正态总体的常用抽样分布

合集下载

正态总体下的抽样分布

 正态总体下的抽样分布

§1.2数理统计中常用的分布正态总体是最常见的总体, 本节介绍的几个抽样分布均对正态总体而言.1.标准正态分布2. 2分布3.t分布4.F分布o xϕ(x )定义:设X ~N (0,1),对任给的α, 0<α<1,称满足条件1、标准正态分布αϕαα==>⎰+∞dx x z X P z )(}{的点z α为标准正态分布的上α分位点.z αα例:求z0.05解:P{X≤z0.05}=1−P{X>z0.05}=1−0.05=0.95∵P{X≤1.64}=0.9495P{X≤1.65}=0.9505∴z0.05≈(1.64+1.65)/2=1.645公式: Φ(zα)=1−α常用数字575.296.1645.1005.0025.005.0===zzz定义:设X i ~N (0,1) (i =1,2,...,n ), 且它们相互独立,则称随机变量2、χ2分布221nii X χ==∑服从自由度为n 的χ2分布,记为χ2~χ2(n ).χ2分布最常用的是拟合优度检验.其中,在x > 0时收敛,称为Γ函数,具有性质1()tx te dtx +∞−−Γ=⎰(1)(),(1)1,(1/2)(1)!()x x x n n n N πΓ+=ΓΓ=Γ=Γ+=∈一般自由度为n 的χ2(n )的密度函数为12221,0()2()20,xnnn ex ng x x x −−⎧>⎪⎪=Γ⎨⎪⎪≤⎩χ2分布的密度函数图χ2~χ2(n)D Y =D෍i=1nX i 2=෍i=1n D(X i 2)=෍i=1n [E(X i 4)−(E(X i 2))2]=෍i=1n2=2n .χ2分布的基本性质(1)设Y 1~χ2 (m ), Y 2~χ2 (n ), 且Y 1 , Y 2 相互独立,则χ2 分布的可加性(2)若Y ~χ2 (n ), 则E (Y )=n ,D (Y )=2n.= 1;)(~221n m Y Y ++χY 1=෍i=1mX i 2,Y 2=෍i=m+1m+nX i 2,)(~2n m +χY 1+Y 2=෍i=1m+nX i2E Y =E෍i=1nX i 2=෍i=1nE(X i 2)=෍i=1n[D(X i )+(E(X i ))2]=෍i=1n1=n ,E(X i 4)=12πන−∞+∞x 4e −x 22dx =3故(3)设X 1,…, X n 相互独立,且都服从正态分布N (μ,σ2),则;)(~)(12122n X Y ni i χμσ∑=−=(4)若Y ~χ2 分布,则当n 充分大时,近似服从N (0,1).n n Y 2−应用中心极限定理oχ2α(n )xf (x )α设χ2~χ2(n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件αχχαχα==>⎰+∞dx x f n P n )(222)()}({的点χ2α(n )为χ2(n )分布的上α分位点.χ2分布的上α分位点当n 充分大时,22)12(1)(−+≈n z n ααχ例:设X ~N (μ,σ2), (X 1,X 2,...,X 16)是取自总体X 的样本,求概率:}2)(1612{216122σμσ≤−≤∑=i iX P 解:∵X 1,X 2,...,X 16相互独立且)1,0(~N X i σμ−)16(~)(21612χσμ∑=−∴i i X}2)(1612{216122σμσ≤−≤∑=i iX P }32)(8{1612≤−≤=∑=i i X P σμ}32)({}8)({16121612>−−≥−=∑∑==i i i i X P X P σμσμ≈0.95−0.01=0.94定义:设X ~N (0,1),Y ~χ2(n ),且X 与Y 相互独立,则称随机变量3、t 分布服从自由度为n 的t 分布,记为T ~t (n )./X T Y n=T 的密度函数为:22112()1,.2n n n t x x n n n x π+−+⎛⎫Γ ⎪⎛⎫⎝⎭=+−∞<<∞ ⎪⎛⎫⎝⎭Γ ⎪⎝⎭1908年英国统计学家W.S. Gosset (笔名Student )t分布的密度函数图T~t(n)t 分布的上α分位点设T ~t (n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件(){()}()t n P T t n f x dt ααα+∞>==⎰的点t α(n )为t 分布的上α分位点.f (x )xt α(n )αt *0f (x )1-αx-t *t 分布的双侧α分位点设T ~t (n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件*{||}1P T t α<=−的数t *为t 分布的双侧α分位点.α/2t 分布的密度函数f (x )是偶函数,故**()()P T t P T t ≤−=≥***(||)()P T t P t T t <=−<<*(),2P T t α≥=于是得即*()2P T t α>=**()()P T t P T t =<−≤−**(1())()P T t P T t =−≥−≥*12()1,P T t α=−≥=−= t α/2(n )t 分布的性质(1) 其密度函数f (x )是偶函数(3) f (x )的极限为N (0,1)的密度函数,即221lim ()()2x n f x x e φπ−→∞==(2)t 1−α(n )= −t α(n )当n >45时,t α(n )≈z α例:设X , Y 1,Y 2,Y 3,Y 4 相互独立,且X ~N (2,1),令Y i ~N (0, 4),i =1, 2, 3, 4 ,解:∵X -2~N (0, 1),~t (4),即Z 服从自由度为4 的t 分布.求Z 的分布.由t 分布的定义Y i /2~N (0, 1),i = 1, 2, 3, 4 . ,)2(4412∑=−=i iY X Z ∑=−=412)2(4i i Y X Z 4)2(2412∑=−=i i Y X例:设随机变量X 与Y 相互独立,X ~ N (0,16),Y ~ N (0,9) , X 1, X 2,…, X 9与Y 1, Y 2 ,…, Y 16分别是取自X 与Y 的简单随机样本,求统计量所服从的分布.解:)169,0(~921⨯+++N X X X )1,0(~)(431921N X X X +++⨯ 2162191YY XX Z ++++=从而16,,2,1,)1,0(~31=i N Y i )16(~3122161χ∑=⎪⎭⎫ ⎝⎛i i Y 2162221921Y Y Y X X X ++++++ ()16314311612921∑=⎪⎭⎫ ⎝⎛+++⨯=i i Y X X X )16(~tt分布用于在小样本(n<30)场合下的正态分布(大样本(n≥30)场合下可以用正态分布来近似),有时候在信息不足的情况下,只能用t分布,比如在总体方差不知的情况下,对总体均值的估计和检验通常要用t统计量.12222,()2(),0()()()220,0m n m m nm n x x m nm n n m x m n f x x +−−+⎧Γ⎪+>⎪=⎨ΓΓ⎪⎪≤⎩F 的密度函数为:所服从的分布为第一自由度为m ,第二自由度为n 的F 分布,记作F ~ F (m , n ).4、F 分布则称统计量F 分布多用于比例的估计和检验!nY mX F =定义:设随机变量X 与Y 独立,且X~χ2(m),Y~χ2(n),F 分布的密度函数图F~F(m,n)F 分布的上α分位点设F ~F (m ,n ),其密度函数为f (x ),对于给定的正数α(0<α<1),称满足条件ααα==>⎰+∞dx x f n m F F P n m F ),()()},({的点F α(m ,n )为F 分布的上α分位点.0f (x )F α(m ,n )αxF 分布的性质(1) 若F ~F (m ,n ),则(2)()~,1F F n m ),(1),(1m n F n m F αα=−}),(11{1n m F F P α−≤=∵1−α=P {F ≥F 1−α(m ,n )}}),(11{11n m F F P α−>−=αα=>⇒−}),(11{1n m F F P ),(),(11m n F n m F αα=⇒−(3)若X ~ t (n ), 则X 2~ F (1, n );mX nY F=1例:设F ~ F (24, 15) ,求F 1,F 2,F 3,使其分别满足P (F >F 1 )= 0.025 , P (F <F 2 )= 0.025 , P (F >F 3 )= 0.95 .解:(1)由m =24,n =15,α= 0. 025 ,查P192 附表6(2)无法直接查表获得,但由F 分布性质知1/F ~F (15, 24),查附表6知(3) ∵F 3 =F 0. 95(24,15), 查附表6知:∴ F 2 = 1/2.44 = 0.41 ; 由性质(2)知,025.0)11()(22=>=<F F P F F P 1F 2=F 0.025(15,24)=2.44⇒P(F <1/2.44)=0.025F 0.05(15,24)=2.11,,)24,15(1)15,24(95.0195.0−=F F .474.011.213==∴F 知F 1= F 0.025 (24, 15)= 2.70 ;抽样分布定理1. 单个正态总体的抽样分布2. 两个正态总体的抽样分布定理:设X 1,X 2,...,X n 是来自正态总体N (μ,σ2)的样本,则1. 单个正态总体的抽样分布(1)),(~2n N X σμ)1,0(~N n X σμ−⇒(2)与S 2相互独立X (3))1(~)1(222−−n S n χσ(4))1(~−−n t n S X μ1σ2෍n(X i −μ)2~χ2(n)(5)(1)∑==ni i X n X 11)1,0(~N n X σμ−⇒为n 个相互独立的正态X ∴服从正态分布∑==ni i X E n X E 1)(1)(=μ∑==n i i X D n X D 12)(1)(n2σ=),(~2n N X σμ∴随机变量的线性组合(4)),1,0(~N n X σμ− 且它们相互独立由t 分布的定义,)1(~1)1(22−−−−n t n S n nX σσμ)1(~−−n t n S X μ即22)1(σS n −~χ2(n −1)例:设(X 1,X 2,…,Xn )是取自总体X 的样本, 是样本均值,如果总体X ~N (μ,4),则样本容量n 应取多大才能使X 95.0}1.0|{|≥≤−μX P 解:)1,0(~ N n X σμ− }21.02||{}1.0|{|n n X P X P ≤−=≤−∴μμ}05.02)(05.0{n X n n P ≤−≤−=μ)05.0()05.0(n n −Φ−Φ=1)05.0(2−Φ=n ≥0.95975.0)05.0(≥Φ⇒n 96.105.0≥⇒n ⇒n ≥1536.64⇒n ≥1537解:),1(~)1(222−−n S n χσ由),,(~2nN X σμ又()⎪⎭⎫⎝⎛+−+n n N X X n 211,0~σ)1,0(~11N n n X X n +−+σ故212(1)~(1)1(1)n X Xn n St n n n σσ+⎛⎫−−−⎪+−⎝⎭于是)1(~11−+−+n t n nS X X n 即例:总体X ~N (μ,σ2),(X 1,X 2,…,X n ,X n +1)为样本,,求X n+1−തX S n n+1的分布.S 2=1n −1෍i=1n(X i −തX)2തX=1n ෍i=1nX i定理:设总体X ~N (μ1,σ12),总体Y ~N (μ2,σ22).X 1,X 2,...,是总体X 的样本,Y 1,Y 2,...,是总体Y 的样本, 且这两个样本相互独立.则1n X 2n Y 2. 两个正态总体的抽样分布(1)),(~22212121n n N Y X σσμμ+−−(2))1,1(~2122222121−−n n F S S σσ)2(~11)()(212121−++−−−n n t n n S Y X ωμμ其中2)1()1(212222112−+−+−=n n Sn S n S ω称为混合样本方差.进一步,若σ12=σ22 =σ2,有(3)),(~221221n n N Y X σσμμ+−− )1,0(~11)()(2121N n n Y X +−−−∴σμμ2211)1(σSn −~χ2(n1−1),2222)1(σSn −~χ2(n2−1)且它们相互独立22222211)1()1(Sn Sn −+−∴~χ2(n1+n 2−2)由t 分布的定义,2)1()1(11)()(21222222112121−+−+−+−−−n n Sn Sn n n Y X σσσμμ22221121112)1()1()()(n n n n Sn S n Y X +−+−+−−−−μμ即~t (n 1+n 2−2)~t (n 1+n 2−2)小结1.理解总体、个体、样本和统计量的概念,掌握样本均值和样本方差的计算及基本性质2.掌握 2分布、t分布、F分布的定义,会查表计算3.理解正态总体的某些统计量的分布。

《概率与数理统计》第06章 - 样本及抽样分布

《概率与数理统计》第06章 - 样本及抽样分布

(3)g( x1, x2 ,L xn )是统计量g(X1, X2 ,L Xn )的观察值
几个常见统计量
样本平均值
X
1 n
n i 1
Xi
它反映了 总体均值 的信息
样本方差
S 2
1 n1
n i 1
(Xi
X )2
它反映了总体 方差的信息
n
1
1
n
X
2 i
i 1
nX
2
样本标准差
S
1 n
n
1
(
i 1
X
i
是来自总体的一个样本,则
(1) E( X ) E( X ) ,
(2) D( X ) D( X ) 2 n ,
n
(3) E(S 2 ) D( X ) 2
矩估计法的 理论根据
若总体X的k阶矩E( X k ) k存在,则
(4) Ak
1 n
n i 1
Xik
p k
k 1, 2,L .
(3)证明:E(S2 )
定义 设X1 , X2 ,L , Xn是来自总体X的一个样本, g( X1 , X 2 ,L , X n )是X1 , X 2 ,L , X n的函数,若g 中不含未知参数,则g( X1 , X 2 ,L , X n )称是一 个统计量.
请注意 :
(1)X1, X2 ,L
X
是样本,也是随机变量
n
(2)统计量是随机变量的函数,故也是随机变量
1
e
(
xi 2
2
)2
2
n
( xi )2
1
e i1 2 2
n
2
第二节
抽样分布

正态总体的抽样分布

正态总体的抽样分布
∞ 3x2e− 2 dx =
2π −∞

3
x2 ∞−
x2
∫ xe 2 d (− ) = −
2π −∞
2
∫ 3

x2 −
xde 2
=−
2π −∞
3 2π
⎛ x2 −
⎜⎜ xe 2 ⎝
+∞
⎞ ⎟⎟ ⎠ −∞
∫ ∫ + 3
x2 ∞−
e 2 dx =
3
x2 ∞−
e 2 d(
x
)=
3
2π −∞
π −∞
2
f
(x)
χ
2 n
分布分位点
对于给定的 α∈(0,1), 称满足条件
{ } ∫ α P
χ
2 n
>
χ
2 n

)

=
f (x)dx =
χn2 (α )
的点 χn2(α)为 χn2分布的上(右)α分位点。
χn2 分布上α 分位点有表可查见附表4。
n = 10 α
χ•210(0.005)
例如 由P215查得
P
(
χ
由度为n的F分布,F ~ Fm,n 又称:df1 = m, df2 = n.
其密度函数为:
f (x)
=
⎛ ⎜ ⎜ ⎜ ⎜ ⎜⎜⎝
Γ
⎛ ⎜⎝
m
+ 2
Γ
⎛ ⎜ ⎝
m 2
⎞ ⎟ ⎠
Γ
0,
n⎞ ⎟⎠
⎛n⎞
⎛ ⎜⎝
m n
π
⎞2 ⎟ ⎠
x
π 2
−1
⎛⎜1
+

m n

正态总体的常用抽样分布

正态总体的常用抽样分布

特点
卡方分布在正态分布两侧有更多的面 积,即其尾部比正态分布更重。随着 自由度n的增加,卡方分布趋近于正 态分布。
04
抽样分布的应用
参数估计
1 2
参数估计
通过抽样分布,我们可以估计总体参数,如均值 和方差。常用的估计方法有矩估计和最大似然估 计。
置信区间
基于抽样分布,我们可以构建总体参数的置信区 间,从而对总体参数进行区间估计。
03
样本方差的数学期望等于总体方差,其方差随 着样本量的增加而减小。
样本偏度与峰度
样本偏度是总体偏度的无偏估计,用于衡量数据的对称性。 样本峰度是总体峰度的无偏估计,用于衡量数据分布的尖锐程度。 在正态分布中,偏度和峰度均为0,但在非正态分布中,偏度和峰度可能不为0。
03
其他常用抽样分布
t分布
中心极限定理
中心极限定理的基本思想
中心极限定理表明,无论总体分布是什么类型,只要样本量足够大,从该总体中随机抽取的样本均值将趋近于正 态分布。这意味着我们可以利用正态分布的性质来分析和推断样本均值。
中心极限定理的应用
中心极限定理在统计学中具有广泛的应用价值。例如,在制定置信区间、假设检验和回归分析等统计方法时,都 需要利用中心极限定理来处理样本数据和推断总体参数。因此,正确理解和应用中心极限定理对于统计推断的准 确性和可靠性至关重要。
THANKS
样本量大小的影响
样本量大小
样本量的大小对抽样分布的形状和稳 定性有显著影响。随着样本量增加, 抽样分布的形状逐渐接近正态分布, 且分布的离散程度逐渐减小。
样本量与精度
样本量越大,估计的精度越高,即估 计的参数值越接近真实值。因此,在 制定抽样计划时,应充分考虑样本量 的大小,以确保估计的精度满足要求。

正态总体下的四大分布

正态总体下的四大分布

《概率论与数理统计》第六章样本及抽样分布(2)正态总体下的四大分布:正态分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数).1,0(~/N nx udefσμ-例:设总体ξ~212(1,2),,,n N ξξξ 且是取自ξ的样本,则(D )A)1(0,1)2N ξ-B)1(0,1)4N ξ-C)()1(0,1)2N ξ-D)(0,1)N ξt 分布设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~/--n t ns x tdefμ其中t(n-1)表示自由度为n-1的t 分布。

分布2χ设n x x x ,,,21 为来自正态总体),(2σμN 的一个样本,则样本函数),1(~)1(222--n S n wdefχσ其中)1(2-n χ表示自由度为n-1的2χ分布例:已知F 0.1(7,20)=2.04,则F 0.9(20,7)=_______0.4902_____.例.对于给定的正数α,10<<α,设αu ,)(2n αχ,)(n t α,),(21n n F α分别是)1,0(N ,)(2n χ,)(n t ,),(21n n F 分布的下α分位数,则下面结论中不正确...的是(B )(A)αα--=1u u (B))()(221n n ααχχ-=-(C))()(1n t n t αα--=(D)),(1),(12211n n F αα=-2、设X 、Y 相互独立,且都服从标准正态分布,则Z =2Y X 服从______t(1)_____分布(同时要写出分布的参数).3.设ξ和η相互独立且都服从N(0,4),而41,ξξ 和41,ηη 分别是来自总体ξ和η的样本,则统计量242141......ηηξξ++++=U 服从的分布为)4(t 。

第3节 正态总体下的抽样分布定理

第3节 正态总体下的抽样分布定理

(4) X和S2相互独立.
数理统计
n取不同值时 (n 1)S 2 的分布
2
数理统计
n取不同值时样本均值 X 的分布
数理统计
推论 设X1,X2,…,Xn是取自正态总体 N (, 2 )
的样本, 则有
X和S2 分别为样本均值和样本方差,
X ~ t(n 1)
Sn
X ~ N (0,1), / n

(1)
由定理2,
X
~
N (1
,
2 1
n1
),
Y
~
N (2
,
2 2
n2
),
且 X 与Y 相互独立,由正态分布的可加性,可得
X
Y
~
N (1
2
,
2 1
n1
2 2
)
.
n2
标准化,即得
U ( X Y ) (1 2 ) ~ N (0,1) .
2 1
2 2
n1 n2
10
数理统计
(2) 由定理2,
(n1
数理统计
第三节 正态总体下的抽样 分布定理
数理统计
定理1 设总体 X 的均值和方差均存在,EX ,
DX 2 ,对样本 ( X1, X2 ,, Xn ) 及其样本均值 X 和样本
方差 S2 ,
有 E(X) ,
2
D( X )

E(S2) 2
.
n
证 X1, X 2 ,, X n 相互独立,且与总体 X 同分布,故有
8
定理3
设两个正态总体 X
~
N
(
1
,
2 1
)
,Y
~

正态总体的常用抽样分布

正态总体的常用抽样分布

么么么么方面
• Sds绝对是假的
返回 上页 下页 结束
(4) 当
未知时,
其中
8
返回 上页 下页 结束
例1 设总体 X的一个样本. 统计量
为来自总体
试确定C, 使CY 服从 分布, 并指出其自由度.
解 因为
从而有


自由度为2.
9
返回 上页 下页 结束
例2 设

分别为来自
正态总体

的样本, 且X和Y
则有
2
返回 上页 下页 结束
定理1 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
ห้องสมุดไป่ตู้
(1) 与 相互独立;
(2)
(3)
推论 设
为来自总体
的样本, 是样本均值. 则有
3
返回 上页 下页 结束
定理2 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
证明 由定理1和推论, 有
且两者相互独立. 由t分布定义可知
相互独立. 试判断以下统计量服从什么分布:
(1)
(2) 解 (1) 因为
10
返回 上页 下页 结束
由 分布的可加性可知

(2) 由题设条件和正态分布的性质可得
从而有
11
返回 上页 下页 结束
由正态分布的性质可得 即 从而有 又因为
12
返回 上页 下页 结束
并且U和V相互独立, 由F 分布的定义可得
化简可得结论成立.
4
返回 上页 下页 结束
二. 两个正态总体的样本均值差和样本方差比的分布
定理3 设

概率论问答题

概率论问答题

C E(X ) .
7、 常用分布的期望、方差是什么?答:① (0 1) 分布: E(X ) p, D(X ) p(1 p). ② 二 项 分 布 X ~ b(n, p) : E(X ) np, D(X ) np(1 p). ③ 泊 松 分 布 X ~ () :
E(X ) , D(X ) .
2) .
其分布函数为 F (x)

x
dt , ( x ) .特别,当 0, 1 时,称 X 服从标准正态
分布,即 X ~ N(0, 1) . 6. 数学期望有哪些性质?答: (以下设所遇到的随机变量的数学期望存在) .① 设 C 是常数, 则有 E (C ) C .②
X ~ t (n 1) . S n
2
__
13. 分布、 t 分布、 F 分布及正态分布之间有哪些常见的关系?答:① 正态分布与 分布:设随机变
2
量 X1 , X2 ,
, Xn 独立且同服从正态分布 N(0, 1) ,则 X i 2 ~ 2 (n) .② 正态分布, 2 分布与以下重要性质(设所遇到的随机变量其方差存在).① 设 C 是常数,则 有 D(C ) 0 . ② 设 X 是 随 机 变 量 , C 是 常 数 , 则 有 D(CX ) C D(X ) .③ 设 X , Y 是 两 个 随 机 变 量 , 则 有
2
D(X Y ) D(X ) D(Y ) 2E {[ X E(X )][Y E(Y )]} . 特别,若 X ,Y 相互独立,则有 D(X Y ) D(X ) D(Y ) .
k 1 k
设随机变量 X 只可能取 0 与 1 两个值,它 设 X 表示 n 重伯努利试验中事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回 上页 下页 结束
并且U和V相互独立, 由F 分布的定义可得
返回 上页 下页 结束
解 因为
从而有


自由度为2.
返回 上页 下页 结束
例2 设

分别为来自
正态总体

的样本, 且X和Y
相互独立. 试判断以下统计量服从什么分布:
(1)
(2) 解 (1) 因为
返回 上页 下页 结束
由 分布的可加性可知

(2) 由题设条件和正态分布的性质可得
从而有
返回 上页 下页 结束
由正态分布的性质可得 即 从而有 又因为

的样本, 且这两
个样本相互独立. 设
分别是两个样本的均值,
分别是两个样本的方差, 则有:
返回 上页 下页 结束
(1)
(2)
特别地, 当
时,
(3) 当
已知时,
返回 上页 下页 结束
(4) 当
未知时,
其中
返回 上页 下页 结束
例1 设总体 X的一个样本. 统计量
为来自总体
试确定C, 使CY 服从 分布, 并指出其自由度.
一. 单个正态总体的样本均值和样本方差的分布
设总体X(不管是什么分布,只要均值和方差
存在)的均值为 方差为
是来自
总体X的样本, 与 分别是样本均值和样本方差.
则有
返回 上页 下页 结束

定理1 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
(1) 与 相互独立;
(2)
(3)
推论 设
为来自总体
的样本, 是样本均值. 则有
返回 上页 下页 结束
定理2 设
为来自总体
的样本, 与 分别是样本均值和样本方差. 则有
证明 由定理1和推论, 有
且两者相互独立. 由t分布定义可知 化简可得结论成立.
返回 上页 下页 结束
二. 两个正态总体的样本均值差和样本方差比的分布
定理3 设

分别为来自
正态总体
相关文档
最新文档