统计量及其抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

(概率论与数理统计 茆诗松) 第5章 统计量及其分布
例5.3.6 设总体X 的分布为仅取0,1,2的 离散
均匀分布,分布列为
x0 1 2
p 1/3 1/3 1/3
现从中抽取容量为3的样本,其一切可能取值有 33=27种, (表5.3.6)
x0 1 2
p 1/3 1/3 1/3
P(x(1)=0) = ?
ቤተ መጻሕፍቲ ባይዱ
可给出的 x(1) , x(2), x(3) 分布列如下 :
n
(x x ) 0. i i1
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,
(xi x)2最小,其中c为任意给定常数。
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本,
x 为样本均值。
(1) 若总体分布为N(, 2),则
是将样本观测值由小到大排列后得到的第 i 个 观测值。
其中, x(1)=minx1, x2,…, xn称为该样本的最小次序统计量, 称 x(n)=maxx1,x2,…,xn为该样本的最大次序统计量。
在一个样本中,x1, x2,…,xn 是独立同分布的,而 次序统计量 x(1), x(2),…, x(n) 则既不独立,分布也 不相同,看下例。

p R ( r ) 0 1 r n ( n 1 ) [ ( y r ) y ] n 2 d y n ( n 1 ) r n 2 ( 1 r )
这正是参数为(n1, 2)的贝塔分布。
5.3.6 样本分位数与样本中位数
样本中位数也是一个很常见的统计量,它也是 次序统计量的函数,通常如下定义:
在n
不大时,常用
s2
1 n n1i1
(xi
x)2

第6章-统计量及其抽样分布

第6章-统计量及其抽样分布
2、计算出每个样本的统计量值; 3、将来自不同样本的不同统计量值分组排列,把
对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)

统计学 统计量及其抽样分布

统计学 统计量及其抽样分布

定义:设随机变量X1,X2,…Xn相互独立,且Xi
服从标准正态分布N(0,1),则它们的平方和 n

X
2 i
服从自由度为n的c2分布。
i 1
c2分布主要适用于拟合优度的检验、独立性检 验以及对总体方差的估计和检验。
卡尔·皮尔逊(Karl Pearson)是英国著名的统 计学家、生物统计学家、 应用数学家,又是名副其 实的历史学家、科学哲学 家、伦理学家、民俗学家 、人类学家、宗教学家、 优生学家、弹性和工程问 题专家、头骨测量学家, 也是精力充沛的社会活动 教育改革家、社会主义 家、律师、自由思想者、 者、妇女解放的鼓吹者、 婚姻和性问题的研究者, 亦是受欢迎的教师、编 辑、文学作品和人物传 记的作者.

(n 1)s 2 ~ c 2 (n 1) 2
6.7.2 两个样本方差比的分布
1. 两 个 总 体 都 为 正 态 分 布 , 即 X1~N(μ1 ,σ12) , X2~N(μ2 ,σ22 )
2. 从两个总体中分别抽取容量为n1和n2的独立样本
3. 两个样本方差比的抽样分布,服从分子自由度为 (n1-1),分母自由度为(n2-1) 的F分布,即
复抽样条件下,共有42=16个样本。所有样本的 结果如下表
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1 1,2 1,3 1,4
2
2,1 2,2 2,3 2,4
3
3,1 3,2 3,3 3,4
4
4,1 4,2 4,3 4,4
计算出各样本的均值,如下表。并给出样 本均值的抽样分布
n
x

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。

3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。

5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。

统计学 第6章 统计量及其抽样分布

统计学  第6章  统计量及其抽样分布
样本均值,样本比例,样本方差等
1. 样本统计量的概率分布,是一种理论分布

2. 随机变量是样本统计量

3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 由正态分布导出的几个重要 分布
6.3.1 2分布
6.3.2 t 分布 6.3.3 F 分布
精品课件
2 分布
精品课件
统计学
STATISTICS (第五版)
χ2 分布的使用
如果一个变量的诸数值可视为几个独立变量值的平方和,则该变量服从 χ2 分布
方差就可视为若干随机变量值的平方和
样本中各随机数值与均值之离差的平方和(即样本方差的n-1倍)与总体 方差之比,服从自由度为n-1的χ2 分布
统计量的概念 常用统计量 次序统计量 充分统计量
精品课件
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如 果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未 知参数,则称函数T(X1,X2,…,Xn)是一个统计量
t 分布
x
t 分布与标准正态分布的比较
t (df = 5)
z
t
不同自由度的t分布
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
T 分 布 的 图 形
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
精品课件
统计学
STATISTICS (第五版)
学习目标
1. 了解统计量及其分布的几个概念 2. 了解由正态分布导出的几个重要分布 3. 理解样本均值的分布与中心极限定理 4. 掌握单样本学院
6.1 统计量
6.1.1 6.1.2 6.1.3 6.1.4
2分布
(性质和特点)
1. 分布的变量值始终为正
2. 分布的形状取决于其自由度n的大小,通常为不
对称的正偏分布,但随着自由度的增大逐渐趋
于对称
3. 期望为:E(2)=n,方差为:D(2)=2n(n为自
由度)
4. 可加性:若U和V为两个独立的2分布随机变量 ,从U自~由度2(n为1)n,1+Vn~2的2(n22分),则布U+V这一随机变量服
第 6 章 统计量及其抽样分布
精品课件
作者:中国人民大学统计学院 贾俊平
第 6 章 统计量及其抽样分布
6.1 统计量 6.2 关于分布的几个概念 6.3 由正态分布导出的几个重要分布 6.4 样本均值的分布与中心极限定理 6.5 样本比例的抽样分布 6.6 两个样本平均值之差的分布 6.7 关于样本方差的分布
在重复选取容量为n的样本时,由该统计量的所有可
能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
精品课件
作者:贾俊平,中国人民大学统计学院
样本均值、样本比例、样本方差等都是统 计量
2. 统计量是样本的一个函数 3. 统计量是统计推断的基础
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
次序统计量
1. 一组样本观测值X1,X2,…,Xn由小到大的排序
X(1)≤X(2)≤…≤ X(i)≤…≤ X(n)
后,称X(1),X(2),…,X(n)为次序统计量
2. t 分布是类似正态分布的一种对称分布,
它通常要比正态分布平坦和分散
3. 一个特定的分布依赖于称之为自由度的参 数。随着自由度的增大,分布也逐渐趋于 正态分布
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
t 分布图示
标准正态分布
标准正态分布
t (df = 13)
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
F分布
(F distribution)
1. 由统计学家费希尔(R.A.Fisher) 提出的,以其姓氏 的第一个字母来命名
2. 设若U为服从自由度为n1的2分布,即U~2(n1),
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
2分布
(2 distribution)
1.
2. 3. 4. 5.
精品课件
由阿贝(Abbe) 于1863年首先给出,后来由海尔墨
特(Hermert)和卡·皮尔逊(K·Pearson) 分别于1875
年和1900年推导出来 X ~ N(, 2)
z X ~ N(0,1)

,则
Y z2

,则 Y 服从自由度为1的2分布,即
Y ~ 2 (1)
X ~ N(, 2)
当总体
n
( xi
x),2 从中抽取容量为n的样本,则
i 1
2
~ 2 (n 1)
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
2. 中位数、分位数、四分位数等都是次序统计量
精品课件
作者:贾俊平,中国人民大学统计学院
6.2 关于分布的几个概念
6.2.1 抽样分布 6.2.2 渐进分布 6.2.3 随机模拟获得的近似分布
精品课件
统计学
抽样分布
STATISTICS (第五版)
(sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
T 分 布 的 使 用
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
F 分布
精品课件
统计学
STATISTICS (第五版)
F分布
两个都服从χ2 分布的变量之比的分布规律。
可以设想为两个方差之比
方差之比会接近1(因为前面已经假设各变量都服从标 准正态分布),似乎存在一个“两端少,中间多”的特 征,但不对称(除非其中存在一个无限总体,使样本数 量为无穷大,则样本方差有无穷多个)
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
n=1
c2分布
(图示)
n=4 n=10 n=20
精品课件
不同容量样本的抽样分作布者:贾俊平,中国人民大学统计学院2
t 分布
精品课件
统计学
STATISTICS (第五版)
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 “Student”(学生)为笔名的论文中首次提 出
相关文档
最新文档