为12AB =2m .∴OM =AM -OA =2m -m =m .∴抛物线的顶点P 的坐标为:(m ,-2m ).又∵二次函数y =(x -m )2-4m 2(m >0)的顶点P 的坐标为(m ,-4m 2), ∴-2m =-4m 2.解得m 1=12,m 2=0(舍去).∴二次函数的解析式为y =⎝⎛⎭⎫x -122-1, 即y =x 2-x -34.(3)如图89,连接CM .在Rt △OCM 中, ∵∠COM =90°,CM =2m =1,OM =m =12,∴OC =CM 2-OM 2=12-⎝⎛⎭⎫122=32. ∴CD =2OC = 3.图89 图902.解:(1)∵点A ,B ,D 的坐标分别为(-2,0),(3,0),(0,4),且四边形ABCD 是平行四边形,∴AB =CD =5,∴点C 的坐标为(5,4).∵点A ,C ,D 在抛物线y =ax 2+bx +c (a ≠0)上,∴⎩⎪⎨⎪⎧4a -2b +c =0,25a +5b +c =4,c =4.解得⎩⎪⎨⎪⎧a =-27,b =107,c =4.故抛物线的解析式为y =-27x 2+107x +4.(2)如图90,连接BD 交对称轴于G ,在Rt △OBD 中,易求BD =5,∴CD =BD ,则∠DCB =∠DBC .又∵∠DCB =∠CBE ,∴∠DBC =∠CBE .过G 作GN ⊥BC 于H ,交x 轴于N , 易证GH =HN ,∴点G 与点M 重合. 故直线BD 的解析式y =-43x +4.根据抛物线可知对称轴方程为x =52,则点M 的坐标为⎝⎛⎭⎫52,23,即GF =23,BF =12. ∴BM =FM 2+FB 2=56.又∵MN 被BC 垂直平分,∴BM =BN =56.∴点N 的坐标为⎝⎛⎭⎫236,0. 热点三解:(1)由题意,得⎩⎪⎨⎪⎧a +b +c =0,9a -3b +c =0,c =3.解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3.∴抛物线的解析式为:y =-x 2-2x +3. (2)∵△PBC 的周长为PB +PC +BC , ∵BC 是定值,∴当PB +PC 最小时,△PBC 的周长最小. ∵点A 、点B 关于对称轴l 对称,∴连接AC 交l 于点P ,即点P 为所求的点(如图91).图91∵AP =BP ,∴△PBC 的周长最小是PB +PC +BC =AC +BC . ∵A (-3,0),B (1,0),C (0,3), ∴AC =3 2,BC =10.故△PBC 周长的最小值为3 2+10.(3)①∵抛物线y =-x 2-2x +3顶点D 的坐标为(-1,4),A (-3,0), ∴直线AD 的解析式为y =2x +6. ∵点E 的横坐标为m ,∴E (m,2m +6),F (m ,-m 2-2m +3).∴EF =-m 2-2m +3-(2m +6)=-m 2-4m -3, AH =12AB =12×4=2,∴S =S △DEF +S △AEF =12EF ·GH +12EF ·AG =12EF ·AH =12(-m 2-4m -3)×2=-m 2-4m -3.②存在.∵S =-m 2-4m -3=-(m +2)2+1. ∴当m =-2时,S 最大,最大值为1. 此时点E 的坐标为(-2,2).。
动点问题与函数图象-中考数学

动点问题与函数图象1.(燕山8).如图(1)所示,E 为矩形ABC D 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图象如图(2)(曲线OM 为抛物线的一部分).则下列结论错误..的是( ) A .AD =BE =5㎝ B .cos ∠ABE =53C .当0<t ≤5时,252t y =D .当429=t 秒时,△ABE ∽△QBP2(石景山8) .如图,矩形ABCD 中,BC =4,AB =3,E 为边AD 上一点,DE =1,动点P 、Q 同时从点C 出发,点P沿CB 运动到点B 时停止,点Q 沿折线CD —DE—EB 运 动到点B 时停止,它们运动的速度都是1cm/秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y 与t 的函数关系图象大致是 8.如图,矩形ABCD 中,BC =4, AB =3,E 为边AD 上一点,DE=1,动点P 、Q 同时从点C 出发,点P 沿CB 运动到点B 时停止,点Q 沿折线CD —DE —EB 运动到点B 时停止,它们运动的速度都是1cm/ 秒.设P 、Q 同时出发t 秒时,△CPQ 的面积为y cm 2.则y 与t 的函数关系图象大 致是 ( )3(门头沟8). 如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1 个单位长度的速度沿AB向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长 度的速度沿BC →CD 方向运动,当P 运动到B 点时,P 、Q 两点同时停止运动.设P 点运动的时间为t 秒,△APQ 的面积为S ,则表示S 与t 之间的函数关系的图象大 致是 ( )A .B .C .D .A BCEDQ P 图⑴A B C DCAQBD4(顺义8).如图,等腰Rt ABC ∆(90ACB ∠=︒)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让ABC ∆沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,ABC ∆与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )5(延庆8).已知:如图,矩形纸片ABCD 中,AB =5,BC =3,点E 在AD 上,且AE =1,点P 是线段AB 上一动点.折叠纸片,使点P 与点E 重合,展开纸片得折痕MN ,过点P 作PQ ⊥AB ,交MN 所在的直线于点Q . 设x =AP , y =PQ , 则y 关于x 的函数图象大致为( )A B C D 6(朝阳8).如图,在平行四边形ABCD 中,AB =4cm ,AD =2cm , ∠A =60°,动点E 自A 点出发沿折线AD —DC 以1cm/s 的速度运动,设点E 的运动时间为x (s ),0<x <6, 点B 与射线BE 与射线AD 交点的距离为y (cm ),则下列图象中能大致反映y 与x 之间的函数关系的是 ( )7(房山8). 如图,MN 是⊙O 的直径,弦BC⊥MN于点E,6BC =. 点A 、D 分别为线段EF 、BC 上的动点. 连接AB 、AD ,设BD x =,22AB AD y -=,下列图象中,能表示y 与x 的函数关系的图象是 ( )AB CDB(第8题图A. B. C. D.8(丰台9).如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与过A点的切线交于点B,且∠APB=60°,设)A B C D二.找规律1(东城12).如图所示,在△ABC中,BC=6,E,F分别是AB,AC的中点,点P在射线EF上,BP交CE于D,点Q在CE上且BQ平分∠CBP,设BP=y,PE=x.当CQ=21CE时,y与x之间的函数式是;当CQ=n1CE(n为不小于2的常数)时,y与x之间的函数关系式是.2(通州16).图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m = (用含n的代数式表示).3(丰台15).如图,菱形ABCD中,AB=2 ,∠C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为.(结果都保留π)3(燕山12).如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC在直线l上顺时针滚动一周,滚动过程中,三个顶点B,C,A依次落在P1,P2,P3处,此时AP3=;按此规律继续旋转,直到得点P2012,则AP2012=.l第16题图∙∙∙∙m2nn803586342214(房山12).如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为.三. 函数图象相关问题1.(西城 12).已知二次函数c bx ax y ++=2的图象与x 轴交于(1,0)和(1x ,0),其中121x -<<-,与y 轴交于正半轴上一点.下列结论:①0>b ;②241b ac <;③a b >;④a c a 2-<<-.其中所有正确结论的序号是 .2.(东城8).(0,2),B (2,0),点C 在2y x =的图象上,若△ABC 的面积为2,则这样的C 点有 ( )A .1 个B .2个C .3个D .4个3.(石景山12).已知,在x 轴上有两点A (a ,0),B (b , 0)(其中b <a <0),分别过点A ,点B 作x 轴的垂线,交抛物线23x y =于点C ,点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F .若将点E ,点F 的纵坐标分别记为E y ,F y ,则E y F y (用“>”、 “<” 或“=”连接). 4(海淀 12).小聪用描点法画出了函数y =F ,如图所示.结合旋转的知识,他尝试着将图象F 绕原点逆时针旋转90︒得到图象1F ,再将图象1F 绕原点逆时针旋转90︒得到图象2F ,如此继续下去,得到图象n F .在尝试的过程中,他发现点P (4,2)--在图象 上(写出一个正确的即可);若点P (a ,b )在图象127F 上,则a = (用含b 的代数式表示) .四. 弧长、面积、线段长的计算1(海淀8). 如图,以(0,1)G 为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF AE ⊥于F .当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为( ) A .2 B.3 C.4 D.6第12题图2312(门头沟12).如图,△ABC 与△ADE 都是等腰直角三角形,∠ACB 和∠E都是直角,点C 在AD 边上,BCABC 绕点A 按顺时针方向旋转 n 度后恰好与△ADE 重合,则n 的值是 45 ,点C 经过的路线的长是 ,线段BC 在上述旋转过程中所扫过部分的面积是 .3(通州10). 如图,⊙O 的半径为3厘米,B 为⊙O 外一点,OB 交⊙O 于点A ,AB =OA .动点P 从点A 出发,以π厘米/秒的速度在⊙O 上按逆时针方向运动一周回到点A 立即停止.当点P 运动的时间为( )秒时,BP 与⊙O 相切. A .1B .5C .0.5或5.5D . 1或54(怀柔12).如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A→B→A 方向运动,设运动时间为t(秒)(0≤t <3),连结EF ,当t 值为_ _秒时,△BEF 是直角三角形.5(大兴 12).现有直径为2的半圆O 和一块等腰直角三角板(1)将三角板如图1放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边交圆于点Q ,则BQ 的长为 ; (2)将三角板如图2放置,锐角顶点P 在圆上,斜边经过点B ,一条直角边的延长线交圆于Q ,则BQ 的长为 .图16. (朝阳12). 如图,抛物线y=4-9x 2通过平移得到抛物线m ,抛物线m 经过点B(6,0)和O (0,0),它的顶点为A ,以O 为圆心,OA 为半径作圆,在第四象限内与抛物线y=4-9x 2交于点C ,连接AC ,则图中阴影部分的面积为______.五. 图形操作问题1(海淀23). 小明利用等距平行线解决了二等分线段的问题. 作法:(1)在e 上任取一点C ,以点C 为圆心,AB 长为半径画弧交c 于点D ,交d 于点E ; (2)以点A 为圆心,CE 长为半径画弧交AB 于点M ; ∴点M 为线段AB 的二等分点.FE OAC B第10题图AED CB图1解决下列问题:(尺规作图,保留作图痕迹)(1)仿照小明的作法,在图2中作出线段AB 的三等分点;图2(2)点P 是∠AOB 内部一点,过点P 作PM ⊥OA 于M ,PN ⊥OB 于N ,请找出一个满足下列条件的点P . (可以利用图1中的等距平行线)①在图3中作出点P ,使得PM PN =; ②在图4中作出点P ,使得2PM PN =.图3 图42(平谷22). 数学课上,老师要求小明同学作△A’B’C’∽△ABC ,且''1.2B C BC =小明的作法是: (1) 作1''2B C BC =; (2) 过点'B 作'B D ∥AB ,过点'C 作'C E ∥AC ,它们相交于点'A ; '''A B C ∆就是满足条件的三角形(如图1).解答下列问题:①若△ABC 的周长为10,根据小明的作法,'''A B C ∆的周长为-------------;②已知四边形ABCD ,请你在图2的右侧作一个四边形''''A B C D ,使四边形''''A B C D ∽四边形ABCD ,且满足''12A B AB =(不写画法,保留作图痕迹).3(怀柔22). 操作与实践:(1)在图①中,以线段m 为一边画菱形,要求菱形的顶点均在格点上.(画出所有符合条件的菱形)(4分)(2)在图②中,平移a 、b 、c 中的两条线段,使它们与线段n 构成以n 为一边的等腰直角三角形.(画一个即可)(1分)4(燕山22).如图,在边长为1的小正方形组成的网格中,△AOB 的顶点都在格点上,点A 、B 的坐标分别为(-4,4)、 (-6,2).请按要求完成下列各题:⑴ 把△AOB 向上平移4个单位后得到对应的△A 1OB 1,则点A 1、B 1的坐标分别是 ;⑵ 将△AOB 绕点O 顺时针旋转90°,画出旋转后的△A 2OB 2,在旋转过程中线段AO 所扫过的面积为 ; ⑶ 点P 1,P 2,P 3,P 4,P 5是△AOB 边上的5个格点,画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△AOB 相似.(要求:在图中联结相应线段,不用说明理由)5(西城21).平面直角坐标系xOy 中,原点O 是正三角形ABC 外接圆的圆心,点A 在y 轴的正半轴上,△ABC 的边长为6.以原点O 为旋转中心将△ABC 沿逆时针方向旋转α角,得到△A B C ''',点A '、B '、C '分别为点A 、B 、C 的对应点.(1)当α=60°时,①请在图1中画出△A B C ''';②若AB 分别与C A ''、B A ''交于点D 、E ,则DE 的长为_______;(2)如图2,当C A ''⊥AB 时,B A ''分别与AB 、BC 交于点F 、G ,则点A '的坐标为_______,△FBG 的周长为_______,△ABC 与△A B C '''重叠部分的面积为_______.6(石景山)20.已知:△ABC 中,102=AB ,4=AC ,26=BC .(1)如图1,点M 为AC 的中点,在线段BC 上取点N ,使△CMN 与△ABC 相似,求线段MN 的长; (2)如图2,,是由81个边长为1的小正方形组成的9×9正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形,试直接写出在所给的网格中与△ABC 相似且面积最大的格点三角形的个数,并在图2中画出其中的一个(不需证明).7(大兴) 22. 操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形。
中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)

中考数学复习----《动点问题的函数图像》压轴真题练习(含答案解析)1.(2021•益阳)如图,已知▱ABCD的面积为4,点P在AB边上从左向右运动(不含端点),设△APD的面积为x,△BPC的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】B【解答】解:∵▱ABCD的面积为4,x+y是平行四边形面积的一半,∴x+y=2,∴y=2﹣x,∴y是x的一次函数,且当x=0时,y=2;x=2时,y=0;故只有选项B符合题意.2.(2021•河南)如图1,矩形ABCD中,点E为BC的中点,点P沿BC从点B运动到点C,设B,P两点间的距离为x,PA﹣PE=y,图2是点P运动时y随x变化的关系图象,则BC的长为()A.4B.5C.6D.7【答案】C【解答】解:由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到PA﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴BC=2BE=2t=2×3=6.故选:C.3.(2022•鞍山)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN.设运动时间为ts,△MND的面积为Scm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】B【解答】解:∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,AC=BC=6,∵CD⊥AB,∴CD=AC=3,AD=CD=3,BD=BC=,∴当M在AD上时,0≤t≤3,MD=AD﹣AM=3﹣t,DN=DC+CN=3+t,∴S=MD•DN=(3﹣t)(3+t)=﹣t2+,当M在BD上时,3<t≤4,MD=AM﹣AD=t﹣3,∴S=MD•DN=(t﹣3)(3+t)=t2﹣,故选:B.4.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE =2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.5.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N 是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A.B.2C.D.【答案】 A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.6.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA 方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【解答】解:如图1中,当点N′落在AB上时,取CN的中点T,连接MT.∵CM=t(cm),CN=2t(cm),CT=TN,∴CT=TN=t(cm),∵△ABC是等边三角形,∴∠C=∠A=60°,∴△MCT是等边三角形,∴TM=TC=TN,∴∠CMN=90°,∵MP∥AC,∴∠BPM=∠A=∠MPN=60°,∠BMP=∠C=60°,∠C+∠CMP=180°,∴∠CMP=120°,△BMP是等边三角形,∴BM=MP,∵∠CMP+∠MPN=180°,∴CM∥PN,∵MP∥CN,∴四边形CMPN是平行四边形,∴PM=CN=BM=2t,∴3t=6,∴t=2,如图2中,当0<t≤2时,过点M作MK⊥AC于K,则MK=CM•sin60°=t,∴S=•(6﹣t)•t=﹣t2+t.如图3中,当2<t≤6时,S=•MQ•PQ=×(6﹣t)×(6﹣t)=×(6﹣t)2,观察图象可知,选项A符合题意,故选:A.7.(2021•威海)如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A﹣C﹣D的方向运动,点Q以2cm/s 的速度沿A﹣B﹣C﹣D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】A【解答】解:∵四边形ABCD为菱形,∴AB=BC=CD=DA=2cm,∠B=∠D=60°.∴△ABC、△ACD都是等边三角形,∴∠CAB=∠ACB=∠ACD=60°.如图1所示,当0≤x≤1时,AQ=2xcm,AP=xcm,作PE⊥AB于E,∴PE=sin∠PAE×AP=(cm),∴y=AQ•PE=×2x×=,故D选项不正确;如图2,当1<x≤2时,AP=xcm,CQ=(4﹣2x)cm,作QF⊥AC于点F,∴QF=sin∠ACB•CQ=(cm),∴y===,故B选项不正确;如图3,当2<x≤3时,CQ=(2x﹣4)cm,CP=(x﹣2)cm,∴PQ=CQ﹣CP=2x﹣4﹣x+2=(x﹣2)cm,作AG⊥DC于点G,∴AG=sin∠ACD•AC=×2=(cm),∴y===.故C选项不正确,故选:A.8.(2021•日照)如图,平面图形ABD由直角边长为1的等腰直角△AOD和扇形BOD组成,点P在线段AB上,PQ⊥AB,且PQ交AD或交于点Q.设AP=x(0<x<2),图中阴影部分表示的平面图形APQ(或APQD)的面积为y,则函数y关于x的大致图象是()A.B.C.D.【答案】D【解答】解:当Q在AD上时,即点P在AO上时,有0<x≤1,此时阴影部分为等腰直角三角形,∴y=,该函数是二次函数,且开口向上,排除B,C选项;当点Q在弧BD上时,补全图形如图所示,阴影部分的面积等于等腰直角△AOD的面积加上扇形BOD的面积,再减去平面图形PBQ的面积即减去弓形QBF的面积,设∠QOB=θ,则∠QOF=2θ,∴,S弓形QBF=﹣S△QOF,当θ=45°时,AP=x=1+≈1.7,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.14,当θ=30°时,AP=x≈1.87,S弓形QBF=﹣=﹣,y=+﹣(﹣)=≈1.24,当θ=60°时,AP=x≈1.5,y≈0.98,在A,D选项中分别找到这两个特殊值,对比发现,选项D符合题意.故选:D.法二、当1<x<2时,即P在OB之间时,设∠QOD=θ,则θ∈(0,),则PQ=cosθ,OP=sinθ,则弧QD的长为θπ,此时S阴影=+θπ+sinθcosθ=+θ+sin2θ,∴y随x的增大而增大,而且增加的速度越来越慢,分析四个选项中的图象,只有选项D符合.故选:D.9.(2021•辽宁)如图,在矩形ABCD中,AB=6,AD=4,E是CD的中点,射线AE与BC的延长线相交于点F,点M从A出发,沿A→B→F的路线匀速运动到点F停止.过点M作MN⊥AF于点N.设AN的长为x,△AMN 的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【答案】B【解答】解:如图,∵E是CD的中点,∴CE=DE,∵四边形ABCD是矩形,∴∠D=∠DCF=90°,AD=BC=4,在△ADE与△FCE中,,∴△ADE≌△FCE(SAS),∴CF=AD=4,∴BF=CF+BC=8,∴AF=,当点M在AB上时,在Rt△AMN和Rt△AFB中,tan∠NAM=,∴NM=x=x,∴△AMN的面积S=×x×x=x2,∴当点M在AB上时,函数图象是开口向上、经过原点的抛物线的一部分;当点M在BF上时,如图,AN=x,NF=10﹣x,在Rt△FMN和Rt△FBA中,tan∠F=,∴=﹣,∴△AMN的面积S==﹣,∴当点M在BF上时,函数图象是开口向下的抛物线的一部分;故选:B.10.(2021•苏州)如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面,设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵AB=10,AC=BD=1,∴CD=10﹣1﹣1=8,∵PC=t,∴AP=t+1,PB=8﹣t+1=9﹣t,设围成的两个圆锥底面圆半径分别为r和R则:2πr=;.解得:r=,R=,∴两个圆锥的底面面积之和为S===,根据函数关系式可以发现该函数图象是一个开口向上的二次函数.故选:D.11.(2021•甘肃)如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为()A.3B.6C.8D.9【答案】B【解答】解:由图2知,AB+BC=2,∵AB=BC,∴AB=,∵AB=BC,BD⊥AC,∴AC=2AD,∠ADB=90°,在Rt△ABD中,AD²+BD²=AB²=13①,设点M到AC的距离为h,∴S△ADM=AD•h,∵动点M从A点出发,沿折线AB→BC方向运动,∴当点M运动到点B时,△ADM的面积最大,即h=BD,由图2知,△ADM的面积最大为3,∴AD•BD=3,∴AD•BD=6②,①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,∴(AD+BD)²=25,∴AD+BD=5(负值舍去),∴BD=5﹣AD③,将③代入②得,AD(5﹣AD)=6,∴AD=3或AD=2,∵AD>BD,∴AD=3,∴AC=2AD=6,故选:B.12.(2021•百色)如图,矩形ABCD各边中点分别是E、F、G、H,AB=2,BC=2,M为AB上一动点,过点M作直线l⊥AB,若点M从点A开始沿着AB方向移动到点B即停(直线l随点M移动),直线l扫过矩形内部和四边形EFGH外部的面积之和记为S.设AM=x,则S关于x的函数图象大致是()A.B.C.D.【答案】D【解答】解:①当M点运动在AE段,此时S=S△HAE+S△GHD﹣S△EOM﹣S△GPS,∵四边形ABCD是矩形,直线l⊥AB,H、E、F、G为AD、AB、BC、CD的中点,∴AH=AD==1,AE=AB=,S△HAE=S△GHD,S△EOM=S△GPS,∴S=2S△HAE﹣2S△EOM,∴S△HAE=AE•AH=;∵直线l⊥AB,∴∠OME=∠A=90°,∠HEA=∠OEM,∴△HAE∽△OME,∴,∴OM=,又∵ME=AE﹣AM=﹣x,∴OM=ME=,∴S△EOM=,∴S=2S△HAE﹣2S△EOM=,此时,对应抛物线开口向下;②当M点运动到在BE段,此时,S=S△HAE+S△GHD+S△EO1M1+S△GP1S1,即S=2S△HAE+2S△EO1M1,与①同理,O1M1=,又∵M1E=AM1﹣AE=x﹣,∴O1M1=M1E=,∴S△EO1M1=,∴S=2S△HAE+2S△EO1M1=,此时,对应抛物线开口向上,故选:D.13.(2021•鄂尔多斯)如图①,在矩形ABCD中,H为CD边上的一点,点M 从点A出发沿折线AH﹣HC﹣CB运动到点B停止,点N从点A出发沿AB 运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是()①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=.④当t=9+时,△ADH∽△ABM.⑤当9<t<9+3时,S=﹣3t+9+3.A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【解答】解:由图②可知:点M、N两点经过6秒时,S最大,此时点M在点H处,点N在点B处并停止不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6 cm.∵当t=6s时,S=9cm2,∴×AB×BC=9.∴BC=3cm.∵当6≤t≤9时,S=且保持不变,∴点N在B处不动,点M在线段HC上运动,运动时间为(9﹣6)秒,∴HC=3 cm,即点H为CD的中点.∴BH=cm.∴AB=AH=BH=6cm,∴△ABM为等边三角形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三角形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三角形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三角形,如图:当DA=DM时,△ADM为等腰三角形,如图:综上所述,在运动过程中,使得△ADM为等腰三角形的点M一共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM=AN=t,由①知:∠HAB=60°.在Rt△AME中,∵sin∠MAE=,∴ME=AM•sin60°=tcm,∴S=AN×ME=cm2.∴③正确;④当t=9+时,CM=cm,如图,由①知:BC=3cm,∴MB=BC﹣CM=2cm.∵AB=6cm,∴tan∠MAB=,∴∠MAB=30°.∵∠HAB=60°,∴∠DAH=90°﹣60°=30°.∴∠DAH=∠BAM.∵∠D=∠B=90°,∴△ADH∽△ABM.∴④正确;⑤当9<t<9+3时,此时点M在边BC上,如图,此时MB=9+3﹣t,∴S=×AB×MB=×6×(9+3﹣t)=27+9﹣3t.∴⑤不正确;综上,结论正确的有:①③④.故选:A.14.(2021•通辽)如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.【答案】C【解答】解:当0≤x≤3时,在Rt△APQ中,∠QAP=90°,AP=AQ=x,∴PQ2=2x2.∴y=PQ2=2x2;当3≤x≤4时,DQ=x﹣3,AP=x,∴y=PQ2=32+32=18;当4≤x≤7时,CP=7﹣x,CQ=7﹣x,∴y=PQ2=CP2+CQ2=2x2﹣28x+98.故选:C.15.(2021•湖北)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【答案】D【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△CAD,∴==,∵AD=3,CD=4,∴AC==5,∴当P在CA上时,即当0<x≤5时,PE==x,CE==x,∴y=PE•CE==x2,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴y=PE•CE=×4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数图象为二次函数图象,且y随x增大而增大,当5<x≤8时,函数图象为一次函数图象,且y随x增大而减小,故选:D.16.(2021•衡阳)如图1,菱形ABCD的对角线AC与BD相交于点O,P、Q 两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O﹣A﹣D﹣O,点Q的运动路线为O﹣C﹣B﹣O.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.【答案】(2+3)【解答】解:由图分析易知:当点P从O→A运动时,点Q从O→C运动时,y不断增大,当点P运动到A点,点Q运动到C点时,由图象知此时y=PQ=2cm,∴AC=2cm,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC==cm,当点P运动到D点,Q运动到B点,结合图象,易知此时,y=BD=2cm,∴OD=OB=BD=1cm,在Rt△ADO中,AD===2(cm),∴AD=AB=BC=DC=2cm,如图,当点P在A﹣D段上运动,点P运动到点E处,点Q在C﹣B段上运动,点Q运动到点F处时,P、Q两点的距离最短,此时,OE=OF==,AE=CF===,∴当点P在A﹣D段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为:(cm),故答案为:(2+3).17.(2021•武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y 关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是.【答案】﹣1【解答】解:∵图象过点(0,2),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC•sin45°=,\又∵∠BEN=∠FEA,∠=∠AFE∴△NBE∽△AFE∴,即,解得:x=,∴图象最低点的横坐标为:﹣1.故答案为:.18.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【答案】【解答】解:过点D作DE⊥AB,垂足为E,在Rt△ADE中,∵∠AED=90°,∠EAD=45°,∴,∵点P的速度为cm/s,点Q的速度为2cm/s,∴AP=x,AQ=2x,∴,在△APQ和△AED中,=,∠A=45°,∴△AED∽△APQ,∴点Q在AD上运动时,△APQ为等腰直角三角形,∴AP=PQ=x,∴当点Q在AD上运动时,y=AP•AQ=×x×x=x2,由图像可知,当y=9此时面积最大,x=3或﹣3(负值舍去),∴AD=2x=6cm,当3<x≤4时,过点P作PF⊥AD于点F,如图:此时S△APQ=S△APF+S四边形PQDF﹣S△ADQ,在Rt△APF中,AP=x,∠PAF=45°,∴AF=PF=x,FD=6﹣x,QD=2x﹣6,∴S△APQ=x2+(x+2x﹣6)•(6﹣x)﹣×6×(2x﹣6),即y=﹣x2+6x,当x=时,y=﹣()2+6×=,故答案为:.。
中考数学必考动点类型一:动点与函数图象问题

中考数学必考动点类型一:动点与函数图象问题
动点题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
一般方法是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y 的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
动点类型一:动点与函数图象问题
动点与函数图象问题常见的四种类型
1、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2、四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
典型例题:
解题反思:
(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了函数解析式的求法,以及二次函数的最值的求法,要熟练掌握.
(3)此题还考查了三角形的面积的求法,要熟练掌握.。
中考数学复习课件:动点与函数图像(共26张PPT)

一、点动
• 1、点在三角形边上动 • 2、点在四边形边上动
答案:B
答案A
2、点在四边形边上动
AB与F,可得DF=BC=4,所以 解析:作DF1 AF=3,FB=CD=2,先看特殊点, 1 当t=2时S= 2x3x4=6,当t=5时,S= 2 x2x5=5,所以A,C错误;B、D的区 别就是第一段不同,所以需要求出第一段的函数关系式,选AP为底, 4t 1 4t AP=1+t,可根据相似求出高为 3 ,S= 2 (1+t) 3 ,可看出是抛物线应开口向上,所以选C
答案:A
答案:A
• 2.如图1,已知A、B是反比例函数(k>0,x>0)图象 上的两点,BC//x轴,交y轴于点C.动点P从坐标原 点O出发,沿O→A→B→C (图中“→”所示路线) 匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴, 垂足分别为M、N.设四边形OMPN的面积为S,P 点运动时间为t,则S关于t的函数图象大致为
B 60 ,动点p以1cm/s的 1、如图,菱形ABCD的边长是4cm,
0
速度自A点出发沿AB方向运动至B点停止,动点Q以2cm/s的速 度自B点出发沿折线BCD运动到D点停止,若P,Q同时出发运动 了t秒,记 BPQ 的面积为S cm2 ,下面图像中能表示S与t之间 函数关系式的是 ( )
3
答案:D
O 图1 图2
x
五、点在一些特殊情况下运动与函数的图像
• 1.如图,菱形 ABCD 中,∠BAD:∠ADC=1:2, 对角线 AC=20cm,点 O 沿 A 点以 1cm/s 的速度 运动到 C 点(不与 C 重合),以点 O 为圆心的 圆始终与菱形的两边相切,设圆 O 的面积为 S, 则 S 与点 O 运动的时 间 t 的函数图像大致是
中考动点问题的函数图像

动点的函数图像1 .解题思路:★读懂题意,牢牢抓住横轴和纵轴所表示的意义(一般类型为边与边的关系,面 积与时间或者边的关系)★在模拟运动过程中找到分界点,确定不同时间段并分析题意建立相对应函数模 型,列出对应函数关系式2 .方法★特殊值法 ★根据函数关系式判断图象例 1:如图,4ABC 中,NACB=90。
,NA=30。
,AB=16.点 P 是斜边 AB 上一点。
过点 P 作 PQ_L AB,垂足为P,交边AC(或边CB 于点Q,设AP=x, AAPQ 的面积为y,则y 与x 之间的函数图象 大致为0例3:如图,矩形ABCD 中,AB=3, BC=4,点P 从A 点出发,按A-B-C 的方向在AB 和BC 上移动。
记PAr,点D 到直线PA 的距离为y,则y 关于x 的函数大致图象是()例4:如图,正方形ABCD 中,AB=8c 叫对角线AC, BD 相交于点0,点及F 分别从B,C 两点同时 出发,以lcm/s 的速度沿BC, CD 运动,到点C, D 时停止运动,设运动时间为t (s), A0EF 的面 积为s(cm2),则s (cm2)与t(s)的函数关系可用图象表示为0分析:分点Q 在AC 上和BC 上两种情况进行讨论即可.例2:如图,矩形ABCD 中,AB=3, BC=5,点P 是BC 边上的一个动点(点P 不与点B, C 重合),现 将4PCD 沿直线PD 折叠,使点C 落下点C1处;作ZBPC1的平分线交AB 于点E.设BP=x, BE=y, 那么y 关于x 的函数图象大致应为()考点:[动点问题的函数图象,翻折变换(折叠问题),相似三角形的判定与性质]例5:已知A. 6是反比例函数产出r(QO, x>0)上的两点,比〃x轴,交y轴于C,动点尸从坐标原点0出发,沿什AC匀速运动,终点为C,过运动路线上任意一点尸作掰J_彳轴于M RLy轴于风设四边形砌W的面积为S尸点运动的时间为3则S关于t的函数图象大致例6:在正方形ABCD中,AB=3c叫动点M自A点出发沿AB方向以每秒1cm的速度运动,同时点N自D点出发沿折线DC-CB以每秒2cm的速度运动,到达B点时运动同时停止,设AAMN的面积为y (cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是0J泳h F9 9 L.•…入?4^ \ 4| A 4例7:在aABC中,NC=90。
2023年中考数学高频考点训练——动点问题的函数图象

2023年中考数学高频考点训练——动点问题的函数图象一、综合题1.小亮在学习中遇到了这样一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,即90,6cm C AC BC ∠=︒==,点D 在AB 上,DE BC ⊥于点E ,射线DF 与射线AC 交于点F ,60EDF ∠=︒,顶点D 在斜边AB 上移动,设BE 两点间的距离为cm x ,EF 两点间的距离为cm EF y ,DE 两点间的距离为cm DE y .(1)当点F 与点C 重合时,求x 的长度(保留一位小数);(2)通过测量,得到了x 与EF y 的几组值,如下表:将线段BE 的长度作为自变量x ,EF DE 直角坐标系xOy 中画出函数EF y 和DE y 的图象;(3)结合图象直接写出:当DEF 为等边三角形时,BE 长度的近似值(结果保留一位小数)2.在以点O 为原点的平面直角坐标系中,边长为1的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,现将正方形OABC 绕点О顺时针旋转,当点A 第一次落在直线y x =上时,停止转动,旋转过程中,AB 边交直线y x =于点M ,BC 边交轴于点N.(1)旋转停止时正方形旋转的度数是.(2)在旋转过程中,当MN 和AC 平行时,①OAM 与OCN 是否全等?此时正方形OABC 旋转的度数是多少?②直接写出MBN 的周长的值,并判断这个值在正方形OABC 的旋转过程中是否发生变化.3.如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(不与点A ,B 重合),AB =6cm ,过点C 作CD ⊥AB 于点D ,E 是CD 的中点,连接AE 并延长交 AB 于点F ,连接FD .小腾根据学习函数的经验,对线段AC ,CD ,FD 的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C 在 AB 上的不同位置,画图、测量,得到了线段AC ,CD ,FD 的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7位置8AC /cm 0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD /cm 0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD /cm 0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC ,CD ,FD 的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是.4.如图,在△ABC中,∠C=90°,BC=6cm,AC=8cm,点D是AB的中点,以D 为顶点作∠MDN=∠A,∠MDN的两边分别与线段AC交于点M.N(点M在点N左边).设A,M两点间的距离为xcm,C、N两点间的距离为ycm.小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.6 1.2 1.8 2.3 2.9 3.4 3.5 4.0 4.3 4.5 4.7 4.8 y/cm a 4.6 4.3 3.9 3.6 3.1 2.6 2.4b 1.20.90.40.2请你补全表格:a=;b=.(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象:(3)探究性质:随着自变量x的不断增大,函数y的变化趋势:.(4)解决问题:当AM=CN时,A、M两点间的距离大约是cm.(保留一位小数)中,D为AB的中点,P是BC边上一动点,连接5.如图1,在Rt ABC,,设PC x=(当点P与点C重合时,x的值为0),==BC AC,.若43PD PA+=.PA PD y小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)通过取点、画图、计算,得到了x与y的几组值,如下表:(参考数据: 1.414 3.162 3.606≈≈).(2)如图2,描出剩余的点,并用光滑的曲线画出该函数的图象.(3)观察图象,下列结论正确的有_.①函数有最小值,没有最大值②函数有最小值,也有最大值③当43x >时,y 随着x 的增大而增大④当 1.5x <时,y 随着x 的增大而减小6.如图如图1,在矩形ABCD 中,3cm AB =,4cm BC =,圆弧 AE 过点A 和AD 延长线上的点E ,圆心R 在CD 上, AE 上有一个动点P ,PQ AC ⊥,交直线AC 于点Q .线段AP 的长cm x 与PQ 的长cm PQ y 以及RQ 的长cm RQ y 之间的几组对应值如下表所示.(1)将线段AP 的长度作为自变量,在平面直角坐标系中画出了函数PQ y 的图象,如图2所示.请在同一坐标系中画出函数RQ y 的图象.(2)结合函数图象填空:(结果精确到0.1)线段PQ 的长度的最大值约为;线段RQ 的长度的最小值约为;圆弧 AE 所在圆的半径约等于;连结PC ,PAC 面积的最大值约为.(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当以点P 、Q 、R 为顶点构成的三角形为等腰三角形时,线段AP 的长度的近似值.(结果精确到0.1)7.动点P 在□ABCD 边上沿着A→B→C→D 的方向匀速移动,到达点D 时停止移动.已知P 的速度为1个单位长度/s ,其所在位置用点P 表示,P 到对角线BD 的距离(即垂线段PQ 的长)为d 个单位长度,其中d 与t 的函数图象如图2所示.(1)若a =3,求当t =8时△BPQ 的面积;(2)如图3,点M ,N 分别在函数第一和第三段图象上,线段MN 平行于横轴,M 、N 的横坐标分别为t 1、t 2,设t 1、t 2时点P 走过的路程分别为12l l 、,若12l l +=16,求t 1、t 2的值.8.如图1,已知四边形OABC 的顶点O 在坐标原点,点A 在y 轴上,点C 在x 轴上,AB x 轴,动点P 从点O 出发,以每秒1单位的速度,沿O A B C O →→→→运动一周,顺次连结P ,O ,C 三点所围成图形的面积为S ,点P 的运动时间为t 秒,S 与t 之间的函数关系如图2中折线ODEFG 所示已知4AB =,点D ,点F 横坐标分别为8和22.(1)求a 和b 的值.(2)求直线EF 的函数解析式.(3)当P 在BC 上时,用t 表示P 点的纵坐标.9.“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车沿同一路线去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m 米/分的速度到达图书馆.小军始终以同一速度骑行,两人行驶的路程(y 米)与时间(x 分钟)的关系如图.请结合图象,解答下列问题:(1)a=;b=.(2)求出m 的取值是多少?(3)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时的时间.10.如图1,在菱形ABCD 中,1cm AB =,连结AC BD ,.设DAB x ∠=()0180x y AC BD <<=- ,,小宁根据学习函数的经验,对变量y 与x 之间的关系进行了如下探究.(1)【探究】列表:通过观察补全下表(精确到0.01)./x153045607590105120135150165/cm y 1.72 1.080.3700.73 1.08 1.41 1.72描点、连线:在图2中描出表中各组数值所对应的点() x y ,,并画出y 关于x的函数图象.(2)【发现】结合画出的函数图象,写出该函数的两条性质:①;②.(3)【应用】有一种“千斤顶”,它是由4根长为30cm 的连杆组成的菱形ABCD ,当手柄顺时针旋转时,B D 、两点的距离变小(如图3).在这个过程中,当33cm AC BD -=时,BAD ∠的度数约为.(精确到1°).11.快、慢两车分别从相距360km 的佳市、哈市两地出发,匀速行驶,先相向而行,慢车在快车出发1h 后出发,到达佳市后停止行驶;快车到达哈市后,立即按原路原速返回佳市(快车掉头的时间忽略不计).快、慢两车距哈市的路程1y (单位:km ),2y (单位:km )与快车出发时间x (单位:h )之间的函数图象如图所示,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a 的值;(2)快车与慢车第一次相遇时,距离佳市的路程是多少千米?(3)快车出发多少小时两车相距100km ?请直接写出答案.12.如图,在Rt △ABC 中,∠B =90°,点P 从点A 出发,以12cm/s 的速度沿AB 向终点B 运动;2s 后,又有一动点Q 从点B 出发,沿B→C→A 方向以3cm/s 的速度向终点A 运动.第二幅图是△PQC 的面积S (cm 2)关于点P 的运动时间t (s )的函数图象,请结合图中提供的信息解决下面的问题;(1)线段AB =cm ,a=,m=;(2)求当t 为何值时,PQ ∥AC ;(3)求图中EF 段函数解析式.13.如图,在ABC 中,60C ∠=︒,3BC =厘米,4AC =厘米,点P 从点B 出发,沿B C A →→以每秒1厘米的速度匀速运动到点A .设点P 的运动时间为x 秒,B 、P 两点间的距离为y 厘米.小新根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6m的值是.(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;中画出(3ABC点P所在的位置,此时P运动的时间为▲秒14.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动时,△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)求a的值和EF的长度;(2)当点M运动到DE上时,求S与t的关系式.15.已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP 的面积S 与时间t 之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1)图甲中的BC 长是多少?(2)图乙中的a 是多少?(3)图甲中的图形的面积是多少?(4)图乙中的b 是多少?16.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a +=(x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x =+>,请利用特征点求出该函数的最小值.17.如图,在正方形ABCD 中,1AB =,延长BC 至M ,使5BM =.以BD BM ,为邻边作DBMN .动点P 从点D 出发,以每秒1个单位的速度沿DN 向终点N 运动,过点P 作PQ ⊥BM 交BM 或BM 的延长线于点Q ,以PQ 为边向右作正方形PQRS .设正方形PQRS .设正方形PQRS 与DBMN 的重叠部分的面积为y ,点P 运动的时间为x (0x >.单位:秒).(1)用含x 的代数式表示线段PN 为;(2)当点S 与点N 重合时,求x 的值;(3)当正方形PQRS 与DBMN 的重叠部分不是正方形时,求y 与x 之间的函数关系式;(4)当DQS 或PRN 是直角三角形时,直接写出x 的值.18.如图,已知在平面直角坐标系中,矩形ABCD 的边AB//x 轴,AD//y 轴,点A 的坐标为(2,1),AB=4,AD=3.(1)求直线BD 的解析式.(2)已知双曲线(0)ky k x =>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当S △BCE =3时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线(0)ky k x =>与矩形ABCD 各边和对角线BD 的交点个数为3,请直接写出k 的取值范围.19.如图①,在矩形ABCD 中,AB <AD ,对角线AC ,BD 相交于点O,动点P 由点A 出发,沿AB→BC→CD 向点D 运动,设点P 的运动路程为x ,△AOP 的面积为y ,y与x的函数关系图象如图②所示:(1)AD边的长为.(2)如图③,动点P到达点D后从D点出发,沿着DB方向以1个单位长度/秒的速度匀速运动,以点P为圆心,PD长为半径的⊙P与DB、DC的另一个交点分别为M、N,与此同时,点Q从点C出发,沿着CD方向也以1个单位长度/秒的速度匀速运动,以点Q为圆心、2为半径作⊙Q.设运动时间为t秒(0<t≤5).①当t为何值时,点Q与点N重合?②当⊙P与BC相切时,求点Q到BD的距离.20.已知:在矩形ABCD中,E为边BC上的一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬纸片△GMN,∠NGM=900,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMNP和点同时停止运动.设运动时间为t秒,解答问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P ,使△APQ 是等腰三角形,若存在,求出t 的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN 与△AEF 重叠部分的面积为S ,请直接写出S 与t 的函数关系式以及自变量t 的取值范围.21.如图,直角三角形ABC ∆中,90 4 60ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另-动点Q 也从A 出发沿A-→B→D 的路线运动,且在AB 上以每秒1的速度匀速运动,在BD.上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒32的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P,R ,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.22.如图,直线l :243y x =-+分别与x 轴,y 轴交于A ,B 两点,在OB 上取一点()01C ,,以线段BC 为边向右作正方形BCDE ,正方形BCDE 沿CD 的方向以每秒1个单位长度的速度向右作匀速运动,设运动时间为t 秒()0t >.(1)求A,B两点的坐标;(2)在正方形BCDE向右运动的过程中,若正方形BCDE的顶点落在直线l 上,求t的值;(3)设正方形BCDE两条对角线交于点P,在正方形向右运动的过程中,是否存在实数t,使得OP PA+有最小值?若存在,求出t的值:若不存在,请说明理由.23.如图,A、B、C是数轴上的三点,O是原点,BO=3,AB=2BO,5AO=3CO.(1)写出数轴上点A、C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒6个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,点N在线段CQ上,且CN=23CQ.设运动的时间为t(t>0)秒.①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,M、N两点到原点的距离相等?24.一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(注:圆周率π的值取3)(1)请直接写出:花坛的半径是米,a=.(2)当2t<时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:①蚂蚁停下来吃食物的地方,离出发点的距离.②蚂蚁返回O所用时间.答案解析部分1.【答案】(1)解:在Rt DEB 中,DE BE x ==,在Rt DEF 中,6EF BF BE x =-=-,60EDF ∠=︒tan EFEDF DE∠=∴6xx -=,解得 2.2x ≈将 2.2x ≈代入分式方程左边中得6 2.23.8=1.732.2 2.2-=≈故x 的长约为 2.2cm(2)解:由题意可知DE BE x ==,∴DE y x=又根据EF y 经过表中的那些点,所以取点,画图即可得到其图象.(3)解:如图所示,当△DEF 为等边三角形时,EF=DE∵∠B=45°,射线DE ⊥BC 于点E∴BE=EF∴EF=DE∴在(2)中EF y 与DE y 的交点横坐标即为BE 的长经测量可知 3.2x ≈∴BE 的长约为3.2.【解析】【分析】(1)由题意得出△ABC 为等腰直角三角形,结合DE ⊥BC ,得出BE=DE=x ,当点F 与点C 重合时,在Rt △DEF 中,EF=6-x ,∠EDF=60°,利用正切函数列构建方程求解即可;(2)根据△ABC 为等腰直角三角形,推出△BDE 为等腰直角三角形,则可求出y DE 与x 的函数关系并画出图象,根据表格提供的数据,并通过描点法画出在同一个平面直角坐标系中函数yEF 的图象;(3)根据等边三角形的性质得出EF=DE ,结合∠B=45°,DE ⊥BC ,得出BE=EF ,即y=x ,再根据y EF 与y DE 相交时,交点的横坐标即为BE 的长度,得出BE 的近似值.2.【答案】(1)45°(2)解:①∵//MN AC ,∴45BMN BAC ∠=∠=︒,45BNM BCA ∠=∠=︒,∴BMN BNM ∠=∠,∴BM BN =,又∵BA BC =,∴AM CN =,∵在OAM 和OCN 中,AM CNOAM OCN AO CO=⎧⎪∠=∠⎨⎪=⎩,∴()SAS OAM OCN ∆ ≌,∴1()2AOM CON AOC MON ∠=∠=∠-∠1(9045)22.52︒=⨯-︒=︒,∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为4522.522.5︒-︒=︒.②MBN 的周长的值为2,且在正方形OABC 的旋转过程中不发生变化.理由如下:如图所示,延长BA 交y 轴于点E,则45AOE EOM AOM AOM ∠=∠-∠=︒-∠,∵904545CON AOC MON AOM AOM AOM ∠=∠-∠-∠=︒-︒-∠=︒-∠,∴AOE CON ∠=∠,又∵OA OC =,1809090OAE OCN ∠=︒-︒=︒=∠,在OAE 和OCN 中,AOE CONOA OC OAE OCN∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA OAE OCN ≌,∴OE ON =,AE CN =.在OME 和OMN 中,OE ONEOM NOM OM OM=⎧⎪∠=∠⎨⎪=⎩,∴()SAS OME OMN ≌,∴MN ME AM AE ==+.∴MN AM CN =+,∴MBN 的周长为2MN BN BM AM CN BN BM AB BC ++=+++=+=.∴在正方形OABC 的旋转过程中,MBN 的周长不发生变化.【解析】【解答】解:(1)∵A 点第一次落在直线y x =上时停止旋转,直线y x =与y轴的夹角是45 ,∴OA旋转了45°;【分析】(1)根据直线y=x图象上点的特点,得出线y=x与y轴的夹角是45°,即可得出求得边OA旋转的角度;(2)①利用SAS得出全等,根据正方形一个内角的度数求出∠AOM的度数,即可得出答案;②利用全等把△MBN的各边整理到成与正方形的边长有关的式子即可.3.【答案】(1)AC;CD;FD(2)解:函数图象如图所示:(3)3.5cm<x<5cm【解析】【解答】解:(1)由题意可知:AC是自变量,CD,DF是自变量AC的函数.故答案为:AC,CD,FD.(3)观察图象可知CD>DF时,3.5cm<x<5cm.故答案为:3.5cm<x<5cm.【分析】(1)根据函数的定义可得结论;(2)利用描点法画出函数图象即可;(3)利用图象法,观察图象写出函数CD的图象在函数DF的图象上方时,自变量的取值范围即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】D
【解析】
【分析】分点Q在AB、BC上运动这两种情况,利用三角形面积公式得出函数解析式即可判断.
【详解】解:当点P在AC上,点Q在AB上时,
y= AQ· AP
= ·x· · x
= x2,
此时图像为一段开口朝上的抛物线;
由题意知,AC= ,当点Q运动至B点,P点运动至C点停止,
当Q在BC上,P点在C点时,
y= CQ·AB
= ×(6-x)×3
= ,
此时图像为一段下降的线段,
故选:D.
【点睛】本题主要考查动点问题的函数图象以及二次函数和一次函数的图像性质,解题的关键是根据题意弄清两点的运动路线,据此分类讨论并得出函数解析式.
变式1.2-2
8.如图,在矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向终点B以2cm/s的速度运动,同时动点F从点C出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是( )
4.如图,在矩形 中, , ,动点 沿折线 从点 开始运动到点 .设运动的路程为 , 的面积为 ,那么 与 之间的函数关系的图象大致是()
A. B.
C. D.
【答案】B
【解析】
【分析】由题中点P的运动轨迹和三角形 面积的表示方法即可求得.
【详解】解:点 从 运动到 的过程中, 的底边长不变,高逐渐增加,面积逐渐增加,
故选C.
考点:动点问题的函数图象.
变式1.2-1
7.如图,在正方形ABCD中,边长CD为3cm.动点P从点A出B发,以 cm/s的速度沿AC方向运动到点C停止.动点Q同时从点A出发,以1cm/s的速度沿折线AB→BC方向运动到点C停止.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y与x之间关系的是( )
A. B. C. D.
【答案】D
【解析】
【分析】分 、 两种情况,分别求出函数表达式,即可求解.
【详解】解:当 时,如图,
则 ,为常数;
当 时,如下图,
则 ,为一次函数;
故选:D.
【点睛】本题考查了动点函数图象问题,在图象中应注意自变量的取值范围,注意分类讨论.
变式1.1-1
2.如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度 (单位: )与运动时间 (单位 )关系的函数图像中,正确的是( )
变式1.1-2
3.如图,正方形 的边长为4,点 从点 出发,沿正方形的边 , , 移动,运动路线为 .设点 经过的路程为 , 的面积为 .则下列图象能大致反映 与 的函数关系的是().
A. B. C. D.
【答案】B
【解析】
【分析】根据动点从点A出发,首先向点B运动,此时y不随x的增加而增大,当点P在DC上运动时,y随着x的增大而增大,当点P在CB上运动时,y不变,据此作出选择即可.
A. B. C. D.
【答案】C
【解析】
【详解】试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积= BP•BQ,解y= •3x•x= ;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积= BQ•BC,解y= •x•3= ;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积= AP•BQ,解y= •(9﹣3x)•x= ;故D选项错误.
A. B. C. D.
【答案】C
【解析】
【分析】设菱形的高为h,即是一个定值,再分点P在BC上,在CD上和在DA上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】解:设菱形的高为h,分三种情况:
①当P在BC边上时,
y= BP•h,
∵BP随x的增大而增大,h不变,
∴y随x的增大而增大,且为一次函数关系,
故选项A和D不正确;
②当P在边DC上时,
y= AB•h,
AB和h都不变,
∴在这个过程中,y不变,
故选项B不正确;
③当P在边AD上时,
y= AP•h,
∵PA随x的增大而减小,h不变,
∴y随x的增大而减小,且为一次函数,
故选:C;
【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAB的面积的表达式是解题的关键.
A. B. C. D.
【答案】C
【解析】
【分析】一个小球垂直向上抛出,小球的运动速度v越来越小,到达最高点是为0,小球下落时速度逐渐增加,据此选择即可.
【详解】根据分析知,运动速度v先减小后增大.
故选:C.
【点晴】考查了动点问题的函数图象.解题关键分析小球的运动过程:一个小球垂直向上抛出,小球的运动速度v越来越小,到达最高点是为0,小球下落时速度逐渐增大.
当点P和点C重合时,由勾股定理得 ,
此时 的面积达到最大值,
∴ .
从 运动到 的过程中, 的底边长不变,高逐渐减小,面积逐渐减小,
综上所述, 与 之间的函数关系的图象大致为
,
故选:B.
【点睛】此题考查了矩形中动点三角形面积图像问题,解题的关键是由题意分析出三角形面积的变化情况.
变式1.1-4
5.如图,点 是菱形 边上的动点,它从点 出发沿 路径匀速运动到点 ,设 的面积为 ,点 的运动时间为 ,则 关于 的函数图象大致为( )
方法二:解析式计算法
根据题意求出每段的函数解析式,结合解析式对应的函数图象进行判断;
Hale Waihona Puke 例1.26.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()
【详解】解:当点P由点A向点B运动时,y随着x的增大而增大,最大值为8;
当点P在BC上运动时,y= AB•AD,y不变,y=8;
当点P在CD上运动时,y随x的增大而减小,最小值为0.
故选:B.
【点睛】本题考查了动点问题的函数图象,解决动点问题的函数图象关键是发现y随x的变化而变化的趋势.
变式1.1-3
专题 7动点与函数图象
类型一 动点与函数图象判断的解题策略
方法一:趋势判断法
根据几何图形的构造特点,对动点运动进行分段,并判断每段对应函数图象的增减变化趋势;
例1.1
1.如图,正方形 的边长为2,动点 从点 出发,在正方形的边上沿 的方向运动到点 停止,设点 的运动路程为 ,在下列图象中,能表示 的面积 关于 的函数关系的图象是( )