实验一 直流他励电动机在各种运转状态下的机械特性

实验一 直流他励电动机在各种运转状态下的机械特性
实验一 直流他励电动机在各种运转状态下的机械特性

实验一直流他励电动机在各种运转状态下的机械特性

一、实验目的

测定他励直流电动机的自然机械特性及各种电气参数变化时的人为机械特性。

通过试验掌握直流电动机在各种运行状态时的特点和能量转换的规律。

二、预习要点

1、改变他励直流电动机机械特性有哪些方法?

2、他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况?

3、他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。

三、实验项目

1、电动及回馈制动状态下的机械特性

2、电动及反接制动状态下的机械特性

3、能耗制动状态下的机械特性

四、实验设备及挂件排列顺序

1、实验设备

型号名称数量

1 DD01 电源控制屏1台

2 DD0

3 不锈钢电机导轨、测速系统及数显转速表1件

3 DJ15 直流并励电动机1台

4 DJ23 校正直流测功机1台

5 D51 波形测试及开关板1件

2、屏上挂件排列顺序D51

五、实验方法及步骤

按图1-1接线,图中M用编号为DJ15的直流并励电动机(接成他励方式),MG用编号为DJ23的校正直流测功机,直流电压表V1的量程为500V,直流电流表A2、A4的量程为200mA,A1、A3的量程为5A。R2 、R4选用R1、R3上的900Ω电阻分压接法,R1选用R2、R4上4个90Ω串联,R3选用R5上的900Ω并联加上R6上的90Ω串联和实验台面上两个1300Ω并联。开关S1、S2选用D51上的双刀双掷开关。

直流电动机运行于电动及回馈制动状态下的自然机械特性

(一)试验概述:

(1)测定被试直流电动机M运行于电动状态的机械特性时,在其轴上可加负载的形式是多种多样的,然而要获得反接、回馈及能耗制动等状态时的机械特性,其最可行的方法是采用一台直流电机来做负载,利用负载机MG工作在不同的运行状态,来测出受试电动机M于不同运转状态的机械特性。

(2)本实验的自然机械特性从额定运行点开始,向空载、回馈发电方向进行,测取被试机M的n、I a然后计算它的转矩T,求得n=f(T )机械特性(由于直流电机T=C TφI,在φ保持不变时则T=I)。

(3)当被试机M运行于电动状态时(即第一象限运行),其负载机MG处于制动运行状态(可以是发电制动状态也可以是电枢反接、转速反向的制动状态)。本实验建议采用电枢反接、转速反向的制动状态运行,使MG服从于M的转向,因此负载机MG合闸时电枢串联的电阻R3应足够大,以免负载转矩太大,引起电枢电流太大,我们可以通过调节MG的电枢串联电阻R3的大小,而调节被试机M的负载的大小。

(4)当被试机M运行于回馈发电状态时(即第二象限运行),这时它需要负载机MG为原动机来拖动。因此负载机MG应处于正向高转速下的电动运行,这可以通过减小R3的阻值;或减小I4值而得到实现。

(二)原理和步骤

A)原理:

(1)实验线路如图1-1,直流电动机的自然机械特性试验的条件是U=U N;I f=I fN;R1 = 0 求n=f(T),因此实验

过程中应注意保持试验条件不变。

(2)当被试机M正向电动时(即运行于第一象限):

M:电枢正接,起动后R1 = 0 。

MG:电枢反接,(在R3于阻值最大时接通电源) 使负载机MG

处于反接制动运行,改变R3的阻值可以得到负载机MG的各个

不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交

平衡,从而调节被试机M的负载,其运行图如图1-2所示的虚

线a、b、c、d、e点。

(3)当被试机M回馈制动运行时(即运行于第Ⅱ象限):

M:电枢正接,(被负载机MG正拖到转速大于理想空载转速)。

MG:电枢正接,通过改变磁场电阻R4使负载机的理想空载转速大于被试机的理想空载转速。然后改变R3的阻值可以得到负载机MG的各个不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交平衡,从而调

节被试机M的负载。其运行图如图1-2所示的虚线f、g、h、i点。

B)步骤:

(1) 开机时需检查控制屏下方的“励磁电源”开关及“电枢电源”开关都须在断开的位置,然后按次序先开启控制屏上的“电源总开关”,再按下“启动”按钮,随后接通“励磁电源”开关,观察电流表A2、A4是否有电流(约90mA)。

(2)将S1合向A电源端,检查R1阻值确在最大位置、电压调节电位器调到最小时接通“电枢电源”开关,缓慢调节电压电位器使被试机M起动运转(观察电机的转向)。S2合向A或B端,检查R3阻值确在最大位置用上面一样方法起动MG(观察电机的转向)。确定被试机M与负载机MG转向是否相同(并标记好S2开关合向A 或B端,被试机M与负载机MG的转向是相同还是相反。)

(3)调节电压电位器使“电枢电源”电压为220V;调节R1阻值至零位置,调节R3阻值最大,S2合向与被试电机M转向相反的端头。

(4) 调节电动机M的磁场调节电阻R2,和电机MG 的负载电阻R3阻值(先调节R5上1800Ω阻值,调至最小后应用导线短接)。使电动机M的n=n N=1600r/min,I N= 1.2A。此时他励直流电动机的励磁电流I f为额定励磁电流I fN。保持U=U N=220V ,I f=I fN。调节增大R3阻值到最大值,直至空载(将开关S2拨至中间位置),测取电动机M在额定负载至空载范围的n、Ia数据。记录于表1-1中的正向电动运行段----实际空载。

(5)开关S2合向另一端。

(6)保持电枢电源电压U=U N=220V,I f=I fN,调节R4使负载机的励磁电流减小(负载机的转速提高)调节R3阻值,使阻值减小,电动机转速升高,当A1表的电流值为0A时,此时电动机转速为理想空载转速,继续减小R3阻值,使电动机进入第二象限回馈制动状态运行直至转速约为1900 r/min,(并注意观察A3表的电流值不要大于1A)测取M的n、I a.。

表1-1 U N=220V I fN= mA R1=0

运行状态正向电动运行实际空载理想空载回馈发电

n(rpm)

I(A)

T(N.m)

直流电动机电枢串接大电阻时人为机械特性的测定(电动及反接制动状态下的机械特性)(一)试验概述:

直流电动机电枢串接大电阻时人为机械特性它的理想空载转速

与自然的机械特性相同,而其特性斜率 则随串接电阻R1的增大而

增大。如R 1足够大,并且电动机又带位能性负载(恒转矩)时,则转速

n有可能被位能负载倒拉反转,使电机由电动运行(第一象限)经堵转而

进入转速反向的反接制动运行(第四象限)。本试验即研究直流电动机

从第一到第四象限人为机械特性的测定方法。

(二)原理与步骤:

A)原理:

(1)求试验测定直流电动机M由第一象限到第四象限的人为机械特性。

此时电枢串接的电阻R 1= 360Ω,试验从电动状态的实际空载运行(第

一象限)开始;经堵转、转速反向的反接制动(第4象限)运行,如图1-3

所示。

(2)MG电枢反接,(在R 3于最大值时通电)处于反接制动状态。从a

点到e点(堵转)到h点都是通过调节R 3的阻值来实现。

B)步骤:

(1)将S1合向A电源端,S2合向中间位置,先接通“励磁电源”,检查R1阻值确在最大位置、电压调节电位器调到最小时接通“电枢电源”开关,缓慢调节电压电位器使被试机M起动运转。将R1调定在360Ω,加负载(S2合向与被试电机M转向相反的端头)

(2) 保持电动机的“电枢电源”电压U=U N=220V,I f=I fN不变,逐渐减小R3阻值(先减小R5上1800Ω阻值,调至零值后用导线短接),使电机减速直至为零。继续减小R3阻值,使电动机进入“反向”旋转,转速在反方向上逐渐上升,此时电动机工作于电势反接制动状态运行,直至电动机M的I a=I aN,测取电动机在1、4象限的n、I a数据记录于表1-2中。

(3) 停机( 必须记住先关断“电枢电源”而后关断“励磁电源”的次序,并随手将S2合向中间位置)。

表1-2 U N=220V I fN= mA R1=360Ω

运行状态正向电动运行堵转反接制动运行

n(rpm)

I(A)

T(N.m)

直流电动机能耗制动状态下机械特性的测定

(一)试验概述:

直流电动机能耗制动是在它的电枢电源断开后,电枢经限流电阻R 1闭合。靠系统的动能发电,并把电能消耗地电枢回路的电阻上,此时,电机变成一台单独运行的发电机,而转速却被迅速制动到零。

被试直流电动机M断电后的能耗制动过程是一个过渡过程,因此要测量某一瞬时的特性参数(如:n、I a )则只好靠外力,如(负载机MG)驱动。使M稳定运行于该转速n下,不让过渡过程消逝下去,待测量到能耗电流I a 后。再用同样的方法测定另一瞬时所对应的特性参数,这就象演电影中的“定格”一样把随时即逝的变化过程用“定格化”的形式来“拍照”测量.这就是直流电动机能耗制动试验时为什么要一台电机MG来驱动的原因,电机的所有过渡过程,一般都以这种“定格化”的模拟形式来研究测量的。

(二)原理与步骤:

A)原理:

1.本试验被试机M电枢不接电源.即U = 0;而励磁电流I f = I fN;电枢通过电阻R 1形成一个闭合回路,分别进行R 1 = 180Ω和360Ω两条能耗制动机械特性。如图1-4

2.负载机MG正向电动运行,通过改变R 3可以得到不同斜率的负载特性分别与被试机M的能耗制动特性相

交稳定运行于a、b、c点。从最高转速开始逐渐降速。

B)步骤:

将S1合向B端,R3置最大位置,调节R4变阻器使电流表A4

约为90mA。S2合向A'端。

(2) 先接通“励磁电源”,再接通“电枢电源”,使校正直流

测功机MG起动运转,调节“电枢电源”电压为220V,调节R2

使电动机M的I f=I fN,减少R3阻值使电机M的转速1600rpm,

然后逐次增加R3阻值,其间测取M的I a、n数据记录于表1-3

中。

表1-3

运行状态能耗制动R 1 = 180Ω能耗制动R 1 = 360Ω

n(rpm)

I(A)

T(N.m)

六、实验报告

根据实验数据,绘制他励直流电动机运行在第一、第二、第四象限的电动和制动状态及能耗制动状态下的机械特性n=f(I a)(用同一座标纸绘出)。

七、思考题

1、回馈制动实验中,如何判别电动机运行在理想空载点?

2、直流电动机从第一象限运行到第二象限转子旋转方向不变,试问电磁转矩的方向是否也不变?为什么?

3、直流电动机从第一象限运行到第四象限,其转向反了,而电磁转矩方向不变,为什么?作为负载的MG,从第一象限到第四象限其电磁转矩方向是否改变?为什么?

实验二三相异步电动机在各种运行状态下的机械特性

一、实验目的

1.掌握绕线式异步电动机在各种运行状态下固有机械特性的测定方法。

2.掌握绕线式异步电动机在电动和转速反向的反接制动状态下人为机械的测定方法。

3.掌握绕线式异步电动机在能耗制动运行时机械特性的测定方法。

二、预习要点

1、如何利用现有设备测定三相线绕式异步电动机的机械特性。

2、测定各种运行状态下的机械特性应注意哪些问题。

3、如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。

三、实验项目

1、测定三相线绕式转子异步电动机在R S=0时,电动运行状态和再生发电制动状态下的机械特性。

(绕线式异步电机各象限运行时固有机械特性的测定)

2、测定三相线绕转子串电阻时,测定电动状态与反接制动状态下的机械特性。

(绕线式异步电机的转子上串接对称电阻运行于各象限时的人为机械特性)

3、R S=36Ω,定子绕组加直流励磁电流I1=0.2A及I2=0.4A时,分别测定能耗制动状态下的机械特性。

(绕线式异步电机能耗制动时的机械特性)

4、M---MG机组空载损耗测定P0=f(n)

四、实验要求:自行设计实验方案(实验的线路图、实验的方法原理与步骤。)

直流并励电机

专业:电子信息工程 姓名: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:直流并励电动机同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二、实验内容 1.工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、M2、n=f(Ia)及n=f(M2)。 2.调速特性 (1)改变电枢电压调速 保持U=U N,I f=I fN常值,M2=常值,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=U N,M2=常值,R1=0,测取n=f(I f)。 (3)观察能耗制动过程 三、实验步骤 1. 并励电动机的工作特性和机械特性 实验线路如图所示。电机选用D17直流并励电动机,测功机(请阅测功机使 用说明)作为电动机负载。按照实验一方法起动直流并励电动机,其转向从测功 机端观察为逆时针方向。 将电动机电枢调节电阻R l调至零,同时调节直流电源调压旋钮、测功机的加 载旋钮和电动机的磁场调节电阻R f,调到其电机的额定值U=U N,I=I N,n=n N, 其励磁电流即为额定励磁电流I fN,在保持U=U N和I=I fN不变的条件下,逐次减 小电动机的负载,即将测功机的加载旋钮逆时针转动直至零。测取电动机输入电 流I、转速n和测功机的转矩M,共取6—7组数据,记录于表中。

2.调速特性 (1) 改变电枢端电压的调速 直流电动机起动后,将电阻R l调至零,同时调节负载(测功机)、直流电源及电阻R f使U=U N、I f=I fN、M2=0.5 N·m,保持此时的M2的数值和I f=I fN,逐次增加R1的阻值,即降低电枢两端的电压Ua,R l从零调至最大值,每次测取电动机的端电压Ua、转速n和输入电流I, 共取5—6组数据,记录于表中。 (2) 改变励磁电流的调速 直流电动机起动后,将电阻R l和电阻R f调至零,同时调节直流调压旋钮和测功机加载旋钮,使电动机U=U N,I f=I fN,M2=0.5N·m,保持此时的M2数值和U=U N的值,逐次增加磁场电阻R f,直至n=1.3n N,每次测取电动机的n、I f和I,共取5—6组数据,记录于表中。 四、实验数据及处理 1. 并励电动机的工作特性和机械特性 表1-6 U=U N=220V,I f=I fN=82.1mA,Ra=20 Ω 实验数据I (A) 1.080.990.800.520.430.280.16 n(r/min)1602161516281677169917221745 M2 (N.m) 1.060.960.860.420.320.130 计算数据Ia (A) 1.000.910.720.440.350.20.08 P2 (W)177.74 162.28 146.54 73.72 56.91 23.43 0.00 η (%)0.748 0.745 0.833 0.644 0.602 0.380 0.000 Δn= N N n n n 0×l00%=9.1% 1 2

直流伺服电机实验报告

实验六 直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A , 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。 2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。

2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

表中Ra=(R a1+R a2+R a3)/3; R aref=Ra*a ref θ θ + + 235 235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref=Ra a ref θ θ + + 235 235

直流他励电动机实验报告记录

直流他励电动机实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

电机学实验报告——直流他励电动机实验 姓名:张春 学号:2100401332

实验三直流他励电动机实验 一、实验目的 1.掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2.掌握直流他励电动机的调速方法。 二、实验内容 1.工作特性和固有机械特性 保持和不变,时,测取工作特性、、及 固有机械特性。 2.调速特性 (1)改变电枢电压调速 保持电动机不变,常数,测取。 (2)改变励磁电流调速 保持,常数,时,测取。 3.观察能耗制动过程 三、实验说明及操作步骤 1.他励直流电动机的工作特性和固有机械特性 按图3-4接线,电阻选用挂箱上的阻值为、电流为 的可调电阻,作为直流并励电动机的起动电阻,电阻选用挂箱上的阻值为的可调电阻. 并接上励磁电流表(mA)和电枢电流表(A)。

(1)打开设备开关和设置好各个按钮状态,将电动机励磁回路电阻调至阻值最 小,电枢回路起动电阻调至阻值最大。 (2)调节直流稳压电源上的“电压调节”旋钮,使电动机输入电压为,电动机电枢回路起动电阻调至最小值,增加电动机磁场调节电阻,使电动机转速达额定值。 (3)调出电动机的额定运行点,确定电动机的额定励磁电流。 (4)在保持,不变的条件下,逐次减小电动机的负载,在额定负载到 空载范围内,测取电动机电枢电流,转速和输出转矩,共取组数据,记录于表3-1中。 表中:电动机输入功率P1=U a I a+U f I fn,输出功率P2=0.105nT2 效率 表3-1 工作特性和固有机械特性实验数据 实 验 数 据 1.10 1.0 0.9 0.8 0.4 0.3 0. 2 16 638 169 3 171 17 34 1.18 1.08 0.9 7 0.8 6 0.4 0.2 8 0. 15 计 算 数 260 .96 238 .96 216 .96 194 .96 106 .96 84. 96 62.9 6 19818216514771.50.27.3

他励直流电动机的机械特性曲线的分析

浅析:他励直流电动机的机械特性 在电源电压U 和励磁电路的电阻R f 为常数的条件下,表示电动机的转矩n 和转矩之间的关系n=f (T )曲线,称为机械特性曲线。利用机械特性和负载转矩特性可以确定拖动系统的稳定转速,在一定条件下还可以利用机械特性和运动方程式分析拖动系统的动态运动情况,如转速、转矩及电流随时间的变化规律。可见,电动机的机械特性对分析电力拖动系统的启动、调速、制动等运行性能是十分重要的。 下图是他励直流电动机的电路原理图,他励直流电动机的机械特性方程式,可由他励直 流电动机的基本方程式导出。由公式 , 和 导出机械特性方程式 ( 1-1 ) 他励直流电动机电路原理图 当电源电压U =常数,电枢回路总电阻R =常数,励磁磁通Φ=常数时,电动机的机械特性如下图所示,是一条向下倾斜的直线,这说明加大电动机的负载,会使转速下降。特性 曲线与纵轴的交点为n 0时的转速,称为理想空载转速。 他励直流电动机的机械特性 a a a R I E U + =n E a Φe C =φa T em I C T =em T R U n 2T e e C C C ΦΦ-=Φ e 0C U n =

实际上,当电动机旋转时,不论有无负载,总存在有一定的空载损耗和相应的空载转矩, 而电动机的实际空载转速 将低于n 0。由此可见式(1-1)的右边第二项即表示电动机带负载后的转速降,用 表示,则 ( 1-2 ) 式中 β——机械特性曲线的斜率。 β越大, 越大,机械特性就越“软”,通常称β大的机械特性为软特性。一般他励电动机在电枢没有外接电阻时,机械特性都比较“硬”。 机械特性的硬度也可用额定转速调整率△n N %来说明,转速调整率小,则机械特性硬度就高。 电动机的机械特性分为固有机械特性和人为机械特性 。 固有机械特性是当电动机的电枢工作电压和励磁磁通均为额定值,电枢电路中没有串入附 加电阻时的机械特性,其方程式为 固有机械特性如下图中的 曲线 所示,由于 较小,故他励直流电动机固有机械特性较“硬”。 他励直流电动机串电阻时的机械特性 人为机械特性是人为地改变电动机电路参数或电枢电压而得到的机械特性,即改变公 式(1-1)中的参数所获得的机械特性,一般只改变电压、磁通、附加电阻中的一个,他励电动机有下列三种人为机械特性。 (1) 枢串电阻时的人为机械特性 此时 ,人为机械特性的方程式 与固有特性相比,理想空载转速n 0不变,但是,转速降△n 增大 。R pa 越大,△n 0 n 'n ?em em T T R n βΦ==?2T e C C n ?em N a N N T R U n 2T e e C C C ΦΦ-=a R R =a R pa a N N R R R U U +===,,ΦΦem N pa a N N T R R U n 2T e e C C C ΦΦ+-=

直流伺服电机实验报告

直流电机的特性测试 一、实验要求 在实验台上测试直流电机机械特性、工作特性、调速特性(空载)和动态特性,其中测试机械特性时分别测试电压、电流、转速和扭矩四个参数,根据测试结果拟合转速—转矩特性(机械特性),并以X 轴为电流,拟合电流—电压特性、电流—转速特性、电流—转矩特性,绘制电机输入功率、输出功率和效率曲线,即绘制电机综合特性曲线。然后在空载情况下测试电机的调速特性,即最低稳定转速和额定电压下的最高转速,即调速特性;最后测试不同负载和不同转速阶跃下电机的动态特性。 二、实验原理 1、直流电机的机械特性 直流电机在稳态运行下,有下列方程式: 电枢电动势 e E C n =Φ (1-1) 电磁转矩 e m T C I =Φ (1-2) 电压平衡方程 U E I R =+ (1-3) 联立求解上述方程式,可以得到以下方程: 2e e e m U R n T C C C = -ΦΦ (1-4) 式中 R ——电枢回路总电阻 Φ——励磁磁通 e C ——电动势常数 m C ——转矩常数 U ——电枢电压 e T ——电磁转矩 n ——电机转速

在式(1-4)中,当输入电枢电压U 保持不变时,电机的转速n 随电磁转矩e T 变化而变化的规律,称为直流电机的机械特性。 2、直流电机的工作特性 因为直流电机的励磁恒定,由式(1-2)知,电枢电流正比于电磁转矩。另外,将式(1-2)代入式(1-4)后得到以下方程: e e U R n I C C = -ΦΦ (1-5) 由上式知,当输入电枢电压一定时,转速是随电枢电流的变化而线性变化的。 3、直流电机的调速特性 直流电机的调速方法有三种:调节电枢电压、调节励磁磁通和改变电枢附加 电阻。 本实验采取调节电枢电压的方法来实现直流电机的调速。当电磁转矩一定 时,电机的稳态转速会随电枢电压的变化而线性变化,如式(1-4)中所示。 4、直流电机的动态特性 直流电机的启动存在一个过渡过程,在此过程中,电机的转速、电流及转矩 等物理量随时间变化的规律,叫做直流电机的动态特性。本实验主要测量的是转速随时间的变化规律,如下式所示: s m dn n n T dt =- (1-6) 其中,s n ——稳态转速 m T ——机械时间常数 本实验中,要求测试在不同负载和不同输入电枢电压(阶跃信号)下电机的 动态特性。 5、传感器类型 本实验中,测量电机转速使用的是角位移传感器中的光电编码器;测量电磁 转矩使用的是扭矩传感器。

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

实习一:直流并励电动机

实验一直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.预习要点 1.什么是直流电动机的工作特性和机械特性? 答:工作特性:当U = U N , R f + r f = C时,η, n ,T分别随P 2 变; 机械特性:当U = U N , R f + r f = C时, n 随 T 变; 2.直流电动机调速原理是什么? 答:由n=(U-IR)/Ceφ可知,转速n和U、I有关,并且可控量只有这两个,我们可以通过调节这两个量来改变转速。即通过人为改变电动机的机械特性而使电动机与负载两条特性的交点随之改变,从而达到调速的目的。 三.实验项目 1.工作特性和机械特性 保持U=UN和If=IfN不变,测取n=f(Ia)及n=f(T2)。 2.调速特性 (1)改变电枢电压调速 保持U=UN、If=IfN=常数,T2=常数,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=UN,T2 =常数,R1 =0,测取n=f(If)。 (3)观察能耗制动过程 四.实验设备及仪器 1.MEL-I系列电机教学实验台的主控制屏。 2.电机导轨及涡流测功机、转矩转速测量(MEL-13)、编码器、转速表。 3.可调直流稳压电源(含直流电压、电流、毫安表) 4.直流电压、毫安、安培表(MEL-06)。 5.直流并励电动机。 6.波形测试及开关板(MEL-05)。 7.三相可调电阻900Ω(MEL-03)。 五.实验方法 1.并励电动机的工作特性和机械特性。

(2)测取电动机电枢电流I a 、转速n 和转矩T 2,共取数据7-8组填入表1-8中 表1-8 U =U N =220V I f =I f N =0.0748A K a = Ω 2.调速特性 (1)改变电枢端电压的调速 表1-9 I (2)改变励磁电流的调速 (3)能耗制动

实验一 直流他励电动机在各种运转状态下的机械特性

实验一直流他励电动机在各种运转状态下的机械特性 一、实验目的 测定他励直流电动机的自然机械特性及各种电气参数变化时的人为机械特性。 通过试验掌握直流电动机在各种运行状态时的特点和能量转换的规律。 二、预习要点 1、改变他励直流电动机机械特性有哪些方法? 2、他励直流电动机在什么情况下,从电动机运行状态进入回馈制动状态?他励直流电动机回馈制动时,能量传递关系,电动势平衡方程式及机械特性又是什么情况? 3、他励直流电动机反接制动时,能量传递关系,电动势平衡方程式及机械特性。 三、实验项目 1、电动及回馈制动状态下的机械特性 2、电动及反接制动状态下的机械特性 3、能耗制动状态下的机械特性 四、实验设备及挂件排列顺序 1、实验设备 序 型号名称数量 号 1 DD01 电源控制屏1台 2 DD0 3 不锈钢电机导轨、测速系统及数显转速表1件 3 DJ15 直流并励电动机1台 4 DJ23 校正直流测功机1台 5 D51 波形测试及开关板1件 2、屏上挂件排列顺序D51 五、实验方法及步骤

按图1-1接线,图中M用编号为DJ15的直流并励电动机(接成他励方式),MG用编号为DJ23的校正直流测功机,直流电压表V1的量程为500V,直流电流表A2、A4的量程为200mA,A1、A3的量程为5A。R2 、R4选用R1、R3上的900Ω电阻分压接法,R1选用R2、R4上4个90Ω串联,R3选用R5上的900Ω并联加上R6上的90Ω串联和实验台面上两个1300Ω并联。开关S1、S2选用D51上的双刀双掷开关。 直流电动机运行于电动及回馈制动状态下的自然机械特性 (一)试验概述: (1)测定被试直流电动机M运行于电动状态的机械特性时,在其轴上可加负载的形式是多种多样的,然而要获得反接、回馈及能耗制动等状态时的机械特性,其最可行的方法是采用一台直流电机来做负载,利用负载机MG工作在不同的运行状态,来测出受试电动机M于不同运转状态的机械特性。 (2)本实验的自然机械特性从额定运行点开始,向空载、回馈发电方向进行,测取被试机M的n、I a然后计算它的转矩T,求得n=f(T )机械特性(由于直流电机T=C TφI,在φ保持不变时则T=I)。 (3)当被试机M运行于电动状态时(即第一象限运行),其负载机MG处于制动运行状态(可以是发电制动状态也可以是电枢反接、转速反向的制动状态)。本实验建议采用电枢反接、转速反向的制动状态运行,使MG服从于M的转向,因此负载机MG合闸时电枢串联的电阻R3应足够大,以免负载转矩太大,引起电枢电流太大,我们可以通过调节MG的电枢串联电阻R3的大小,而调节被试机M的负载的大小。 (4)当被试机M运行于回馈发电状态时(即第二象限运行),这时它需要负载机MG为原动机来拖动。因此负载机MG应处于正向高转速下的电动运行,这可以通过减小R3的阻值;或减小I4值而得到实现。 (二)原理和步骤 A)原理: (1)实验线路如图1-1,直流电动机的自然机械特性试验的条件是U=U N;I f=I fN;R1 = 0 求n=f(T),因此实验 过程中应注意保持试验条件不变。 (2)当被试机M正向电动时(即运行于第一象限): M:电枢正接,起动后R1 = 0 。 MG:电枢反接,(在R3于阻值最大时接通电源) 使负载机MG 处于反接制动运行,改变R3的阻值可以得到负载机MG的各个 不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交 平衡,从而调节被试机M的负载,其运行图如图1-2所示的虚 线a、b、c、d、e点。 (3)当被试机M回馈制动运行时(即运行于第Ⅱ象限): M:电枢正接,(被负载机MG正拖到转速大于理想空载转速)。 MG:电枢正接,通过改变磁场电阻R4使负载机的理想空载转速大于被试机的理想空载转速。然后改变R3的阻值可以得到负载机MG的各个不同斜率的负载特性曲线与被试机M的被测机械特性曲线相交平衡,从而调

直流他励电动机实验

1-2 直流他励电动机 一、实验目的 1、掌握用实验方法测取直流他励电动机的工作特性和机械特性。 2、掌握直流他励电动机的调速方法。 二、预习要点 1、什么是直流电动机的工作特性和机械特性? 2、直流电动机调速原理是什么? 三、实验项目 1、工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、T2、η=f(I a)、n=f(T2)。 2、调速特性 (1)改变电枢电压调速 保持U=U N、I f=I fN=常数,T2=常数,测取n=f(U a)。 四、实验设备及仪表 五、实验方法 1、他励电动机的工作特性和机械特性 (1)按图1-2接线。涡流测功机T在此作为直流电动机M的负载,用于测量

电动机的转矩和输出功率。R f选用D44的1800Ω阻值。R st用D44的180Ω阻值。 图1-2 直流他励电动机接线图 (2) 将直流他励电动机M的磁场调节电阻R f1调至最小值,电枢串联起动 电阻R st 调至最大值,接通电枢电源开关使其起动,其旋转方向应符合转速表正向旋转的要求。 (3)M起动正常后,调节电枢电源的电压为220V,将其电枢串联电阻R st 调至零,再调节给定调节增加负载和电动机的磁场调节电阻R f ,使电动机达到 额定值U=U N ,I=I N ,n=n N 。此时M的励磁电流I f 即为额定励磁电流I fN 。 (4)保持U=U N,I f=I fN的条件下,逐次减小电动机负载。测取电动机电枢输入电流I a ,转速n共取数据9-10组,记录于表1-2中。

2 、 调速特性 (1)改变电枢端电压的调速 1)直流电动机M 运行后,将电枢电阻R 1调至零,再调节给定调节增加负载、电枢电压及磁场电阻R f1,使M 的U=U N ,I=0.5I N ,I f =I fN 记下此时的T 2值。 2)保持此时的即T 2值和I f =I fN 不变,逐次增加R 1的阻值,降低电枢两端的电压U a ,使R 1从零调至最大值,每次测取电动机的端电压U a ,转速n 和电枢电流I a 。 3)共取数据8-9组,记录于表1-3中 六、实验报告 1、由表2-2计算出P 2和η,并给出n 、T 2、η=f (I a )及n =f (T 2)的特性曲线。 电动机输出功率: P 2=0.105nT 2 式中输出转矩T 2的单位为N.m (由I f2及I F 值,从校正曲线T 2=f (I F )查得),转速n 的单位为r/min 。 电动机输入功率: P 1=UI 输入电流: I=I a +I fN 电动机效率: 由工作特性求出转速变化率: 2、绘出他励电动机调速特性曲线n =f (U a )。分析在恒转矩负载时的电枢电流变化规律以及优缺点。 七、思考题 1、他励电动机的速率特性n =f (I a )为什么是略微下降?是否会出现上翘现象?为什么?上翘的速率特性对电动机运行有何影响? % 100n n n %n N N 0?-= ?% 1001 2?=P P η

实验二 直流并励电动机

实验二直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.预习要点 1.什么是直流电动机的工作特性和机械特性? 2.直流电动机调速原理是什么? 三.实验项目 1.工作特性和机械特性 保持U=U N和I f=I fN不变,测取n、T2、n=f(I a)及n=f(T2)。 2.调速特性 (1)改变电枢电压调速 保持U=U N、I f=I fN=常数,T2=常数,测取n=f(Ua)。 (2)改变励磁电流调速 保持U=U N,T2 =常数,R1 =0,测取n=f(I f)。 (3)观察能耗制动过程 四.实验设备及仪器 1.NMEL系列电机教学实验台的主控制屏。 2.电机导轨及涡流测功机、转矩转速测量(NMEL-13)。 3.可调直流稳压电源(含直流电压、电流、毫安表) 4.直流电压、毫安、安培表(NMEL-06)。 5.直流并励电动机。M03 (U N=220v,I N=1.1A,n N=1600) 6.波形测试及开关板(NMEL-05)。 7.三相可调电阻900Ω(MEL-03)。 五.实验方法 1.并励电动机的工作特性和机械特性。 实验线路如图1-6所示 U1:可调直流稳压电源 R1、R f:电枢调节电阻和磁场调节电阻, 位于NMEL-09。

电机旋转,并调整电机的旋转方向,使电机正转。 b.直流电机正常起动后,将电枢串联电阻R1调至零,调节直流可调稳压电源的输出至220V,再分别调节磁场调节电阻R f和“转矩设定”电位器,使电动机达到额定值:U=U N=220V,Ia=I N,n=n N=1600r/min,此时直流电机的励磁电流I f=I fN(额定励磁电流)。 c.保持U=U N,I f=I fN不变的条件下,逐次减小电动机的负载,即逆时针调节“转矩设定”电位器,测取电动机电枢电流I a、转速n和转矩T2,共取数据7-8组填入表1-8中。表U=U N=221V I f=I fN=56.1mA I f2=1.1 A

他励直流电动机工作特性的测定

实验一他励直流电动机工作特性的测定 一、实验目的 1、进一步熟悉他励直流电动机的起动和调速方法。 2、测定他励直流电动机的工作特性和机械特性。 二、预习要点 1、做固有特性实验时,为什么首先要找电动机的额定运行点?如何找I fN ? 2、调节同轴的直流发电机的电枢电流与励磁电流,为什么能起到调节电动机电磁转矩的作用? 三、实验仪器设备 校正过的直流电动机DJ23 一台直流电动机DJ15 一台电机导轨及转速表0~1800 r/min 一套直流毫安表200mA 二块直流安培表5A 二块三相电阻器D41、D42 二台白炽灯组二组注:DJ23的名牌参数: P N =355W、U N =220V、I N =2.2A、n N =1500r/min、U FN =220V、I FN <0.16A DJ15的名牌参数: W 185 P N =、V 220 U N =、A 06 .1 I N =、V 220 U FN =、 FN I

电动机的机械特性教案

第一章电力拖动系统的动力学基础 【引入】用电动机作原动机的拖动方式,称为电力拖动。现代化矿井使用着大量的生产机械,几乎全部是采用电力拖动的。 第一节机械特性 一、电力拖动装置的组成 通常,一套电力拖动装置由工作机构(生产机械)、电动机、传动机构和控制设备四部分组成。如图1.1.1所示。 图 1.1.1电力拖动系统示意图 1、工作机构 工作机构是生产机械执行工作的机械部分,如提升机的卷筒、钢丝绳及提升容器,采煤机的滚筒与截齿等。电力拖动过程中,负荷的变化往往来自工作机构。 2、电动机 电动机是电力拖动装置的原动机,它的作用是把电源提供的电能转变为机械能用以拖动生产机械运转。 电动机分交流电动机和直流电动机两大类。 3、传动机构 大多数情况下,电动机与工作机构并不直接连接,而是中间还有一套传动机构用来变速或改变运行方式,如联轴器、皮带、链条及减速器等。 4、控制设备 控制设备是控制电动机运转的设备,由各种控制电器和控制电机组成,用以控制电动机的起动、调速、制动和反转等。

除了上述四部分外,还有电源装置,如各种开关柜,上面配有继电保护装置和指示仪表,用以向电动机和控制设备供电。 二、拖动系统的类型 单轴系统:电动机的转轴直接与工作机构的转轴相连接的拖动系统; 多轴系统:电动机和工作机构之间通过若干传动机构相连接的拖动系统。 1、电动运行状态(第一三象限) 其特点是电动机转矩M的方向与 旋转方向(转速n的方向)相同,M为拖 动转矩。电动机从电网取得电能并变为 机械能带动负载运转。 2、制动运转状态(第二四象限) 电动机的转矩M与转速的方向相反,M为制动转矩。此时生产机械带动电动机旋转,电动机吸收机械能并变成电能送回电网或消耗在电阻上。关于制动运转状态的分析将在后面有关章节中讨论。 三、机械特性 1、生产机械的负载特性 生产机械在运转中受到阻转矩的作用。此转矩叫负载转矩M?L反映到电动机轴上即为M L。生产机械的负载特性指其转速n L与负载转矩M L'的关系反映到电动机轴上便是 n=?(M L) 大多数生产机械的负载特性可归纳为以下三种类型: 1) 恒转矩特性 恒转矩特性的特点是负载转矩与转速无关,如图1.1.3所示。矿井提升机、带式输送机等机械具有这种特性。

实验 交流伺服电动机实验1——实验报告样板

交流伺服电机实验 一、实验目的 1.了解交流伺服电机 2.掌握交流伺服电机控制方法 二、实验内容 1.测定交流伺服电机的机械特性 2.测定交流伺服电机的调速特性 3.观察交流伺服电机的“自转”现象 三、实验原理 伺服电机又称执行电机。其功能是将输入的电压控制信号转换为轴上输出的角位移和角速度,驱动控制对象。伺服电机可控性好,反应迅速。是自动控制系统和计算机外围设备中常用的执行元件。 交流伺服电机就是一台两相交流异步电机。它的定子上装有空间互差90 的两个绕组:励磁绕组和控制绕组。工作时两个绕组中产生的电流相位差近90o,因此便产生两相旋转磁场。在旋转磁场的作用下,转子便转动起来。加在控制绕组上的控制电压反相时(保持励磁电压不变),由于旋转磁场的旋转方向发生变化,使电动机转子反转。 交流伺服电动机的特点:在电动机运行时如果控制电压变为零,电动机立即停转。 四、实验步骤 1.测定交流伺服电机机械特性,并绘制n=f(T)曲线α=1 1)启动主电源,调节三相调压器,使Uc=U N=220V;

2)调节涡流测功机的给定调节,记录力矩和转速。 n=f(T)曲线 2. 测定交流伺服电机机械特性,并绘制n=f(T)曲线 α=0.75 1)启动主电源,调节三相调压器,使Uc=0.75U N =165V ; 2)调节涡流测功机的给定调节,记录力矩和转速。 U1 V1W1N

n=f(T)曲线 3.测定交流伺服电机的调速特性,并绘制n=f(Uc)曲线1)启动主电源,调节三相调压器,使Uc=U N=220V; 2)调节三相调压器,记录控制电压和转速。

n=f(Uc)曲线 4.观察交流伺服电机的“自转”现象 1)启动主电源,调节使Uc=220V, U f=117V,观察电机有没有“自转”现象; 2)调节使Uc=0V, U f=117V,观察电机有没有“自转”现象。 五、思考题 1. 分析步骤4中有无“自转”现象?若有“自转”现象,一般如何消除?若无“自转”现象,其原因是什么? 两种状态下,该交流伺服电机均未见“自转”现象。因为建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。当控制信号消失时,只有励磁绕组通入电流,伺服电机产生的磁场将是脉动磁场,转子很快地停下来。

三相异步电动机的机械特性

三相异步电动机的机械特性 (一)机械特性方程 1)物理表达式:T=CTФmI2’ cosф2 (T是电磁作用的结果) 2)参数表达式: 3) 工程表达式: ——外施电源电压; ——电源频率; ——电机定子绕组参数; ——电机转子绕组参数。 (二)固有机械特性曲线 1.形状(根据工程表达式来说明) AB段(s较大):为双曲线,T与S成反比。 BO段(s很小):为直线,T与S 成正比。

2.起动点A,n=0,S=1, 起动转矩倍数KT=TS/TN 一般取0.8~1.8 3.临界点B 临界转差率只与转子电阻有关. 取0.1~0.2 最大转矩与电源电压UI2有关。 过载能力λ=Tm/TN 取1.6~2.2 4.同步点O n=n1 T=0 (理想的空载转速,旋转磁场的转速 ) 5.额定点C 0< SN

2、转子串电阻的人为机械特性——“变软” 当转子回路串电阻时,同步点不变,Sm与转子电阻成正比,转速随电阻增加而减小,最大转矩Tm保持不变,在一定范围内起动转矩有所增加,其特性曲线(红色)所示 3、降低定子电压频率的人为机械特性——“变小” 降低定子电压频率时,同步转速随之下降,从而使得电机转速下降,但特性的硬度基本保持不变。 电动机在工作时要求主磁通保持不变,因此在降低频率的同时,定子电压也要随之降低。

实验八 直流并励电动机

实验八直流并励电动机 一、实验目的 1、掌握用实验方法测取直流并励电动机的工作特性与机械特性。 2、掌握直流并励电动机的调速方法。 二、实验方法 1.并励电动机的工作特性与机械特性。 表1-8 U=U N=220V I f=I fN= 80、8 mA 2.调速特性 (1)改变电枢端电压的调速 (2)改变励磁电流的调速 三.实验报告

1、由表1-8计算出P2与η,并绘出n、T 2、η=f(I a)及n=f(T2)的特性曲线。 图1 n=f(I a)特性曲线图2 T2=f(I a)特性曲线 图3 η=f(I a)特性曲线图4 n=f(T2)特性曲线 2、绘出并励电动机调速特性曲线n=f(U a)与n=f(I f)。分析在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点。 图5 特性曲线n=f(U a)图6 特性曲线n=f(I f) 在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点: 改变电枢端电压的调速就是在额定转速以下调节转速的方法,电压Ua越小,转速n越小。 优点:(1)可实现平滑的无级调速;(2)相对稳定性较好;(3)调速经济性较好;(4)调速范围大。缺点:需要专用的可调压直流电源。 改变励磁电流的调速就是在额定转速以上调节转速的方法,励磁电流If减小,磁通Φ变小,转速n升高。 优点:(1)可实现无级调速;(2)稳定性好;(3)调速经济性较好;(4)控制方便,能量损耗小。 缺点:受电动机机械强度与换向火花的限制,转速不能太高,调速范围不大。

四.思考题 1、并励电动机的速率特性n=f(I a)为什么就是略微下降?就是否会出现上翘现象?为什么?上翘的速率特性对电动机运行有何影响? 答:根据并励电动机的速率特性公式,若忽略电枢反应 ,当电枢回路电流I a增加时,转速n 下降;若考虑电枢反应的去磁效应,磁通Φ下降可能引起转速n的上升,即出现上翘现象。这样的变化与电枢回路电流I a增大引起的转速n降低抵消,使电动机的转速n变化很小。 2、当电动机的负载转矩与励磁电流不变时,减小电枢端压,为什么会引起电动机转速降低? 答:由直流电动机机械特性的表达式可知,转速n与电枢电压Ua成正比、与磁通量Φ成反比,所以减小电压时,转速n下降。 3、当电动机的负载转矩与电枢端电压不变时,减小励磁电流会引起转速的升高,为什么? 答:由于磁通与励磁电流在额定磁通以下时基本成正比,所以励磁电流I f减小时,主磁通也随着减小。由机械特性的表达式可知,当磁通Φ减小时,转速n升高。 4、并励电动机在负载运行中,当磁场回路断线时就是否一定会出现“飞速”?为什么? 答:不一定。因为当电动机负载较轻时,电动机的转速将迅速上升直至超过允许值,造成“飞车”;但若电动机的负载为重载时,则电动机的电磁转矩将小于负载转矩,使电动机转速减小,但电枢电流将飞速增大,超过电动机允许的最大电流值,烧毁电枢绕组。

直流伺服电机实验报告

实验六直流伺服电机实验 一、实验设备及仪器 被测电机铭牌参数: P N =185W ,U N =220V ,I N =1.1A ,μN =1600rpm 使用设备规格(编号): 1.MEL 系列电机系统教学实验台主控制屏(MEL-I 、MEL-IIA 、B ); 2.电机导轨及测功机、转速转矩测量(MEL-13); 3.直流并励电动机M03(作直流伺服电机); 4.220V 直流可调稳压电源(位于实验台主控制屏的下部); 5.三相可调电阻900Ω(MEL-03); 6.三相可调电阻90Ω(MEL-04); 7.直流电压、毫安、安培表(MEL-06); 二、实验目的 1.通过实验测出直流伺服电动机的参数r a 、e κ、T κ。

2.掌握直流伺服电动机的机械特性和调节特性的测量方法。 三、实验项目 1.用伏安法测出直流伺服电动机的电枢绕组电阻r a 。 2.保持U f=U fN=220V,分别测取U a =220V及U a=110V的机械特性n=f(T)。3.保持U f=U fN=220V,分别测取T2=0.8N.m及T2=0的调节特性n=f(Ua)。4.测直流伺服电动机的机电时间常数。 四、实验说明及操作步骤 1.用伏安法测电枢的直流电阻Ra

取三次测量的平均值作为实际冷态电阻值Ra=3 13 2a a a R R R ++。 表中Ra=(R a1+R a2+R a3)/3; R aref =Ra*a ref θ++235235 (3)计算基准工作温度时的电枢电阻 由实验测得电枢绕组电阻值,此值为实际冷态电阻值,冷态温度为室温。按下式换算到基准工作温度时的电枢绕组电阻值: R aref =Ra a ref θθ++235235 式中R aref ——换算到基准工作温度时电枢绕组电阻。(Ω) R a ——电枢绕组的实际冷态电阻。(Ω) θref ——基准工作温度,对于E 级绝缘为75℃。 θa ——实际冷态时电枢绕组的温度。(℃) 2.测直流伺服电动机的机械特性

实验八 直流并励电动机

实验八直流并励电动机 一.实验目的 1.掌握用实验方法测取直流并励电动机的工作特性和机械特性。 2.掌握直流并励电动机的调速方法。 二.实验方法 1.并励电动机的工作特性和机械特性。 表1-8 U=U N=220V I f=I fN= 80.8 mA 2.调速特性 (1)改变电枢端电压的调速 (2)改变励磁电流的调速 三.实验报告 1.由表1-8计算出P2和η,并绘出n、T2、η=f(I a)及n=f(T2)的特性曲线。

图1 n=f(I a)特性曲线图2 T2=f(I a)特性曲线 图3 η=f(I a)特性曲线图4 n=f(T2)特性曲线 2.绘出并励电动机调速特性曲线n=f(U a)和n=f(I f)。分析在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点。 图5 特性曲线n=f(U a)图6 特性曲线n=f(I f) 在恒转矩负载时两种调速的电枢电流变化规律以及两种调速方法的优缺点: 改变电枢端电压的调速是在额定转速以下调节转速的方法,电压Ua越小,转速n越小。优点:(1)可实现平滑的无级调速;(2)相对稳定性较好;(3)调速经济性较好;(4)调速范围大。 缺点:需要专用的可调压直流电源。 改变励磁电流的调速是在额定转速以上调节转速的方法,励磁电流If减小,磁通Φ变小,转速n升高。 优点:(1)可实现无级调速;(2)稳定性好;(3)调速经济性较好;(4)控制方便,能量损耗小。 缺点:受电动机机械强度和换向火花的限制,转速不能太高,调速范围不大。

四.思考题 1.并励电动机的速率特性n=f(I a)为什么是略微下降?是否会出现上翘现象?为什么?上翘的速率特性对电动机运行有何影响? 答:根据并励电动机的速率特性公式,若忽略电枢反应,当电枢回路电流I a增加时,转速n下降;若考虑电枢反应的去磁效应,磁通Φ下降可能引起转速n的上升,即出现上翘现象。这样的变化与电枢回路电流I a增大引起的转速n降低抵消,使电动机的转速n变化很小。 2.当电动机的负载转矩和励磁电流不变时,减小电枢端压,为什么会引起电动机转速降低? 答:由直流电动机机械特性的表达式可知,转速n与电枢电压Ua成正比、与磁通量Φ成反比,所以减小电压时,转速n下降。 3.当电动机的负载转矩和电枢端电压不变时,减小励磁电流会引起转速的升高,为什么? 答:由于磁通与励磁电流在额定磁通以下时基本成正比,所以励磁电流I f减小时,主磁通也随着减小。由机械特性的表达式可知,当磁通Φ减小时,转速n升高。 4.并励电动机在负载运行中,当磁场回路断线时是否一定会出现“飞速”?为什么? 答:不一定。因为当电动机负载较轻时,电动机的转速将迅速上升直至超过允许值,造成“飞车”;但若电动机的负载为重载时,则电动机的电磁转矩将小于负载转矩,使电动机转速减小,但电枢电流将飞速增大,超过电动机允许的最大电流值,烧毁电枢绕组。

直流伺服电机

题目: 机器人某关节由直流伺服电动机驱动,电机参数如下: 4422min max 0.04322/0.058108.1510/(/)100, 1.035,0.010.0215/(/) 1.426,9.58()a a m a b K N m A J Kg m B N m rad s L mH R n K V rad s J Kg m J Kg m Jeff --==?=?==Ω==== 系统的结构角频率为25/rad s ,试设计控制系统并求出位置控制系统的阶跃 响应。 解答: 电枢绕组电压平衡方程为: a a a b a Ri dt di L k u +=-θ 电机轴的转矩平衡方程为: L m m m m a m n B J J τθθτ+++= )( 负载轴的转矩平衡方程为: L L L L L B J θθτ += 电动机输出转矩为: a a m K ττ= 联立可得传递函数为: ] )([) () (2b a eff a eff a eff a a eff a a m K K B R J R f L s L J s s K s U s ++++= θ 由于电机的电气时间常数远远小于其机械时间常数且电机的电感一般很小(10mH ), 电阻约1 Ω,所以可以忽略电枢电感La 的影响,上式可简化为: ) 1()()()(+= ++=s T s K K K B R J sR s K s U s m b a eff a eff a a a m θ 单位位置控制系统的闭环控制框图为:

单位反馈位置控制未引入速度反馈系统闭环传递函数: a p b a eff a eff a a p d L K nK s K K B R s J R K K s s +++=)()() (2θθ 式中: 无阻尼自然频率为: eff a a p n J R K nK = ω 阻尼比为: eff a a p b a eff a J R K nK K K B R 2+= ξ 引入速度反馈后,闭环系统传递函数为: a p v b a eff a a p d L K nK s nK K K s J R K nK s s +++=)()() (2θθ 式中: 为了安全起见,希望系统具有临界阻尼或过阻尼,即ξ≥ 1, 2 22 2n n n s s ωξωω++=2 22 2n n n w s w s w ++=ξeff a a p n J R K nK = ωeff a a p v b a eff a J R K nK nK K K B R 2)(++= ξ

相关文档
最新文档