三视图测试题

合集下载

三视图和直观图测试题

三视图和直观图测试题

高二数学空间几何体、三视图和直观图测试题班别: 姓名: 学号:1、在棱柱中( )A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形( )3、说出下列三视图(依次为主视图、左视图、俯视图)表示的几何体是ﻩ()A.六棱柱B.六棱锥C.六棱台D.六边形4 有下列命题: (1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2)B.(2)(3) C.(1)(3) D.(2)(4)5.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形6如图所示为一平面图形的直观图,则此平面图形可能是( )7.一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是( )A .①②ﻩﻩﻩB .②④ﻩ C.①②③ﻩﻩﻩD.②③④8 给出下列命题:① 如果一个几何体的三视图是完全相同的,则这个几何体是正方体;② 如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体;③ 如果一个几何体的三视图都是矩形,则这个几何体是长方体;④ 如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台.其中正确命题的个数是( )A.0ﻩ B.1ﻩﻩC.2ﻩﻩD.39、已知正ABC △的边长为a ,那么ABC △的平面直观图AB C △'''的面积为( ) A.234a ﻩ B.238a ﻩﻩC .268a ﻩﻩD.2616a 10. 如图所示,E、F分别是正方体的面ADD 1A 1、面B CC 1B1的中心,则四边形BF D1E在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)A 、①② B、②③ C 、②④ D、①②③二.填空题:11.下列不正确的命题的序号是 .①有两个面平行,其余各面都是四边形的几何体叫棱柱②有两个面平行,其余各面都是平行四边形的几何体叫棱柱③有一个面是多边形,其余各面都是三角形的几何体叫棱锥④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥12、下列结论不正确的是 (填序号).①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥④圆锥的顶点与底面圆周上的任意一点的连线都是母线13、下列几何体各自的三视图中,有且仅有两个视图相同的是 .14、如图所示的直观图,其平面图形的面积为1 2 1 2 3 O ′B ′A ′y 45°x三.解答题:15. 螺栓是棱柱和圆柱的组合体如图,画出它的三视图.16. 图所示是一个几何体的三视图,画出它的直观图.17. 一梯形的直观图是一个如图所示的等腰梯形,且该梯形面积为错误!,求原梯形的面积18.如图所示的几何体中,四边形AA 1B 1B 是边长为3的正方形,CC 1=2,CC 1∥AA 1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.主视图 俯视图 左视图19.已知正方体ABCD—A1B1C1D1的棱长为1,P是AA1的中点,E是BB1上一点,如图所示,求PE+EC 的最小值.20.某几何体的一条棱长为错误!,在该几何体的正视图中,这条棱的投影是长为错误!的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,试求a+b的最大值.参考图。

小学数学苏教版(2014秋)四年级上册第三单元 观察物体根据三视图拼摆物体-章节测试习题

小学数学苏教版(2014秋)四年级上册第三单元 观察物体根据三视图拼摆物体-章节测试习题

章节测试题1.【答题】依据从一个或两个方向看到的平面图形,就能确定立体图形的形状.()【答案】×【分析】此题考查的是从不同的方向观察物体.【解答】如下图,从前面和侧面看下面两个物体,都是长方形,所以从一个或两个方向看到的平面图形,不能确定立体图形的形状.故此题是错误的.2.【答题】在仓库里有一堆存放货物的正方体纸箱,从三个不同的方向看到的图形如下:这堆货物有______个正方体纸箱.【答案】8【分析】从不同方向观察组合立体图形,先结合三个方向看到的图形,再判断总共的层数,以及每一层纸箱的数量,综合分析一共有纸箱的数量.【解答】根据从上面看到的图形可知,这堆纸箱至少有4个,再从正面和左面的图形看,共有3层,从上往下数,第一层有1个,第二层有3个,第三层有4个,则这堆货物有:1+3+4=8(个).还原的立体图形如下:,故本题的答案是8.3.【答题】一个物体从左面看到的图形是,这个物体是由4个小正方体组成的. ()【答案】×【分析】此题考查的是从不同方向观察简单的组合物体.【解答】单从左面观察物体是无法判断此物体由多少立方体组成,它有可能是由4个立方体组成,也可能是有更多个立方体组成的.故错误.4.【答题】丽丽用5个相同的小正方体,可以摆出下面的图形.()【答案】×【分析】此题考查的是从不同方向观察简单的组合物体.【解答】由图可知,图形是由7个相同的小正方体组成的,所以用5个相同的小正方体不可以摆出该图形.此题错误.5.【答题】下面的立体图形是由______个小方块组成的.【答案】7【分析】此题考查的是数组合立体图形中有多少个小正方体.【解答】从上往下数,一共有7个小方块.故答案为7.6.【答题】下面的立体图形是由______个小方块组成的.【答案】10【分析】此题考查的是观察物体.【解答】数一种事物的数量时,要按一定的顺序数,如从左到右或者从上到下进行数数,这样不容易数错.由图可知:最上面有1块,中间有3块,最下面有6块,所以总共是10块.故答案为10.7.【答题】下图是由7个小正方体木块拼成的模型.在这个模型的基础上,至少再添加______个同样的小正方体木块就可以拼成一个大的长方体模型.【答案】17【分析】长方体相对的棱长度相等,所以每条棱上小正方体的个数相同.由此可以判断出长方体模型中小正方体的总个数,减去现在有的个数,就是需要添加的个数.【解答】要拼成一个长方体,并且添加的小正方体个数最少,那么沿长的方向上是4个小正方体,沿宽的方向上是2个小正方体,沿高的方向上是3个小正方体,所以一共需要小正方体:4×2×3=24(个).已经有7个,还需:24-7=17(个).故本题的答案是17.8.【答题】用6个大小相同的正方体摆一个长方体,能摆出______种不同的形状.【答案】2【分析】此题考查的是立体图形的拼组.【解答】,由图可知,用6个大小相同的正方体摆一个长方体,能摆出2种不同的形状.故答案为2.9.【答题】已知立体图形,从正面看到的形状是:.如果再添一个同样大小的正方体,且从正面看形状不变,那么有______种添法. (面与面相连)【答案】6【分析】此题考查的是从不同方向观察简单的组合物体.【解答】若从正面看形状不变,则添加的正方体也要出现在同一层且不能出现于立体图形的侧面,则在立体图形的前面有3种添加方法,后面也有3种添加方法,一共有6种.所有的添加方法如下图:、、、、、.故本题的答案是6.10.【答题】用若干个体积是1立方厘米的正方体木块摆成一个物体,从前面、右面和上面看到的形状如下图所示.这个物体的体积是______立方厘米.【答案】5【分析】此题考查的是认识组合立体图形.【解答】根据从前面、右面和上面看到的组合立体图形的形状可知,这个物体只有1层,由5个小正方体组成,图形如下:.已知1个正方体的体积是1立方厘米,则这个物体的体积是:1×5=5(立方厘米).故答案为5.11.【答题】用3个同样的小正方体摆成的一个物体,从正面和左面看到的图形都是,共有______种不同的摆法.【答案】4【分析】根据题干要求摆出符合要求的立体图形.【解答】用3个同样的小正方体摆成的一个物体,从正面和左面看到的图形都是,由可知,第3个小正方体可以放在1号正方体的里面或外面;也可以放在2号正方体的里面或外面,即一共有4种摆法.所有的摆法如下图所示:、、、 .12.【答题】用4个同样的小正方体,摆出从正面看是的几何体.一共有______种摆法.(面与面相连)【答案】8【分析】可以分为两类摆法,第一类:分为前后两排,一排有3个小正方体,另一排有1个小正方体;第二类:分为前后两排,两排各有2个小正方体.【解答】第一类摆法共6种:先把3个小正方体摆成一排,然后把另外一个小正方体分别摆在摆成一排的3个小正方体的前、后面;第二类摆法共2种:先把小正方体两两连成一排,分为前后两排.再把第一排右边的小正方体和第二排左边的小正方体前后相连或者把第一排左边的小正方体和第二排右边的小正方体前后相连.两类一共有摆法:6+2=8(种).因此一共有8种摆法,所有的摆法如下图所示:、、、、、、、 .13.【答题】用4个正方体搭一个立体图形.从上面看是,有______种搭法.【答案】3【分析】从上面看会有重叠在一起的正方体.【解答】用4个正方体搭的立体图形,在从上面看到的图形有3个,第4个正方体有三种位置可放,如图,.所以一共有3种搭法,所有的搭法如下图:、、.14.【答题】在下图中添上一个同样的小正方体,使得从左面看到的形状是.有______种添加方法.【答案】2【分析】从左面观察图形即可.【解答】在题中的图中添上一个同样的小正方体,使得从左面看到的形状是,有2种添加方法,分别是在前面两个小正方体上加一个小正方体,如下图所示:、.15.【答题】至少要()个相同的小正方体,才能拼成一个大正方体.A.1B.2C.4D.8【答案】D【分析】此题考查的是认识正方体.【解答】至少要8个相同的小正方体,才能拼成一个大正方体.故选D.16.【答题】8块小正方体积木拼成一个大正方体,从一个角度观察这个大正方体,最多能看到()块小正方体积木.A.4B.6C.7D.8【答案】C【分析】此题考查的是观察物体.【解答】如果能看到该物体的面的数量越多,那么能看到的积木就越多,当看到3个面时,有一个积木被其他积木遮挡,其余都能看见,因此最多能看到7个.故选C.17.【答题】如图所示的立体图形,它由()个小正方体组成.A.9B.10C.11D.12【答案】B【分析】此题考查的是数组合立体图形中小正方体的个数.【解答】由图可知,最底下一层有小正方体:3+3+1=7(个),上面一层有小正方体3个,7+3=10(个),因此它由10个小正方体组成.故选B.18.【答题】搭成下面的立体图形,()用的小正方体最多.A. B. C.【答案】B【分析】此题考查的是数组合立体图形中有多少个小正方体.【解答】数立体图形是由多少个小正方体搭成的,可以先数看得到的,再数看不到的;也可以从上到下分层数,或从前往后、从左往右分排数,保证不重复、不遗漏.观察可知,摆成需要用4个小立方体;摆成需要用5个小立方体;摆成需要用4个小正方体.因为5>4,所以摆成用的小正方体最多.故选B.19.【答题】由4个大小形状相同的小正方体搭成一个立体图形,从左面看到的形状如下图所示,则这个立体图形的搭法不可能是()模型.A. B. C. D.【答案】C【分析】此题考查的是观察立体图形.【解答】由4个大小形状相同的小正方体搭成一个立体图形,从左面看到的形状是,则这个立体图形的搭法不可能是.故选C.20.【答题】由5个正方体拼成,一个在上面;从前面和上面看都是4个正方体;上面的正方体在左上角.这个立体图形是().A. B. C.【答案】B【分析】此题考查的是从不同方向观察小立方体组合.【解答】由题可知:由5个正方体拼成,有一个在上面;从前面和上面看都是4个正方体;上面的正方体在左上角.只有图中上面的正方体在左上角,其余两图中上面的正方体并不在左上角.故选B.。

三视图之组合类测试题(含答案).docx

三视图之组合类测试题(含答案).docx

三视图之组合类一、单选题(共10道,每道10分)1•某几何体的三视图如图所示,则该几何体的表面积是()6.L1221622正视图侧视图俯视图A.372B.360C.292D.280答案:B解题思路:首先,由三视图可知,该几何体为组合体(上下两部分):上部分、下部分都是长方体;其次,上面长方体长为6,宽为2,高为8;下面长方体长为&宽为10,高为2.该几何体的表面和等于下面长方体的全面和与上面长方体的四个狈!|面积之和振卩S = 2(10x8 + 10x2 + 8x2) + 2(6x8+ 8x2) = 360. 故选B.三颗星知识点: 由三视图求面积.体积2•某儿何体的三视图如图所示,则该儿何体的体积为()2 4 |侧视图A.24B.26C.28D.30答案:D解题思路:苜先,由三视图可知该几何体是组合体(上下两部分):上面是底面为直角梯形(上底为1,下底为2,高为1)、高为4 的四棱柱(平放);下面是长为3、宽为4、高为2的长方体.如下图所示,四棱柱体积* =(牛x 1) x 4=6 ;长方体体积冬二=3 x 4 x 2=24 ;・・・组合体的体积7 = 6+24 = 30. 故选D.试题难度:三颗星知识点:由三视图求面枳、体枳3.某儿何体的三视图如图所示,则该儿何体的体积为()正视图A 12TIB 45JIC.刃兀D .81兀答案:c 解题思路:首先,由三视图可知该几何体是组合体(上下两部分):上面是圆锥,底面圆半径为3,母线长为5,则它的高h = ^52 -32 =4 ,体积卩]=-X (7IX 32)X 4 = 12TU .下面是圆柱,底面圆半径为3,高为5,体和冬=(71X 32)X 5 = 45TI .・•・组合体的体积/ = 12兀+ 45兀=57兀.故选C.试题难度:三颗星知识点:由三视图求面积、体积4.某几何体的三视图如图所示,则该几何体的表面积为()56侧视图224A.112B. 3C.80 + 16血D.96答案:C解题思路:首先,由三视图可知该几何体是组合体,如下图所示,俯视图上面是正四棱锥,底面是边长为4的正方形,高是2, 则棱锥侧面三角形的高h = Q + 2: = 2^2 , 四棱锥的侧面积=4x(1x4x272) = 16^・下面是正方体,棱长为4, 其四个侧面与底面面和之和S2=5X(4X4)=80・・•・组合体的表面和5 = 80 + 16^2・故选C.试题难度:三颗星知识点:由三视图求血积、体积5•某儿何体的三视图如图所示,则该儿何体的体积为()8 10A.3B.TC.3D.4答案:B解题思路:首先,由三视图可知,该几何体为组合体(上下两部分).上部分:由正、侧视图(都是三角形)可知为棱锥,结合俯视图 可知为正四棱锥,且底面边长为2,高为1,则体积珂=^-><22x 1 = £ . 3 3下部分:由正、侧视图可知为棱柱,结合俯视图可知为正四棱柱, 且底面边长为1,高为2,则体积冬=12 x2 = 2 .・••组合体的体和为宀;+ 2 = £・ 3 3故选B.试题难度:三颗星知识点:由三视图求面积、体积6•己知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成,俯视 图由圆及其内接三角形构成,根据图中的数据可得此儿何体的体积为()1正视I 1 侧视I俯视I答案:C 解题思路: 首先,由三视图可知该几何体是组合体,如下图所示, 上面是三棱锥,棱锥的底面是等腰直角三角形, 且直角边长为1,棱锥的高为1, 体积 ^=lx(lxlxl)xl = l ; 3 2 6 下面是一个半球,直径为三棱锥底面三角形的斜边长71, 则其体积KX (芈內=寻兀. ・•・组合体的体积/ = ; +如・6 6故选C. 试题难度:三颗星知识点:由三视图求面积、体积加一 3 +C 271-3 + 1 - 27.某儿何体的三视图如图所示,则该儿何体的体积为()A .T +7lB .f+27r 答案:A解题思路:由三视图可知该几何体是组合体,如下图所示,上面是三棱锥,底面是等腰直角三角形,且斜边长为2, 则两直角边长为迈,棱锥的高h = Jl 2-l x = A /3 , 故三棱锥的体积斤=£ X [斗X (JI )2 ] X 筋=芈.下面是圆柱,底面圆的半径为1,圆柱的高为1, 则其体积v 2 =(兀X1?) X1 =兀・ ・・・组合体的体积卩理",3故选A.俯视图侧视图4+妇4+三兀A ・ 4 B. 2答案:B解题思路:由三视图可知该几何体是组合体,如下图所示,左边是一个半圆柱,底面半圆的半径为1,圆柱的高为3, 则其体积 ^=-X (7TXl 2)x3 = -7r ;右边是长方体,底面长为2,宽为2,高为1,则其体积$ =2x2x1 =4.・・・组合体的体积r=4+-?i,2 故选B ・若俯视图中的圆弧是半圆,则该几何体的体积为(C.4+巴 2 D.4+71 8 •某几何体的三视图如图所示, 19•某几何体的三视图如图所示,则该几何体的体积为(正视图 侧视图答案:B解题思路:由三视图可知该几何体是组合体,如下图所示,A.112B.80C.72D.64上面是四棱锥,右侧面为等腰三角形,且垂直于底面, 棱锥的高为3,棱锥的底面是边长为4的正方形,则其体和* = 2x4, x3 = 16 ;3下面是正方体,棱长为4,则其体积卩2 = 43 = 64・・•・组合体的体和只=64 +16 = 80,故选B.试题难度:三颗星知识点:由三视图求面积、体积10•某儿何体的三视图如图所示,若侧视图屮的圆弧是半圆,则该儿何体的表面积为(俯视图A 92 + 14兀8 82 + 14兀C 92 + 24兀D 82 + 24兀答案:A解题思路:由三视图可知该几何体是组合体,如下图所示,上面是一个半圆柱,底面半圆的半径为2,圆柱的高为5, 则其表面和为两个底面半圆的面和与圆柱的半个侧面和之和, 即S]=2X(1X7TX22)+-^X(2KX2)X5=14TI;下面是长方体,底面长为5,宽为4,长方体的高为4, 则底面面和与四个侧面和之和S2=5X4+2(5X4+4X4)=92.・••组合体的表面和S = 92+14K・故选A.试题难度:三颗星知识点:由三视图求面枳、体枳。

最新部编版人教初中数学七年级上册《第4章:截面与三视图 热点专题高分特训及答案》精品优秀测试题

最新部编版人教初中数学七年级上册《第4章:截面与三视图 热点专题高分特训及答案》精品优秀测试题

前言:该热点专题高分特训由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的热点专题高分特训助力考生查漏补缺,在原有基础上更进一步。

(最新精品热点专题高分特训)学生做题前请先回答以下问题问题1:举出一个几何体,使得从正面、左面、上面看到的这个几何体的形状都一样,你能举出几种?问题2:观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图),从正面看可以看到几何体的________和________;从左面看可以看到几何体的________和________;从上面看可以看到几何体的________和________.问题3:在利用三视图确定小木块个数时,数字一般标在________图上.截面与三视图(人教版)一、单选题(共16道,每道6分)1.用一个平面去截五棱柱,则截面不可能是( )A.三角形B.四边形C.五边形D.圆答案:D解题思路:五棱柱的面均为平面,面面相交得直线,而不可能成为曲线,圆是由曲线构成的,所以五棱柱的截面不可能是圆.故选D.试题难度:三颗星知识点:几何体的截面2.用一个平面去截如图所示的圆锥,得到的图形不可能是( )A. B.C. D.答案:C解题思路:如果用平面去截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形;如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆;如果不与底面平行且与底面相交,得到就是选项A中的图形;不可能是C中的直角三角形.故选C.试题难度:三颗星知识点:几何体的截面3.用一个平面去截下面的几何体,所得截面是三角形,则这个几何体不可能为( )。

浙教版2022-2023学年九下数学第3章 投影与三视图 培优测试卷

浙教版2022-2023学年九下数学第3章 投影与三视图 培优测试卷

浙教版2022-2023学年九下数学第3章投影与三视图培优测试卷考试时间:120分钟满分:120分一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.已知一个正棱柱的俯视图和左视图如图所示,则其主视图为()A.B.C.D.2.如图是某几何体的三视图,这个几何体可以是()A.B.C.D.(第1题)(第2题)(第4题)(第5题)3.下列各图中是太阳光下形成的影子的是()A.B.C.D.4.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型(如图所示)摆出相同姿势,才能穿墙而过,否则会被推入水池.类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()A.B.C.D.5.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短6.一个几何体是由7个完全相同的小正方体搭建而成的.若它的俯视图如图所示,则它的左视图不可能是()A.B.C.D.7.如图,下面每一组图形都由四个等边三角形组成,其中可以折叠成三棱锥的是()A.仅图①B.图①和图②C.图②和图③D.图①和图③8.如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为().A.25π3B.12πC.2√34πD.24π(第8题)(第9题)(第10题)(第12题)9.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是() A.S1>S2>S3B.S3>S2>S1 C.S2>S3>S1D.S1>S3>S210.如图,扇形DOE的半径为3,边长为√3的菱形OABC的顶点A,C,B分别在OD,OE,弧ED 上,若把扇形DOE围成一个圆锥,则此圆锥的高为()A.12B.2√2C.√352D.√372二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.某圆锥的母线长是2,底面半径是1,则该圆锥的侧面积是.12.若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=.(第13题)(第14题)(第15题)(第16题)13.如图,从一块直径是1m的圆形铁皮上剪出一个圆心角为90°的扇形,如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径为m.14.如图,扇形的半径为3,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.15.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号).16.一个几何体由若干大小相同的小正方体搭成,如图分别是从它的正面、上面看到的形状图,若组成这个几何体的小正方体最少需要m个,最多需要n个,则m﹣n=.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图是由若干个完全相同的小正方体堆成的几何体.(1)图中有几个小正方体;(2)画出该几何体的三视图;18.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为4.2m,请你计算DE的长.19.妈妈给圆柱形的玻璃杯(底面直径16cm,高20cm)做了一个布套(包住侧面)(1)求出至少用布料多少平方厘米?(2)求这个杯子最多可以盛水多少立方厘米?20.如图,边长为acm的正方体其上下底面的对角线AC、A1C1与平面H垂直.(1)指出正方体六个面在平面H上的正投影图形;(2)计算投影MNPQ的面积.21.如图,圆锥底面的半径为10cm,高为10 √15cm.(1)求圆锥的全面积;(2)若一只蚂蚁从底面上一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.22.如图1,一个边长为2cm的立方体按某种方式展开后,恰好能放在一个长方形内.(1)计算图1长方形的面积;(2)小明认为把该立方体按某种方式展开后可以放在如图2的长方形内,请你在图2中划出这个立方体的表面展开图;(图2每个小正方形边长为2cm);(3)如图3,在长12cm、宽8cm的长方形内已经画出该立方体的一种表面展开图(各个面都用数字“1”表示),请你在剩下部分再画出2个该立方体的表面展开图,把一个立方体的每一个面标记为“2”,另一个立方体的每一个面标记为“3”.23.根据要求完成下列题目.(1)图中有块小正方体.(2)请在方格纸中分别画出它的左视图和俯视图(画出的图都用铅笔涂上阴影).(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在下图方格中所画的图一致,则这样的几何体最少要个小正方体,最多要个小正方体.24.实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度i=1:0.75,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?。

人教版九年级数学下册三视图同步测试题

人教版九年级数学下册三视图同步测试题

三视图三视图[见B本P90]1.如图29-2-1几何体的主视图是( C )图29-2-12.下列四个立体图形中,主视图为圆的是( B )A B C D3.有一篮球如图29-2-2放置,其主视图为( B )图29-2-2A B C D4如图29-2-3,由三个小立方块搭成的俯视图是( A ) 图29-2-35.如图29-2-4所示的几何体的主视图是( C )29-2-46.从不同方向看一只茶壶,你认为是其俯视图的是( A )图29-2-57. 如图29-2-6是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( D )A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变图29-2-68.如图四个水平放置的几何体中,三视图如图29-2-7所示的是( D )图29-2-79.如图29-2-8所示几何体的左视图是( C )图29-2-810.球和圆柱在水平面上紧靠在一起,组成如图29-2-9所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是( C )图29-2-9A.两个相交的圆B.两个内切的圆C.两个外切的圆 D.两个外离的圆11.下列几何体中,俯视图相同的是( C )图29-2-10A.①② B.①③ C.②③ D.②④12.将棱长是1 cm的小正方体组成如图29-2-11所示的几何体,那么这个几何体的表面积是( A )图29-2-11A.36 cm2 B.33 cm2 C.30 cm2 D.27 cm213.我国古代数学家利用“牟合方盖”(如图29-2-12甲)找到了球体体积的计算方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图29-2-12乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B )图29-2-1214.5个棱长为1的正方体组成如图29-2-13所示的几何体.(1)该几何体的体积是________(立方单位),表面积是________(平方单位);(2)画出该几何体的主视图和左视图.图29-2-13第14题答图解:(1)5 22 (2)如图所示.15.图29-2-14是一个蘑菇形小零件图,其上部是一个半球体,下部是圆柱体,作出它的三视图.图29-2-14解:蘑菇形零件的上部为半球体,下部为圆柱体,它的主视图与左视图相同,上部均为半圆,下部为矩形.俯视图为同心圆(不含圆心),内圆被遮为虚线,如图所示.16.作出下面立体图形的三视图.图29-2-15 解:如图所示.第2课时由三视图描述物体的形状[见B本P92]1.下面是一个几何体的三视图,则这个几何体的形状是( B )图29-2-16A.圆柱B.圆锥C.圆台 D.三棱柱2.某几何体的三种视图如图29-2-17所示,则该几何体是( C )图29-2-17A.三棱柱 B.长方体C.圆柱 D.圆锥3.某几何体的三视图如图29-2-18所示,则这个几何体是( A )图29-2-18A.三棱柱 B.圆柱C.正方体 D.三棱锥4.已知一个正棱柱的俯视图和左视图如图29-2-19所示,其主视图为( D ) 图29-2-195.长方体的主视图、俯视图如图29-2-20所示,则其左视图面积为( A )图29-2-20A.3 B.4C.12 D.166.一个长方体的左视图、俯视图及相关数据如图29-2-21所示,则其主视图的面积为( B )A.6 B.8 C.12 D.24图29-2-21图29-2-227.如图29-2-22是一个几何体的主视图和左视图,同学们在探究它的俯视图时,画出了如图29-2-23的几个图形,其中可能是该几何体俯视图的共有( C )图29-2-23A.3个 B.4个C.5个 D.6个8.图29-2-24是一个正六棱柱的主视图和左视图,则图中的a=( B )图29-2-24A.2 3 B. 3 C.2 D.1【解析】从主视图来看,正六棱柱的底面正六边形的直径为4,半径为2,而正六边形的边长等于半径,所以边长也为2,所以a=2sin60°= 3.9.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( B ) A.3 B.4 C.5 D.6图29-2-2510.由n个相同的小正方体堆成的几何体,其视图如图29-2-26所示,则n的最大值是( A )A.18 B.19 C.20 D.21图29-2-2611. 某超市货架上摆放着某品牌红烧牛肉方便面,如图29-2-27是它们的三视图,则货架上的红烧牛肉方便面至少有( B )A.8 B.9 C.10 D.11图29-2-2712. 某几何体的三视图如图29-2-28所示,则组成该几何体共用了小方块( D )A. 12块B. 9块C. 7块D. 6块图29-2-2813.如图29-2-29是某几何体的三视图,则该几何体的体积是( C )图29-2-29A. 18 3B. 54 3C. 108 3D. 216 3【解析】由三视图可看出:该几何体是一个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6×34×62×2=108 3.14.一个几何体的三视图如图29-2-30所示(其中标注的a,b,c为相应的边长),则这个几何体的体积是__abc__.图29-2-30【解析】几何体是长方体,长为a,宽为b,高为c,则V=abc.15.图29-2-31是某实物的三视图,描述该实物的形状.图29-2-31解:观察三视图,可把三视图分解为两组如下图.由第1组三视图可观察出物体下部为一个长方体;由第2组三视图可观察出物体左上部也为一个长方体.综合原三视图可得物体是由两个长方体结合成的一个整体(像沙发),如图所示.第1组第2组16.如图29-2-32,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中,共有1个小立方体,其中1个看得见,0个看不见;如图②中,共有8个小立方体,其中7个看得见,1个看不见;如图③中,共有27个小立方体,其中19个看得见,8个看不见;……则(1)第⑥个图中,看得见的小立方体有________个;(2)猜想并写出第n个图形中看不见的小立方体的个数为多少?图29-2-32解:(1)n=1时,看不见的小立方体的个数为0个;n=2时,看不见的小立方体的个数为(2-1)×(2-1)×(2-1)=1(个);n=3时,看不见的小立方体的个数为(3-1)×(3-1)×(3-1)=8(个);……n=6时,看不见的小立方体的个数为(6-1)×(6-1)×(6-1)=125(个),故看得见的小立方体有63-125=216-125=91(个).(2)第n个图形中看不见的小立方体的个数为(n-1)3个.第3课时 由三视图到表面展开图 [见B 本P94]1.如图29-2-33是某几何体的三视图,其侧面积( C )图29-2-33A .6B .4πC .6πD .12π2.一个几何体的三视图如图29-2-34所示,那么这个几何体的侧面积是( B )图29-2-34A .4πB .6πC .8πD .12π【解析】 由三视图知该几何体是底面直径为2,高为3的圆柱体,所以该几何体的侧面积为2π×3=6π.3.图29-2-35是某几何体的三视图及相关数据,则该几何体的侧面积是( B )图29-2-35A.12ab πB.12ac π C .ab π D .ac π 【解析】 该几何体是圆锥,侧面展开图是扇形,S 扇形=12×a π×c =12ac π.4.如图29-2-36是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是__72__.图29-2-36图29-2-375.图29-2-37是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__左视图__.【解析】 设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.6.某几何体的三视图如图29-2-38所示,则该几何体的表面积为__270__cm 2__.图29-2-38【解析】 由三视图可知,几何体是一个直三棱柱,其表面积为S 表=(5+12+52+122)×7+2×12×12×5=270( cm 2).7.某冷饮厂要加工一批冰淇淋蛋筒,设计给出了封闭蛋筒的三视图如图29-2-39所示,请你按照三视图确定制作每个蛋筒所需的包装材料面积(π取3.14,精确到0.1 cm 2).图29-2-39【解析】 (1)由三视图知立体图形是圆锥;(2)再由圆锥画它的表面展开图计算表面积. 解:由三视图可知,蛋筒是圆锥形的,如下图所示.蛋筒的母线长为13 cm ,底面的半径为102=5(cm),运用勾股定理可得它的高h =132-52=12(cm).由展开图可知,制作一个冰淇淋蛋筒的材料面积为S 扇形+S 圆=12×2π×5×13+π×52=65π+25π=90π≈282.6(cm 2).8.图29-2-40是某几何体的展开图. (1)这个几何体的名称是____; (2)画出这个几何体的三视图;(3)求这个几何体的体积.(π取3.14)图29-2-40【解析】观察展开图,中间是一个矩形,上、下方是相等的圆,易知此几何体为圆柱;圆柱的主视图和左视图是相同的长方形,俯视图为圆,其体积为底面积乘高,且圆柱底面直径为10,高为20.解:(1)圆柱;(2)三视图如图所示.(3)体积为πr2h≈3.14×25×20=1 570.9.某个长方体的主视图是边长为1 cm的正方形,沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D )【解析】截面是一个正方形,边长为 2 cm,故这个长方体的俯视图是边长分别为1 cm, 2 cm的长方形,选D.10.如图29-2-41是一个包装纸盒的三视图(单位:cm),则制作一个纸盒所需纸板的面积是( C )图29-2-41A .75(1+3)cm 2B .75⎝ ⎛⎭⎪⎫1+32cm 2 C .75(2+3)cm 2D .75⎝⎛⎭⎪⎫2+32cm 2 【解析】 包装盒的侧面展开图是一个长方形,长方形长为(5×6)cm ,宽为 5 cm ,面积为30×5=150 (cm 2),包装盒的一个底面是一个正六边形,面积为6×12×52×32=7523(cm 2),故包装盒的表面积为150+2×7523=150+753=75(2+3)(cm 2),选C.11.一个如图29-2-42所示的长方体的三视图如图29-2-43所示,若其俯视图为正方形,则这个长方体的表面积为( A )图29-2-42 图29-2-43 A .66 B .48C .482+36D .57【解析】 设长方体底面边长为x ,则2x 2=(32)2,∴x =3,∴该长方体表面积为3×4×4+32×2=48+18=66,故选A.12.图29-2-44是某工件的三视图,按图中尺寸求工件的表面积.图29-2-44【解析】 在实际的生产中,三视图和展开图往往结合在一起,常由三视图想象出几何体的形状,再画出其表面展开图,然后根据展开图求表面积.解:观察三视图可知,工件的上部为一个圆锥,下部紧连着一个共底面的圆柱(如图所示).上部圆锥侧面展开图是扇形(半圆),其面积为S 扇=12×(3)2+12×2π=2π(cm 2);下部圆柱侧面展开图是矩形,其面积为S 矩=1×2π=2π(cm 2);底部为圆面,面积为S 圆=π cm 2,所以,所求工件的表面积为S 表=S 扇+S 矩+S 圆=2π+2π+π=5π(cm 2).13.一个几何体的主视图和左视图如图29-2-45所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.图29-2-45解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm ,∴菱形的边长为52 cm ,棱柱的侧面积=4×52×8=80(cm 2).14.如图29-2-46所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为____; (2)在虚线框内画出其左视图,并标出各边的长.图29-2-46【解析】 (1)过上底的顶点向对边引垂线组成直角三角形求解即可;(2)易得左视图为长方形,宽等于(1)中算出的梯形的高,高等于主视图中长方形的高. 解:(1)4(2)如图所示:人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

2019年浙教版数学中考复习三视图与表面展开图综合测试

2019年浙教版数学中考复习三视图与表面展开图综合测试

2019年浙教版数学中考复习三视图与表面展开图综合测试一.选择题1.(2018·广州中考)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )2.(2018·辽宁沈阳中考)如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是( )3.(2018·四川广安中考)下列图形中,主视图为如图所示的是( )4.从一个边长为3 cm的大立方体上挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )5.(2018·四川宜宾中考)一个立体图形的三视图如图所示,则该立体图形是( )A.圆柱 B.圆锥 C.长方体 D.球6.某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.圆柱D.球7.(2018·陕西中考)如图,是一个几何体的表面展开图,则该几何体是( )A.正方体 B.长方体 C.三棱柱 D.四棱锥8.如图是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A.6 B.4 C.3 D.29.(2018·内蒙古通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是( )A.18πB.24πC.27πD.42π10.如图是某工件的三视图,则此工件的表面积为( )A.15π cm2B.51π cm2C.66π cm2D.24π cm211.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )A.236π B.136π C.132π D.120π12.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )13.小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图,则n的值是( )A .6B .7C .8D .914. 我们常用“y 随x 的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是( )A .y =xB .y =x +3C .y =3xD .y =(x -3)2+3 15.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上,已知铁塔底座宽CD =12 m ,塔影长DE =18 m ,小明和小华的身高都是1.6 m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人影长分别为2 m 和1 m ,那么塔高AB 为( )A .24 mB .22 mC .20 mD .18 m二.填空题16.三视图都是同一平面图形的几何体有______________________.(写一种即可)17.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是______.18.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为________________________.(若结果带根号则保留根号)19.如图,图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①,②,③,④中的某一位置,所组成的图形不能围成正方体的位置是______.20.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,则m+n=________.21.(2018·甘肃白银中考)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为__________.22.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要______个小立方体.23.如图是一个圆柱的三视图,由图中数据计算此圆柱的侧面积为__________(结果保留π).24.若一个圆锥的侧面展开图是半径为18 cm,圆心角为240°的扇形,则这个圆锥的底面半径长是________cm.25.(2018·黑龙江齐齐哈尔中考)三棱柱的三视图如图所示,已知△EFG中,EF=8 cm,EG=12 cm,∠EFG =45°.则AB的长为____________.三.解答题26.一个直四棱柱的三视图如图所示,俯视图是一个菱形,求这个直四棱柱的表面积.27.由几个相同的边长为1的小立方块搭成的几何体从上面看到的视图如图,方格中的数字表示该位置的小立方块的个数.请在下面方格纸中分别画出这个几何体从正面看和从左面看到的视图.28.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?29.如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶上晒太阳.(1)求楼房的高度约为多少米?(结果精确到0.1米)(2)过了一会儿,当α=45°时,小猫能否晒到太阳?30.如图1,2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线最近.(2)在图3中,半径为10 dm的⊙M与D′C′相切,圆心M到边CC′的距离为15 dm.蜘蛛P在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线.若PQ与⊙M相切,试求PQ长度的范围.参考答案1-5 BDBCA6-10 CCACD11-15 BCCDA16. 球体(答案不唯一)17. 318. (1203+90)cm19. ①20. 1621. 10822. 823. 24π24. 1225. 4 2 cm26. 解:∵俯视图是菱形,∴底面菱形边长为 1.52+22=2.5(cm),面积为12×3×4=6(cm 2),则侧面积为2.5×4×8=80(cm 2),∴直四棱柱的表面积为92 cm 2.27. 解:如图所示.28. 解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B ,且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为l 1=32+(4+6)2=109(cm);l 2=42+(3+6)2=97(cm);l 3=62+(3+4)2=85(cm).通过比较,得最短路径长度是85 cm .29. 解:(1)当α=60°时,在Rt △ABE 中,∵tan 60°=AB AE =AB 10,∴AB =10·tan 60°=103≈17.3(米).即楼房的高度约为17.3米. (2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B 射下的光线与地面AD 的交点为点F ,与MC 的交点为点H .∵∠BFA =45°,∴tan 45°=AB AF=1,此时的影长AF =AB =17.3米,∴CF =AF -AC =17.3-17.2=0.1(米),∴CH =CF =0.1米,∴大楼的影子落在台阶MC 这个侧面上,∴小猫能晒到太阳.30. 解:(1)①如图1,连结A ′B ,则线段A ′B 就是所求作的最近路线.②两种爬行路线如图2所示.由题意可得,Rt △A ′C ′C 2中,路线A ′HC 2的长度为A ′C ′2+C ′C 22=702+302= 5 800(dm), Rt △A ′B ′C 1中,路线A ′GC 1的长度为A ′B ′2+B ′C 12=402+602= 5 200(dm).∵ 5 800> 5 200,∴路线A ′GC 1更近.(2)连结MQ ,∵PQ 为⊙M 的切线,点Q 为切点,∴MQ ⊥PQ ,∴在Rt △PQM 中,有PQ 2=PM 2-QM 2=PM 2-100.如图3,当MP ⊥AB 时,MP 最短,PQ 取得最小值,此时MP =30+20=50(dm),∴PQ =PM 2-QM 2=502-102=206(dm);实用标准文案如图4,当点P与点A重合时,MP最长,PQ取得最大值,过点M作MN⊥AB,垂足为N,由题意可得PN=25 dm,MN=50 dm,∴Rt△PMN中,PM2=PN2+MN2=252+502,∴Rt△PQM中,PQ=PM2-QM2=252+502-102=55(dm).综上所述,PQ长度的范围是20 6 dm≤PQ≤55 dm.文档。

中考数学真题《三视图与展开图》专项测试卷(附答案)

中考数学真题《三视图与展开图》专项测试卷(附答案)

中考数学真题《三视图与展开图》专项测试卷(附答案) 学校:___________班级:___________姓名:___________考号:___________一.选择题(共9小题)1.(2024•顺义区二模)在下列几何体中主视图为三角形的是()A.B.C.D.2.(2024•大兴区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.三棱锥C.三棱柱D.圆锥3.(2024•丰台区二模)榫卯(sǔnmǎo)是中国古代建筑家具及其它器械的主要结构方式是我国工艺文化精神的传承凸出部分叫榫凹进部分叫卯.如图是某个部件“榫”的实物图它的主视图是()A.B.C.D.4.(2024•海淀区二模)如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是()A.圆柱B.圆锥C.球D.三棱锥5.(2024•朝阳区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.圆锥C.三棱柱D.正方体6.(2024•石景山区二模)如图是某几何体的展开图该几何体是()A.三棱柱B.三棱锥C.四棱锥D.圆柱7.(2024•北京二模)下列几何体中主视图为三角形的是()A.B.C.D.8.(2024•西城区二模)如图是某几何体的三视图该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体9.(2024•门头沟区二模)某几何体的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成则,该几何体是()A.正方体B.长方体C.四棱锥D.三棱柱10.(2024房山二模)右图是某几何体的展开图该几何体是(A)圆柱(B)长方体(C)圆锥(D)三棱柱参考答案与试题解析一.选择题(共9小题)1.(2024•顺义区二模)在下列几何体中主视图为三角形的是()A.B.C.D.【答案】D【考点】简单几何体的三视图【分析】根据主视图的定义判断即可.【解答】解:A.该几何体的主视图是矩形故本选项不合题意B.该几何体的主视图是一行两个矩形故本选项不合题意C.该几何体的主视图是正方形故本选项不合题意D.该几何体的主视图是等腰三角形故本选项符合题意故选:D.2.(2024•大兴区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.三棱锥C.三棱柱D.圆锥【答案】D【考点】几何体的展开图【分析】根据展开图是一个扇形与圆知该几何体是圆锥.【解答】解:几何体的展开图是扇形与圆可知该几何体是圆锥故选:D.3.(2024•丰台区二模)榫卯(sǔnmǎo)是中国古代建筑家具及其它器械的主要结构方式是我国工艺文化精神的传承凸出部分叫榫凹进部分叫卯.如图是某个部件“榫”的实物图它的主视图是()A.B.C.D.【答案】D【考点】简单几何体的三视图【分析】从正面看到的平面图形是主视图根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:.故选:D.4.(2024•海淀区二模)如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是()A.圆柱B.圆锥C.球D.三棱锥【答案】A【考点】展开图折叠成几何体【分析】根据圆柱的侧面展开图是矩形解答即可.【解答】解:如图是一张长方形纸片用其围成一个几何体的侧面这个几何体可能是圆柱故选项A符合题意.故选:A.5.(2024•朝阳区二模)如图是某个几何体的展开图该几何体是()A.圆柱B.圆锥C.三棱柱D.正方体【答案】A【考点】几何体的展开图【分析】侧面为长方形底面为2个圆形故原几何体为圆柱.【解答】解:观察图形可知该几何体是圆柱.故选:A.6.(2024•石景山区二模)如图是某几何体的展开图该几何体是()A.三棱柱B.三棱锥C.四棱锥D.圆柱【答案】A【考点】几何体的展开图【分析】根据三棱柱的展开图解答.【解答】解:由图可知该几何体的两个底面是正三角形且有3个侧面侧面都是矩形故这个几何体是三棱柱.故选:A.7.(2024•北京二模)下列几何体中主视图为三角形的是()A.B.C.D.【答案】A【考点】简单几何体的三视图【分析】主视图是从找到从正面看所得到的图形注意要把所看到的棱都表示到图中.【解答】解:A圆锥的主视图是等腰三角形故此选项符合题意B三棱柱的主视图是一个矩形矩形内部有一个纵向的实线故此选项不符合题意C球的主视图是一个圆故此选项不符合题意D圆柱的主视图是一个矩形故此选项不符合题意.故选:A.8.(2024•西城区二模)如图是某几何体的三视图该几何体是()A.圆柱B.圆锥C.三棱柱D.长方体【答案】B【考点】由三视图判断几何体【分析】根据几何体的主视图和左视图是全等的等腰三角形可判断该几何体是锥体再根据府视图的形状可判断锥体底面的形状即可得出答案.【解答】解:因为主视图和左视图是全等的等腰三角形所以该几何体是锥体又因为府视图是含有圆心的圆所以该几何体是圆锥.故选:B.9.(2024•门头沟区二模)某几何体的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成则,该几何体是()A.正方体B.长方体C.四棱锥D.三棱柱【答案】B【考点】几何体的展开图【分析】根据常见几何体的展开图解答即可.【解答】解:A.正方体的展开图由大小形状相等的六个正方形组成故本选项不符合题意B.当长方体的两个底面是正方形时它的展开图是由大小形状相等的两个正方形四个长宽不等的矩形组成故本选项符合题意C.四棱锥的展开图是由一个四边形和四个三角形组成故本选项不符合题意D.三棱柱的展开图是两个三角形和三个矩形组成故本选项不符合题意.故选:B.10.(2024房山二模)右图是某几何体的展开图该几何体是(A)圆柱(B)长方体(C)圆锥(D)三棱柱【答案】A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.把如图所示的几何体的三视图名称填在横线上.
主视图:,左视图:,俯视图:.
8.如图所示是一个包装盒的三视图,则这个包装盒的体积是.
9.如图是由棱长为 的正方体搭成的积木三视图,则图中棱长为 的正方体的个数是.
10.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要个小立方块.
三、解答题(共2小题;共26分)
11.画出如图几何体的主视图、左视图、俯视图.
12.如图是一个由小立方块组合成的几何体从上面看到的形状图,图中的数字为该位置小立方块的个数,请绘出这个几何体从正面看与从左面看到的形状图.
答案
第一部分
1. B2. B3. B4. D5. D
6. D
第二部分
7.矩形;矩形;半圆
4.图为某个几何体的三视图,则该几何体是
A. B.
C. D.
5.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左和一个圆锥体组成一个立体图形,其俯视图是
A. B.
C. D.
二、填空题(共4小题;共20分)
8.
9.
10.
第三部分
11. (1)
12. (1)
29.2三视图
一、选择题(共6小题;共30分)
1.有五个相同的小正方体堆成的物体如图所示,它的主视图是
A. B.
C. D.
2.并排放置的等底等高的圆锥和圆柱(如图)的主视图是
A. B.
C. D.
3.某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有
A. B. C. D.
相关文档
最新文档