长安大学排课问题数学建模论文最终版

合集下载

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

论文排版方法(供参考)

论文排版方法(供参考)

数学建模论文的排版问题一、准备工作1、纸型在“文件”→“页面设置”→“纸张”菜单中设置纸型为A4。

2、页边距在“文件”→“页面设置”→“页边距”菜单中设置页边距,将左右边距适当缩小(不要小于2.5cm)。

3、行距在“格式”→“段落”菜单中设置行距为“1.5倍行距”。

4、自动保存时间间隔在“工具”→“选项”→“保存”菜单中设置自动保存时间间隔为5分钟。

5、公式编辑器在“工具”→“自定义”→“命令”菜单中点选“类别”中的“插入”选项,再将“命令”中的“公式编辑器”选项拖至常用工具栏中。

二、录入过程1、字体和字号文章正文用小四号楷体;标题用宋体并加粗,字号从小到大逐级向上各增加一个字号。

2、标题标题要左对齐。

标题后面不要加冒号。

每一级标题都要标上序号,不同级别的标题不能用同样格式的序号。

如:一级标题用“1、2、……”,二级标题用“1.1、1.2、……;2.1、2.2、……”。

序号格式可以是中文数字、阿拉伯数字、罗马数字、英文字母等多种形式。

“摘要”、“问题的提出”、……、“参考数目”、“附录”为最大一级的标题。

其中“摘要”和“附录”不用标序号。

“摘要”单独放一页,另起一页写“一、问题的提出”等。

3、表和图(1)、表表格要标上序号,如“表(一)”;也可加上注释,如“表(一)各系参赛人员名单”。

字号用五号。

序号和注释放在表格的上方。

调整表格至适当大小,并使其居中。

在正文中提到表格要说清楚是哪个表格,如“见表(一)”,不要说成“见下表”之类。

在MATLAB中得到的数据矩阵如果要做成表格形式,可以先用命令“save –ASCII 文件名.txt 矩阵名”将矩阵存为txt文件,再将txt文件中的数据复制到word文档中,选中所有的数据后,在“表格”菜单中点选“表格自动套用格式”即可。

(2)、图图要标上序号,如“图(一)”;也可加上注释,如“图(一)各系参赛人数分布图”。

字号用五号。

序号和注释放在图的下方。

调整图至适当大小,并使其居中。

数学建模专业毕业论文排版格式

数学建模专业毕业论文排版格式

数学建模专业毕业论文排版格式数学建模专业毕业论文排版格式一、写好数模论文的重要性1。

数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据。

2。

数模论文是培训(或竞赛)活动的最终成绩的书面形式。

3。

写好论文的训练,是科技论文写作的一种基本训练。

二、数模论文的基本内容1,评阅原则:假设的合理性;建模的创造性;结果的合理性;表述的清晰程度2,数模论文的结构摘要1、问题的提出:综述问题的内容及意义2、模型的假设:写出问题的合理假设,符号的说明3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等4、模型的求解:求解及算法的主要步骤,使用的数学软件等5、模型检验:结果表示、分析与检验,误差分析等6、模型评价:本模型的特点,优缺点,改进方法7、参考文献:限公开发表文献,指明出处8、附录:计算框图、计算程序,详细图表三、需要重视的`问题0。

摘要表述:准确、简明、条理清晰、合乎语法。

字数300—500字,包括模型的主要特点、建模方法和主要结果。

可以有公式,不能有图表简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。

还可作那些推广。

1、建模准备及问题重述:了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。

在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。

2、模型假设、符号说明基本假设的合理性很重要(1)根据题目条件作假设;(2)根据题目要求作假设;(3)基本的、关键性假设不能缺;(4)符号使用要简洁、通用。

3、模型的建立(1)基本模型1)首先要有数学模型:数学公式、方案等2)基本模型:要求完整、正确、简明,粗糙一点没有关系(2)深化模型1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……2)深化后的模型,尽可能完整给出3)模型要实用,有效,以解决问题有效为原则。

排课问题的数学模型研究

排课问题的数学模型研究

排课问题的数学模型研究随着社会的发展和教育水平的提高,越来越多的学生进入高等学校。

学校要面对各类课程的排课问题,势必要考虑如何尽可能地满足学生的教学需求,而且要保证排课的合理性、灵活性和可行性。

因此,排课问题已经成为现代最重要的教育问题之一。

排课问题是一种典型的优化问题。

实际上,它是在自然科学和社会科学领域中的一类比较复杂的约束条件下的优化设计问题,其目标是在给定的一定条件下实现最佳的排课效果。

因此,研究排课问题的最佳数学模型就显得尤为重要。

首先,要确定排课问题的决策变量,包括课程的内容、教室的容量、上课的时间和日期、以及教师的有效期限等等。

其次,要确定排课问题的目标函数。

排课问题的目标函数可以是最小化总课程时间或最小化总优化成本,也可以是最大化总满意度,还可以是最小化总不满意度。

确定目标函数之后,下一步就是定义求解模型。

求解排课问题的数学模型有很多种,根据不同的排课目标,求解排课问题的数学模型可以分为五类:标量函数优化模型、统一考虑模型、单项满足约束模型、多项满足约束模型和模糊排课模型。

其中,最常用的是标量函数优化模型,即以满足所有限制条件下最优解为约束条件,设计一个目标函数,以最优解使得目标函数最优值最小。

随着计算机技术和软件技术的发展,求解排课问题的优化软件也得到了改进和完善。

使用计算机计算技术和软件,可以有效地求出满足所有限制条件下排课最优解,从而实现高效、准确地求解排课问题。

总的来说,求解排课问题的数学模型是一个复杂的优化设计问题,涉及到许多学科,包括数学、经济学、管理学等,而且它也是当今教育改革中很重要的问题。

所以,要有效地求解排课问题,必须对排课问题的数学模型进行全面的研究,并借助计算机技术和软件,以达到尽可能地满足学生的教学需求,提高课程安排的效率和质量。

综上所述,排课问题的数学模型研究是排课系统的基础,它不仅涉及到诸多学科,而且还可以利用计算机技术和软件达到更好的优化排课效果。

排课问题的数学模型及基于遗传算法的实现

排课问题的数学模型及基于遗传算法的实现

时间表 问题 是一 类多元 受 限 的资源 调度 组合 优化 问题 . 列 车时 刻表 、 班时刻 表 、 市公 路运 营表 、 航 城 医院病 房 调度 表 等均
与此有关 。
c 2
e7
c q
c ^
e5
eJ
l11 时 间 表 问 题 的 相 关 定 义 _. 为 了更好 的描 述 时间表 问题 , 出以下 时间 表 问题 的相关 给 定义 : 定 义 1 时 间 集 ( i eS t : 件 发 生 时 间 构 成 的 集 合 , Tm e) 事 具 有有 序性 、 一 性 , 为 : 唯 记

要 : 时 间表 问题 的 分析 论述 入手 , 从 对排课 问题 进行 合理 抽 象并 建 立 了该 问题 的数 学模 型 。在此 基础 上 . 用遗 利
传 算 法进行 问题 求解 , 出染 色体 编码 方 案和适 应度 函数 , 计 并 实现 了排 课 系统 。结 果表 明 算法 具有合 理 性 和可 给 设
第7 第 1 期 卷 l
20 年 1 08 1月
软 件 导 刊
S fwae Gud o t r ie
Vo _ l No. 1 7 1 NO . o V 2 08
排课 问题 的数 学模型及基 于遗传 算法 的实现
剥、 华 金
( 门理 工 学院 计 算机 科 学与技 术 系, 建 厦 门 3 12 ) 厦 福 6 0 4
作考简介: 孙金华( 7- , 福建三明人, 1 6 )男, 9 硕士, J-学院计算机系高级工程师, 厦门z ̄ ' 研究方向为软件工程、 e开发技术、 wb 数据库技术。

6 6・
软 件 导 刊
2o o 8年

长安大学排课问题数学建模论文最终版

长安大学排课问题数学建模论文最终版

一、问题的重述排课问题是高校制定教学计划、安排教学过程中的一项较为复杂的工作,在高校教务管理工作中处于重要地位。

高校在每学期末都要根据培养计划和教学资源作出下学期的教学安排, 这主要体现在对课表的编排上。

其中涉及的关键要素很多, 包括教师、班级、教室和授课时段等。

根据排课总体目标、约束条件、及优先级, 充分利用紧缺资源, 设计并实现高校课表安排系统。

我校所面临的问题主要有:第一,渭水校区有包括从大一至大三三个年级的学生,20个学院近700个班级,教学任务繁重,课表安排难度较大;第二,校区地处偏僻,距市区较远,老师上课需乘车来回奔波,如果课表安排不当,就会导致部分老师前往渭水乘车次数过多或在渭水逗留时间过长;第三,基于学生的学习规律与习惯,应根据课程的难度与重要性进行课程时段的安排,若安排不当,会导致学生的学习效果不佳;第四,为节省学校在校车往返方面的开支,安排课表时应尽量减少校车运行车次。

为此应根据教学计划和排课要求,综合考虑教师、课程、班级和授课时段等因素,协调合理的编排课表,制作一个系统模型,根据这个模型使老师、同学和学校尽可能满意,并且具有足够的可行性和可变动性。

让老师满意,即让每位老师一周内前往渭水的乘车次数尽可能少,同时还要使每位老师在渭水逗留的时间尽可能少;让学生满意,即同一班级同一门课程在时间段上尽量间隔开来,另外相对重要的课程应尽量安排在较好的教学时段上;让学校满意,即节约学校开支,使每周派往渭水的车次尽可能少。

二、问题的分析课表安排的主要任务是把各学院的课程汇总, 然后根据教学计划或教学环节制订全校各班级的课表。

根据学校的实际情况和学校所面临的问题,可以将这类题归为以老师、学生和学校的满意情况为多目标的多约束的规划问题。

为了使课表的编排准确、合理、快速、高效, 充分利用学校资源,根据已知条件提出以下可行性要求:1、课程的优先级:将大学所有课程分为三类,1)公共必修课:多个学院开设的课程,课程重要且开设的班级数最多,这类课尽量安排在最好时段;2)专业必修课:少数学院或一个学院开设的课程,课程重要且开设的班级数较多,这类课尽量安排在较好时段;3)其他如专业选修课或公共选修课等:少数班级开设的课程,课程相对简单,可以任意安排时段授课。

排课问题的数学模型研究

排课问题的数学模型研究

排课问题的数学模型研究排课问题一直是困扰学校和教育管理部门的大难题,以往的管理策略和方法无法有效解决问题,研究提出了一种新的方法建立数学模型,对排课问题进行研究和分析,以期获得更好的解决办法。

排课问题的基本问题是如何有序安排课程。

这里的课程包括普通课程和课外活动,这两种课程的形式不同,具有不同的要求和特点,建模者要全面考虑这些要求和特点,在最短的时间内尽可能的有效解决排课问题,使每一门课在有限的时间内得到良好的安排和实施。

在实际应用中,排课问题可以通过数学模型来表达,如数学规划模型等。

这种模型能够有效地表示排课问题,并可以被用来求解问题。

例如,在数学规划模型中,可以将排课问题转化为一个最优化问题,然后计算最优解并求解。

此外,使用数学模型研究排课问题,也可以提出有效的管理策略,如安排和调整课程安排,统一选择教室,增加活动安排等。

使用管理策略,能够有效地解决排课问题,提高管理效率,有利于改善学校课程安排。

建立数学模型来研究排课问题,可以极大提高安排课程的效率、质量和准确性,有利于提高教学质量,得到较好的课程安排效果。

然而,建立数学模型来研究排课问题并不是容易的事情,需要对数学知识和计算机技术有一定的了解,实现课程的有效安排也需要一定的经验和技术。

同时,建立数学模型研究排课问题还需要考虑到许多因素,如教师、学生、时间、场地等。

这些因素都影响着排课问题的解决,因此,模型的构建必须考虑到这些因素。

综上所述,建立数学模型来研究排课问题具有重要意义。

数学模型可以用来表达排课问题,并用来求解问题。

同时可以根据模型提出有效的管理策略,帮助学校安排课程,提高管理效率,改善课程安排,从而有利于提高教学质量。

但是,建立模型是一个复杂的过程,需要充分考虑所有因素,才能得到较好的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、问题的重述排课问题是高校制定教学计划、安排教学过程中的一项较为复杂的工作,在高校教务管理工作中处于重要地位。

高校在每学期末都要根据培养计划和教学资源作出下学期的教学安排, 这主要体现在对课表的编排上。

其中涉及的关键要素很多, 包括教师、班级、教室和授课时段等。

根据排课总体目标、约束条件、及优先级, 充分利用紧缺资源, 设计并实现高校课表安排系统。

我校所面临的问题主要有:第一,渭水校区有包括从大一至大三三个年级的学生,20个学院近700个班级,教学任务繁重,课表安排难度较大;第二,校区地处偏僻,距市区较远,老师上课需乘车来回奔波,如果课表安排不当,就会导致部分老师前往渭水乘车次数过多或在渭水逗留时间过长;第三,基于学生的学习规律与习惯,应根据课程的难度与重要性进行课程时段的安排,若安排不当,会导致学生的学习效果不佳;第四,为节省学校在校车往返方面的开支,安排课表时应尽量减少校车运行车次。

为此应根据教学计划和排课要求,综合考虑教师、课程、班级和授课时段等因素,协调合理的编排课表,制作一个系统模型,根据这个模型使老师、同学和学校尽可能满意,并且具有足够的可行性和可变动性。

让老师满意,即让每位老师一周前往渭水的乘车次数尽可能少,同时还要使每位老师在渭水逗留的时间尽可能少;让学生满意,即同一班级同一门课程在时间段上尽量间隔开来,另外相对重要的课程应尽量安排在较好的教学时段上;让学校满意,即节约学校开支,使每周派往渭水的车次尽可能少。

二、问题的分析课表安排的主要任务是把各学院的课程汇总, 然后根据教学计划或教学环节制订全校各班级的课表。

根据学校的实际情况和学校所面临的问题,可以将这类题归为以老师、学生和学校的满意情况为多目标的多约束的规划问题。

为了使课表的编排准确、合理、快速、高效, 充分利用学校资源,根据已知条件提出以下可行性要求:1、课程的优先级:将大学所有课程分为三类,1)公共必修课:多个学院开设的课程,课程重要且开设的班级数最多,这类课尽量安排在最好时段;2)专业必修课:少数学院或一个学院开设的课程,课程重要且开设的班级数较多,这类课尽量安排在较好时段;3)其他如专业选修课或公共选修课等:少数班级开设的课程,课程相对简单,可以任意安排时段授课。

2、课程时段的规定:将每天分为5个时段(上午两个,下午两个,晚上一个),并规定为:1-2节课为第一时段,3-4节课为第二时段……依此类推。

根据学生的学习效果及课程难度与重要性,将课程时段按有利程度分为五个等级,即第一时段>第二时段>第三时段>第四时段>第五时段。

3、时间段的分配优先级:周一至周五的白天共20个时段用来安排公共必修课和专业必修课及部分选修课,每天晚上及周六、周日安排其他课程;先安排公共必修课表,在剩余的时间段安排各系专业课程,最后再安排选修课程;将相对重要的课程安排在较好时段。

4、时间段的有效性:1)同一班级同一门课的两次授课时间必须隔天,但相隔天数不宜超过两天;2)一个老师一天的两节课应连排, 即尽量安排在同一天上午或同一天下午, 为教师上课提供方便,同时也减少了派往渭水的车次5、应避免各种冲突:1)教室不冲突, 同一教室同一时间不能安排两门课程,人数不能超过教室的最大容量;2)学生不冲突, 同一班级学生不能在同一时间上两门或两门以上课程;3)课程不冲突, 同一班级同一课程不能同一时间在不同地点上课;4)教师不冲突, 同一教师不能同一时间在不同地点上课。

根据上述可行性要求,解决以下问题:问题一:要求建立排课表的数学模型,先确定公共基础课的课程数,并将这些课程数联系到教师和学生的满意程度,在优化满意程度的条件下,排出各个公共基础课的授课区域,指定老师在班级授课时间段的区域,并让老师在这个区域对不同的班级的授课时间段进行排布。

然后将专业课安插到未被占用的时间段上,最后是选修课。

同时课程的安排原则是尽可能选择在较好时段。

问题二:要求对渭水校区的课表进行重排,利用统计学知识,对学校所有班级进行抽样,随机抽取三个班级,并对这三个班级的课表重排,得到的课程与现有的课程进行比较。

问题三:利用加权综合评判法,对老师满意度、学生满意度和学校满意度进行加权综合评价。

其中老师满意度从老师的滞留时间和老师的乘车次数方面考虑,学生满意度以重要课程的安排的时间段好坏考虑,学校的满意度以校车的车次考虑。

问题四:从学生的学习效率和老师的教学效果等方面,对学校的软件设施、教学设施及运输设施等提出一些可行性建议。

三、符号说明CS:课程集合CSi:课程类别的编号;Cj:按优先级程度规定的课程编号;CR:时段集合;CRi:空闲时段集合;Rk:满足课程要求的空闲时段;0:否;1:是;T:间隔周期,单位:天;days:每周上课天数,单位:天;counts:周课时数;chapt:一次上课的节数;Tc:班级的受限一维数组;Tt:教师的受限一维数组;P:加权后的总满意度;Pt:老师的满意度;Ps:学生的满意度;Pu:学校的满意度。

四、模型的假设1.假设学校教室资源足够,不考虑教室资源对课程安排的约束;2.不考虑节日等因素对课程安排的影响;3.对于上课班级较多且任课老师较少的课程,每位老师可为几组班级授课,每组班级由若干个班级组成。

五、模型的建立与求解(一)问题一:建立排课表的模型,并研制出排课表的软件包。

利用对课程添加优先级属性,再根据优先级程度每个课程进行排课,即解决死锁问题。

同时也对时间段添加优先级属性,在每个课程排课的同时进行时间段的选择。

根据实际情况和所的资料综合分析实行对课程和时间段优先级的确定,并利用C++或FORTRAN软件对最优课程最优时间段的选择。

其步骤如下:1、系统模型的设计系统模型数据库是排课系统中的一个很重要的组成部分。

数据库中几个主要的表如下, 其中“*”号指出了各个表的主键:班级表(*班级号、专业号、入学时间、学制);课程表(课程号、*课程名称、课程性质、授课要求、学时、选课人数、上课教室);教师表(教师号、*教师名、所带课程、*所带班级数);排课结果表(*课程名称、*上课时段、上课周次)。

2、模型的建立(1)教务处汇总开课计划时, 进行课程优先级分类。

分类的依据为课程的难度和重要性(公共必修课、专业必修课、专业选修课和公共选修课)分别为CS1, CS2,CS3,在对于这些类别根据该课程老师是否教授其他班课程和该课程课时的多少,将课程按优先级顺序分为C1,C2……Cj。

(2)判断课程集合CS中所有课程集合是否都安排完成, 若再没有待排课程则安排完毕, 否则根据顺序从CS 中选择一类课程,记作CSi。

(3)在CSi 中选择一门未排课程Cj,在时段集合CR中查找有空闲的时段CRi。

(4)从时段集合CRi中按序列获取一个时段Rk, 根据课程Cj的上课要求判断该时段是否可用并在可用时间段选取最好时间段。

(5)时段Rk 可用时, 课程Cj的班级和老师在时段Rk 的对应记录上未分配, 则可安排给课程Cj,更新相应数据库,转入(7)。

(6)发生上课时段冲突, 时段Rk 不可用时, 若时段Rk 是时段集合Cr i中最后一个, 则没有找到合适时段, 提示课程Cj安排失败, 转入(7) , 以便最后调整; 否则返回(4)。

(7)如果CSi中所有课程的教室安排完成, 返回(2);否则返回(3) , 进行CSi+ 1 类课程的安排, 依次类推。

3、约束条件(1)为了降低排课的复杂性, 设计合理的排课顺序,设定教学任务的优先级。

教学任务i的优先级= 是否为公共课程或专业课程(0/1)+是否规定时段(0/1)+ 是否为必修课或基础课(0/1)。

这三个因素后括号的取值若为“是”, 取值为“1”, 否则为“0”; 表达式中的“+ ”是这三个因素的值连接。

如果排课优先级=“111”, 则表示: 公共课或专业课、规定了时段、必修课。

计算出所有教学任务的优先级后以降序排列, 然后按此顺序进行课程编排。

若两门课程的优先级相同,则对总学时较多的课程优先安排。

(2)为了使一门课的两次授课间隔合理, 规定了排课间隔周期。

每周上课天数days, 周课时数counts, 一次上课的节数chapt 等。

那么间隔周期T =[days/ (counts/ chap t)]-1。

如果一门课周课时数counts= 4, 为了使老师一次授课可以连排, 两节课代表一个上课时段, 上课节数chapt= 2, 一般每周上课6天, 则间隔周期T = 2, 即间隔2 天排下一次课(此类情况必要时也可间隔一天,如安排在周二和周四)。

必修课的间隔周期可按此法计算,选修课由于其学时和选课人数的不同可另作调整。

(3)、排课时不能使班级、教师、教室的时间相冲突,因前面已假设教室资源足够,可不考虑教室的影响,故此类约束条件用一个受限时间数组来表示, 为Tc、Tt。

分别为其建立一维数组, 数组元素个数为周上课天数days, 每个元素用“123456”的形式表示, 位数为每天上课的时段数, 取2节课为一个时段。

如某班级的受限一维数组Tc= (123456, 120000, 123456,003456, 123456, 103456)则表示该班级周二的下午和晚上、周四的上午、周六的上午3、4 节课时段空闲, 其余时段已排课或另有安排。

对于教师做同样的设置, 以便于检测空闲时段进行排课。

对某课程进行排课, 首先要检测教师、班级的受限时间数组,然后选择合适的时段进行排课, 如果交集为空, 则产生冲突, 做标记后返回重排。

另外, 对于某些高校完全实行学分制的情况, 排课时只需考虑教师、教室的冲突, 不需考虑教学班的冲突, 由学生根据自己的时间来选择合适的上课安排。

最后根据(二)问题二:利用所建模型及软件对本学期渭水校区的课表重排,并与现有课表进行比较。

由于对渭水校区所有班级课表重排数据太多,工作量太大,根据随机统计学抽样调查,随机抽选两个班级,对这两个班级的课程进行重排,根据这两个班的实验效果可以反映模型的可行性和实用性,将学校所有课程按1、2、3……编号,然后根据统计随机程序挑选,挑选班级为28010707和26050801(关于这两个班级的基础数据见附表1),并对其09-10第二学期的课表进行安排,安排的步骤与结果如下:一】班级28010707课表安排结果如下:1.课程的分类:公共必修课,0个;专业必修课,《土力学与基础工程》、《施工技术》、《钢筋混凝土》、《建筑电工学》、《施工组织》;选修课,《现代施工》、《系统工程》、《有限元素法》、《高层建筑结构》、《事故分析》、《土木工程施工(二)》、《结构稳定理论》。

2.课程优先级确定:《土力学与基础工程》>《建筑电工学》>《施工技术》>《钢筋混凝土》>《施工组织》>《现代施工》=《高层建筑结构》=《事故分析》=《结构稳定理论》=《土木工程施工(二)》=《系统工程》=《有限元素法》。

相关文档
最新文档