正态样本统计量的抽样分布概述

合集下载

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

理论分布和抽样分布的概念

理论分布和抽样分布的概念

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。

样本分布:样本中所有个体关于某个变量大的取值所形成的分布。

抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。

即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。

样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。

那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。

由样本平均数x 所构成的总体称为样本平均数的抽样总体。

它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。

统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。

但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。

于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。

样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。

相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。

2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。

数理统计学:统计量与抽样分布

数理统计学:统计量与抽样分布
主要内容
1.1 总体和样本 1.2 统计量与估计量 1.3 抽样分布 1.4 次序统计量 1.5 充分统计量 1.6 常用的概率分布族
数理统计学 是探讨随机现象统计规律性的一门学科, 它以概率论为理论基础,研究如何以有效的方式收集、 整理和分析受到随机因素影响的数据,从而对所研究对 象的某些特征做出判断。
1.1.2 样本
(2) 抽样, 即从总体抽取若干个个体进行检查或观察,用所 获得的数据对总体进行统计推断。 由于抽样费用低,时间 短,实际使用频繁。本书将在简单随机抽样的基础上研究各 种合理的统计推断方法,这是统计学的基本内容。应该说, 没有抽样就没有统计学
1.1.2 样本
• 从总体中抽出的部分(多数场合是小部分)个体组成的集合 称为样本。
(2)
(n 1)s2
2
~χ2(n-1);
(3) x与s2相互独立。
1.3.2 样本方差的抽样分布
例1.3.3
分别从正态总体N(μ1,σ2)和N(μ2,σ2)中抽取容
量为n1和n2的两个独立样本,其样本方差分别

s2 1

s2 2

(1)证明:对α∈(0,1),
s s s 2 2 (1) 2
Fn(x)依概率收敛于F(x)
1.2.3 样本的经验分布函数及样本矩
定理1.2.1(格里汶科定理)
对任给的自然数n,设x1,x2,…,xn是取自总体分布函数F(x) 的一组样本观察值,Fn(x)为其经验分布函数,记
则有
Dn sup Fn x F x
x
P
lim
n
Dn
0
1
1.2.3 样本的经验分布函数及样本矩
0
Fn x k / n

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

第十六讲(数理统计中常用的分布、抽样分布定理)

第十六讲(数理统计中常用的分布、抽样分布定理)
2 1 2 2
3 n足够大 时, (n)近似服从• (n,2n) N
2

1设
2 (n) X i2
i 1
n
X i ~ N (0,1) i 1,2, , n
X 1 , X 2 , , X n
相互独立,
2 i
则 E ( X i ) 0, D( X i ) 1, E ( X ) 1
•2
P{ X z } 1
-z= z1-
例1 求
z0.05 , z0.025 , z0.005 , z0.95 .
解: P{ X 1.645} 0.05, P{ X 1.96} 0.05, P{ X 2.575} 0.005.
z0.05 1.645 , z0.025 1.96 , z0.005 2.575
0.4 0.3 0.2 0.1
n= 1 n=20
-3

-1
1
2
3
t 分布的图形(红色的是标准正态分布)
t分布的性质: 1. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形, 1 t 2 2 再 由函数的性质有 lim f (t ) 2 e . n
~ ( n2 ), U
2
与V 相互
U n1 F V n2
服从自由度为n1及 n2 的F分布,n1称为 第 一自由度,n2称为第二自由度,记作
F~F(n1,n2) . 由定义可见,
1 V n2 ~F(n2,n1) F U n1
若F~F(n1,n2), F的概率密度为
( n1 n2 ) n n1 n21 1 n n 2 n ( n1 ) 2 ( y ) 1 n1 y 2 ( y ) ( 1 ) ( 2 ) 2 2 2 0

统计学之抽样与抽样估计概述

统计学之抽样与抽样估计概述

重复抽样:
(1)总体是正态分布,样本必然是正态分布
(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
容量n
2 x
2
n
(4)n越大,样本平均数越趋近于正态分布
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为X1=1、X2=2、X3=3 、X4=4 。 总体的均值、方差及分布如下
.2
.1 0
1
234
= 2.5
σ2 =1.25
.3 P ( X ) 抽样分布
.2
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
X 2.5
2 X
1.25 2
0.625
不重复抽样:
(1)总体是正态分布,样本必然是正态分布
(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
对于给定置信度,有
P(1 P)
P { p z / 2
n
P p z / 2
x
z / 2 p
z / 2
P(1 P) n
P(1 P) } 1
n
总体比例的置信区间为
P(1 P)
P(1 P)
( p z / 2
n
, p z / 2
) n
小样本条件下,不作介绍。
【例】某城市想 要估计下岗职工 中女性所占的比 例,随机抽取了 100 个 下 岗 职 工 , 其 中 65 人 为 女 性职工。试以 95% 的 置 信 水 平 估计该城市下岗 职工中女性比例 的置信区间
p
P(1 P) n
0.95 0.05 100

正态总体的常用抽样分布

正态总体的常用抽样分布

特点
卡方分布在正态分布两侧有更多的面 积,即其尾部比正态分布更重。随着 自由度n的增加,卡方分布趋近于正 态分布。
04
抽样分布的应用
参数估计
1 2
参数估计
通过抽样分布,我们可以估计总体参数,如均值 和方差。常用的估计方法有矩估计和最大似然估 计。
置信区间
基于抽样分布,我们可以构建总体参数的置信区 间,从而对总体参数进行区间估计。
03
样本方差的数学期望等于总体方差,其方差随 着样本量的增加而减小。
样本偏度与峰度
样本偏度是总体偏度的无偏估计,用于衡量数据的对称性。 样本峰度是总体峰度的无偏估计,用于衡量数据分布的尖锐程度。 在正态分布中,偏度和峰度均为0,但在非正态分布中,偏度和峰度可能不为0。
03
其他常用抽样分布
t分布
中心极限定理
中心极限定理的基本思想
中心极限定理表明,无论总体分布是什么类型,只要样本量足够大,从该总体中随机抽取的样本均值将趋近于正 态分布。这意味着我们可以利用正态分布的性质来分析和推断样本均值。
中心极限定理的应用
中心极限定理在统计学中具有广泛的应用价值。例如,在制定置信区间、假设检验和回归分析等统计方法时,都 需要利用中心极限定理来处理样本数据和推断总体参数。因此,正确理解和应用中心极限定理对于统计推断的准 确性和可靠性至关重要。
THANKS
样本量大小的影响
样本量大小
样本量的大小对抽样分布的形状和稳 定性有显著影响。随着样本量增加, 抽样分布的形状逐渐接近正态分布, 且分布的离散程度逐渐减小。
样本量与精度
样本量越大,估计的精度越高,即估 计的参数值越接近真实值。因此,在 制定抽样计划时,应充分考虑样本量 的大小,以确保估计的精度满足要求。

关于对统计推断中抽样分布的总结及判别

关于对统计推断中抽样分布的总结及判别

关于对统计推断中抽样分布的总结及判别统计推断是统计学的重要分支,用于从一个样本中推断总体的性质。

在进行统计推断时,我们需要对样本进行抽样,并利用抽样数据来进行分析。

抽样分布是统计推断的基础,它是由样本数据的一个统计量构成的分布。

本文将对抽样分布的概念、属性以及判别进行总结,并阐述其在统计推断中的作用。

抽样分布的概念:抽样分布是由样本统计量的取值构成的概率分布。

在统计推断中,我们往往无法获得总体的全部数据,而只能通过抽样来获取一部分数据。

我们需要对样本数据进行抽样,得到一个样本统计量,如均值、方差等。

样本统计量的分布即为抽样分布。

抽样分布的属性:1. 中心性质:抽样分布的中心通常与总体相同或近似相同。

当样本容量足够大时,抽样分布的均值接近总体均值。

2. 精确性质:抽样分布的方差通常比总体方差小。

样本容量越大,抽样分布越接近总体分布。

3. 形态性质:抽样分布的形态通常与总体分布有关。

当总体分布近似于正态分布时,抽样分布也近似于正态分布。

抽样分布的判别:在进行统计推断时,我们通常需要判断一个样本统计量是否来自某个已知分布。

为此,我们可以利用分布的特征进行判别。

1. 直方图:可以通过绘制样本统计量的直方图来观察其分布情况。

如果直方图呈现对称分布且近似于正态分布,那么我们可以判定样本统计量来自正态分布。

2. 正态概率图:正态概率图是一种用于判断数据是否来自正态分布的图形方法。

如果数据点近似位于一条直线上,那么可以判定数据来自正态分布。

3. 假设检验:通过设立假设并进行统计检验,可以判断样本统计量是否来自某个特定的分布。

常用的假设检验方法包括Z检验、t检验等。

抽样分布在统计推断中的作用:抽样分布在统计推断中起着重要的作用,它为我们提供了从样本推断总体性质的基础。

1. 参数估计:通过样本的抽样分布,可以进行总体参数的点估计和区间估计。

通过样本均值的抽样分布,可以推断总体的平均值。

2. 假设检验:抽样分布是进行假设检验的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j 1
~
N
(
2
,
2
m
)
X
Y
~
N (1
2
,
2
n
2
m
)
( X Y ) (1 2 ) ~ N (0,1) 2 2
nm
(n 1)S12
2
~
2 (n 1) ,
(m
1)S
2 2
2
~
2 (m 1)
(n
1) S12
2
(m
1) S 22
2
~ 2 (n m 2)
X Y

(n 1)S12
2
(m
1)S
P
20
i1
X
i
2
7.4
P
20
i1
X
i
2
35.2
0.995 0.025 0.97
例5 设X 与Y 相互独立, X ~ N(0,16), Y ~ N(0,9) ,
X1, X2 ,…, X9 与 Y1, Y2 ,…, Y16 分别是取自 X 与 Y
的简单随机样本, 求统 计量
X1 X2 X9 Y12 Y22 Y126
求下列概率:
(1)P(| X 12 | 1); (2)P(max(X1,, X 5 ) 15); (3)P(min(X1,, X 5 ) 10).

(1)因为
X
~
N (12,
4 ), 5
所以
X
12 4
~
N(0,1)
5
P(|
X
12 | 1)
P
X
12
1
=2Φ(1.118)-1
4 5
4 5
=0.7364
(1)

P 0.37
2
1 20
20 i1
Xi
X
2
1.76
2
(2)

P 0.37
2
1 20
20 i1
Xi
2
1.76
2
解 (1)
(n
1)S 2
2
~
2(n
1)

19S 2
2
1
2
20 i 1
Xi X
2 ~ 2 (19)

P
0.37
2
1 20
20
Xi
i1
X
2
1.76
2
P 7.4
m = 4, n =10 m = 10, n =10 m = 15, n =10
F 分布的性质
1 若F ~ F (n, m) , 则 1 ~ F (m, n) F
2 F (n, m) 的上 分位数F (n , m) 有表可查 :
P(F F (n, m))
例如 F0.05 (4,5) 5. 19
2
2 2
相互独立
( X Y ) (1 2 )
2 2
nm
(n
1) S12
2
(m
1)
S
2 2
2
nm2
( X Y ) (1 2 )
1 1
(n
1) S12
(m
1)S
2 2
~ t(n m 2)
nm
nm2
(4)
例3 设总体 X ~ N (72,100,)为使样本均值
大于70 的概率不小于 90% ,则样本容量
则称 x /2 为X 所服从的分布的双侧 分位数
标准正态分布的上 分位数 z
z0.05 1.645 常用
z0.025 1.96
数字
z•
z0.005 2.575
/2 -z•/2
-z/2 = z1-/2
/2
z•/2
6.2.2 2 (n) 分布(Chi squared r.v.)
定义 设 X 1, X 2 ,, X n 相互独立,
n
X
2 i
n
i1
E
(
X
4 i
)
1
x e4
x2
2
dx
3
2
D( X
2 i
)
E(X
4 i
)
E
2
(X
2 i
)
2
D 2 (n)
D
n
X
2 i
2n
i1
6.2.3 t 分布 (Student 分布)
定义 设X ~ N (0,1) , Y ~ 2 (n), X , Y 相互独立,
T
X Y
n
S12 S22
~
F(n 1, m 1)
设 X1, X 2 ,, X n 是来自正态总体 X ~ N (1, 2 )
的一个简单随机样本
Y1,Y2 ,,Ym 是来自正态总体 Y ~ N (2 , 2 )
的一个简单随机样本 , 它们相互独立.

X
1 n
n i 1
Xi
~
N
(1
,
2
n
)
Y
1 m
m
Yj
所服从的分布.
解 X1 X 2 X9 ~ N ( 0, 916)1 34Fra bibliotek(X1
X
2
X9
)
~
N
(
0, 1)
13Yi ~ N (0,1) ,i 1,2,,16
16
i1
13Yi
2
~
2 (16)
从而
X1 X2 X9
Y12 Y22 Y126
1 3 4
X1
X2
16 i 1
1 3
Yi
由于正态总体是最常见的总体, 故本节介绍的 几个抽样分布均对正态总体而言.
6.2.1 正态分布(Normal distribution)

X1, X2,, Xn
i.~i.d.
N
(
i
,
2 i
)

n
ai X i
~ N
n
aii ,
n
ai2
2 i
i1
i1
i1
特别地,
若 X1, X 2 ,, X n i.~i.d. X i ~ N (, 2 )

PT t
t t1
n = 10
-t•
t•
PT 1.8125 0.05 t0.05(10) 1.8125
PT 1.8125 0.05
PT 1.8125 0.95
t0.95 (10) 1.8125
P(T
t / 2 )
2
P T t /2
/2
-t•/2
/2
•t/2
n —4—2 .
解 设样本容量为 n , 则
X ~ N (72,100) n
故 P(X 70) 1 P(X 70) 0.2 n
令 0.2 n 0.9 查表得 0.2 n 1.29
即 n 41.6025 所以取 n 42
例4 从正态总体 X ~ N (, 2 ) 中,抽取了
n = 20 的样本 X1, X 2 ,, X 20
且都服从标准正态分布N (0,1),则
n
X
2 i
~
2(n)
i 1
n = 1 时,其密度函数为
f
(x)
0,
1 x e , 12
x 2
2
x0 x0
n = 2 时,其密度函数为
f
(x)
1
e
x 2
,
2
0,
x0 x0
为参数为1/2的指数分布.
一般地, 自由度为 n 的 2(n) 的密度函数为
f
(
P 2(10) 18.307 0.05
n = 10
•20.05(10)
n
证 1 设 2 (n)
X
2 i
X i ~ N (0,1) i 1,2,, n
i 1
X1, X 2 ,, X n 相互独立,

E(X i ) 0,
D(X i ) 1,
E(
X
2 i
)
1
E 2 (n)
E
2
X9
~ t(16)
16
例7 设 X1, X 2 ,, X n 是来自正态总体N ( , 2 )
的简单随机样本, X 是样本均值,
S12
1 n 1
n i1
(Xi
X
)2,
S32
1 n 1
n i1
(Xi
)2,
S22
1 n
n i1
(Xi
X
)2,
S42
1 n
n i1
(Xi
)2,
则服从自由度为n - 1的t 分布的随机变量为:
x)
1
n
e x ,
x 2
n 2
1
2
2
(
n 2
)
其中,
0,
(x) t e x1 t dt 0
x0 x0
在x > 0 时收敛,称为 函数,具有性质
(x 1) x(x),
(1) 1, (1/ 2)
(n 1) n! (n N )
2 (分n)布
n=2
密度函数图
n=3
n=5 n = 10
则T 所服从的分布称为自由度为 n 的t 分 布其密度函数为
f (t)
Γ
n
n
2
1
Γ n
1
t2 n
n1
2
2
t
n=1
n=20
t 分布的图形(红色的是标准正态分布)
相关文档
最新文档