统计量及其抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

统计量及其分布

统计量及其分布
2 最小,其中c为任意给定常数。 ( x x ) i
样本均值的抽样分布 (例题分析)
【例】设一个总体含有4 个个体,分别为X1=1、X2=2、 X3=3 、X4=4 。总体的均值、方差及分布如下。
总体均值和方差

总体的频数分布
X
i 1
N
i
N
N
2.5
2
2 ( X ) i i 1
0.02 0 2 1 0.1
21 Φ0.2
0.8414
(4) 样本 k 阶(原点)矩
1 n k Ak X i , k 1, 2, ; n i 1
1 n k 其观察值 k x i , k 1, 2, . n i 1
n n 1 2 1 2 2 E( S ) E X i nX (Xi X ) E n 1 i 1 n 1 i 1
2
1 n 2 2 E ( X i ) nE ( X ) n 1 i 1 2 1 n 2 2 2 ( ) n 2 n 1 i 1 n
n

k 1
n
2

2
n
,
定理 设总体X的期望E(X) = ,方差D(X) = 2,X1, X2,…,Xn为总体X的样本, X,S2分别为样本均值 和样本方差,则
E( X ) E( X )
D( X ) 2 D( X ) n n
E( S 2 ) D( X ) 2
思考:在分组样本场合,样本均值如何计算? 二者结果相同吗?
x1 f1 x n f n 其中 x n

第6章-统计量及其抽样分布

第6章-统计量及其抽样分布
2、计算出每个样本的统计量值; 3、将来自不同样本的不同统计量值分组排列,把
对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。

3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。

5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。

统计学 第6章 统计量及其抽样分布

统计学  第6章  统计量及其抽样分布
样本均值,样本比例,样本方差等
1. 样本统计量的概率分布,是一种理论分布

2. 随机变量是样本统计量

3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用在统计学中,抽样是一种数据分析的方法,它通过对总体中的一部分个体进行观察和测量来推断总体的特征。

而抽样分布是指抽取相同样本量的多个样本后得到的统计量的分布。

样本统计量是对样本数据进行计算得到的统计指标,它可以用来估计总体参数,并进行假设检验。

1. 抽样分布的基本概念抽样分布具有一些基本性质,首先是无偏性。

当样本容量趋向于总体容量时,样本统计量的期望值会无限接近总体参数的真实值。

其次是有效性,即样本统计量的方差趋近于零,它可以用来估计总体参数的精确度。

最后是一致性,样本统计量在样本容量逐渐增大时趋近于总体参数。

2. 抽样分布的常见形式常见的抽样分布有正态分布、t分布和卡方分布。

其中正态分布应用最为广泛,它在中心极限定理的作用下,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

而t分布则适用于当总体标准差未知、样本容量较小的情况下,它的形状比正态分布要略扁平一些。

卡方分布则主要用于样本方差的估计与检验。

3. 抽样分布的应用抽样分布的应用非常广泛,常用于以下几个方面:3.1 参数估计通过抽样分布,我们可以利用样本统计量对总体参数进行估计。

例如,可以利用样本均值估计总体均值,利用样本标准差估计总体标准差。

通过计算置信区间,我们可以得到对总体参数的范围估计。

3.2 假设检验假设检验是统计学中非常重要的一项工具,用于判断样本数据是否支持某个假设。

基于抽样分布,我们可以计算统计量的P值,进而判断样本数据与假设的一致性。

常用的假设检验有均值检验、方差检验、比例检验等。

3.3 质量控制在生产过程中,质量控制是非常关键的。

通过对样本数据进行分析,可以判断生产过程是否正常。

例如,可以通过控制图分析样本均值的变化情况,以判断过程是否处于控制状态。

3.4 统计决策在实际决策中,我们往往需要依据样本数据来进行判断。

抽样分布提供了一种基于统计的决策依据。

例如,在市场调研中,我们可以通过对样本数据进行分析,对市场潜力进行预测,从而指导营销策略的制定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E ( p1 p2 ) 1 2
1 (1 1 ) 2 (1 2 ) D( p1 p2 ) n1 n2
【例】某厂甲、乙两个车间生产同一种 产品,根据经验其产品的不合格率分别 为3.5%和4%。从甲车间随机独立地抽取 200个产品,从乙车间随机独立地抽取 150个产品。问两个样本中产品不合格率 相差不超过1%的概率。
1
2
3
4
现从总体中抽取n=2的简单随机样本,在重 复抽样条件下,共有42=16个样本。所有样本的 结果如下表
所有可能的n = 2 的样本(共16个) 第一个 观察值 第二个观察值 1 2 3 4
1
2 3 4
1, 1
2, 1 3, 1 4, 1
1, 2
2, 2 3, 2 4, 2
1, 3
2, 3 3, 3 4, 3
X p n
(1 ) 当n充分大时,p近似服从均值为 ,方差为 n
的正态分布。
【例】已知对某超市服务水平不满意的人数的 比例为5%,现随机抽取475名顾客组成的简单 随机样本,问这475名顾客中不满意的比例在 0.03~0.075之间的概率有多大? 解:设475名顾客中不满意的比例为p,则 E(p)=0.05, D(p)=0.05×0.95/475=0.0001 p~N(0.05,0.0001)
0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x
样本均值的抽样分布
所有样本均值的均值和方差
1.0 1.5 4.0 x 2.5 M 16
i 1 i
x
n

2 x
2 ( x ) i x i 1
n
M
(1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
X ~ N (10, 0.432 )
_ _

X

n
49
X 10 9 10 P( X 9) 1 P( X 9) 1 P( ) 0.43 0.43
=1-Φ (-2.33)= Φ (2.33)=0.9901
_
练习题
某类产品的抗拉强度服从正态分布,平均 值为99.8公斤/平方厘米,标准差为5.48公斤/平 方厘米,从这个总体抽出一个容量为12的样本, 问这一样本的平均值介于98.8公斤/平方厘米和 100.9公斤/平方厘米之间的概率有多大。
1 n X X i s2 n i 1

2 ( X X ) i i 1
2
)
n 1
( X ) T ~ t ( n 1) S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
3 由正态分布导出的几个重 要分布
卡方 (c2) 分布
定义:设随机变量X1,X2,…Xn相互独立,且Xi 服从标准正态分布 N(0,1),则它们的平方和 n X i2 服从自由度为n的c2分布。
i 1
当自由度n足够大时, c2分布的概率密度曲线趋于对称; 当n→+∞时, c2分布的极限分布是正态分布。 c2分布的数学期望为:E( c2)= n c2分布的方差为: D( c2) 2n
i 1
的概率分布即为样本均值的抽样分布。
【例】设一个总体,含有4个元素(个体),即 总体单位数N=4。4个个体分别为X1=1、X2=2、 X3=3 、X4=4 。总体的均值、方差及分布如下

X
i 1
N
总体分布
i
N
2.5
.3 .2 .1 0
2
(X
i 1
N
i
)
2
N
1.25
Y / m nY X Z / n mZ
则称X服从第一自由度为m,第二自由度为n的F分布, 记为X~F(m,n)。
n E( X ) ,n 2 n2 2n 2 (m n 2) D( X ) ,n 4 m(n 2)(n 4)
4
样本比例的抽样分布
如果在样本大小为n的样本中具有某一特征 的个体数为X,则样本比例用p来表示:
例:A班统计学考试平均分为75分,分数 服从正态分布,标准差为5分;B班统计 学考试平均分为72分,也服从正态分布, 标准差为7分。现在从A、B两班分别随 机抽出10名学生的统计学成绩,A班10 名学生的统计学平均成绩高于B班10名 同学的统计学平均成绩的可能性有多大?
两个样本比例之差的分布
设分别从具有参数为π1和π2的两个总体 中抽取包含n1个观测值和n2个观测值的独立 样本,当n1和n2很大时,(p1-p2)的抽样分 布近似服从正态分布:
当样本容量足够大时 (n≥30),样本均值的抽样 分布逐渐趋于正态分布
标准误差
标准误差:样本统计量与总体参数之间的平均差异 1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度 2. 样本均值的标准误差小于总体标准差 3. 计算公式为
x

n
【例】设从一个均值μ =8、标准差σ =0.7的总 体中随机抽取容量为n=49的样本。要求: (1)计算样本均值小于7.9的近似概率 (2)计算样本均值超过7.9的近似概率 (3)计算样本均值在总体均值μ =8附近 0.1范围的近似概率
统计量及其抽样分布
1
1. 抽样
统计量
样本 是样本X1,X2……Xn的一个函数 3. 统计量不依赖任何未知参数 4. 将一组样本的具体观测值代入统计量函 数,可以计算出一个具体的统计量值。
2 样本均值的抽样分布 和中心极限定理
1.从一个总体中随机抽出容量相同的各种样本, 从这些样本计算出的某统计量所有可能值的概 率分布,称为这个统计量的抽样分布。 2. 设X ,X ,…,X 是取自总体X的样本,样本 1 2 n n _ _ 均值 X 1 Xi ,所有可能样本的均值 X 构成 n
D( X1 X 2 ) D( X1 ) D( X 2 ) n1 n2
2 1 2 2




【例】居民区甲有2000个家庭,平均居住时 间为130个月,服从正态分布,标准差为30 个月;居民区乙有3000个家庭,平均居住 时间为120个月,也服从正态分布,标准差 为35个月。从两个居民区中独立地各自抽 取一个简单随机样本,样本容量为70和 100。问居民区甲样本中的平均居住时间 超过居民区乙样本中的居民平均居住时间 的概率是多大。
式中:M为样本均值的个数
样本均值的分布
当总体服从正态分布N ~(μ ,σ 2)时, 来自该总体的所有容量为n的样本的均值X 也服从正态分布,X 的数学期望为μ , 方差为σ 2/n。即X~N(μ ,σ 2/n)
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ 、 方差为σ 2/n的正态分布。
5 两个样本平均值之差的分布
设 X 是独立地抽自总体 X1 ~ N (1,12 ) 的一个容量 为n1的样本的均值。 X 2 是独立地抽自总体 2 X 2 ~ N (2 , 2 ) 的一个容量为n2的样本的均值,则有
1
E ( X1 X 2 ) E ( X1 ) E ( X 2 ) 1 2
【例】某公司有400人,平均工龄为10年,标准 差为3年。随机抽出49名组成一个简单随机样本, 试问样本中工作人员的平均年龄不低于9年的概率 有多大。 解:虽然该总体的分布未知,但样本容量n=49较大 由中心极限定理可知,样本均值的抽样分布近 _ 似服从正态分布。则均值的期望 E ( X ) 10(年) 均值的标准差 3 0.43(年)
t分布和T统计量
1. t分布:设随机变量X~N(0,1),Y~ c2(n), 且X与Y独立,则 X
t Y /n
其分布称为t分布,记为t(n),其中n为自由度。
当n≥2时, t分布的E (t)=0
当n≥3时, t分布的D (t)=n/(n-2)
2. T统计量
设X1,X2,…,Xn是来自正态总体 N ~ (μ ,σ n 的一个样本, 则
1, 4
2, 4 3, 4 4, 4
计算出各样本的均值,如下表。并给出样 本均值的抽样分布
16个样本的均值(x) 第一个 观察值 1 第二个观察值 1 1.0 2 1.5 3 2.0 4 2.5
.3 .2 .1 P(x)
2
3 4
1.5
2.0 2.5
2.0
2.5 3.0
2.5
3.0 3.5
3.0
3.5 4.0
0.03 0.05 p 0.05 0.075 0.05 P(0.03 p 0.075) P 0.01 0.01 0.01
(2.5) (2) (2.5) (2) 1 0.9938 0.9772 1 0.971
相关文档
最新文档