双容水箱液位定值控制和串级控制
双容水箱串级控制系统设计

双容水箱串级控制系统设计设计总说明液位控制问题是工业生产过程中的一类常见问题, 例如在饮料、食品加工、溶液过滤,化工生产等多种行业的生产加工过程都需要对液位进行适当的控制。
双容水箱串级控制在工业过程控制中应用非常广泛。
在水箱水位的控制中,液体首先进人第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。
本次设计采用串级控制,可以有效调节过程动态性能,大大克服系统的容积延迟。
采用PID控制器对模型进行整定以达到理想的控制效果。
选用PLC作为现场的控制设备,用于数据采集和控制,通过组态软件对整定过程及曲线进行实时监控,直至达到主、副回路的最佳整定参数。
关键词:双容水箱,PID,串级控制,组态王,PLCOuble Let Tank Cascade Control System DesignDesign DescriptionLiquid level control problem is a kind of common industrial production process, For example in beverage, food processing, chemical production, the solution of the production process were industry needs to properly control level.Cascade double-capacity water tank in industrial process control is used widely. In the control of water tank, the advanced water tank, who first and then through the second tank, compared with a tank, due to the increased a tank, is the response time is more backward step, that is, causing the delay in volume of the process is difficult to control.This design uses cascade control, can regulate the process effectively, greatly overcome system dynamic performance of volume. Adopts PID controller in order to achieve the ideal of setting control effect to model. Choose a scene of PLC control device for data acquisition and control, Through the kingview software for setting process and the curve of the real-time monitoring, until it reaches the main circuitd and the vice loop optimal setting parameters.Key words: Double-capacity Water Tank, PID, cascade control, kingview, PLC目录1绪论 (1)1.1PLC技术 (1)1.2组态技术 (3)1.3 PID算法 (3)2设计背景 (5)2.1设计内容及原理 (5)2.2系统软硬件组成 (5)2.2.1硬件组成 (5)2.2.2软件组成 (5)3串级控制系统介绍 (6)3.1串级控制系统的定义及组成 (6)3.2串级控制系统的设计思路 (6)3.3串级控制系统的参数整定 (7)3.4串级控制系统的工业应用 (8)4西门子s7-200系列PLC介绍 (10)4.1西门子s7-200系列PLC简介 (10)4.2西门子s7-200系列PLC的组成 (10)5组态软件介绍 (12)5.1组态的基本概念 (12)5.1.1组态的含义 (12)5.1.2数据采集的方式 (12)5.1.3脚本的功能 (12)5.1.4组态软件的开放性 (13)5.1.5组态软件的可扩展性 (13)5.1.6组态软件的控制功能 (13)5.2.组态软件特点 (13)5.3系统的设计与实现 (14)6系统设计 (15)6.1对象选择及其工作原理 (15)6.2调节器的选择及其正反作用的确定 (15)6.3传感器、变送器、执行器的选择 (16)6.4系统的参数整定 (16)6.5 S7-200系列PLC的CPU模块选择 (17)6.6设备清单 (17)7 PLC设计流程 (19)7.1系统设计基本步骤 (19)7.2系统设计流程图 (19)8组态王的设计 (21)8.1组态王的制作的基本过程 (21)8.2组态王画面的制作 (23)9系统调试 (27)9.1组态软件调试 (27)9.2整体调试 (27)总结 (28)致谢 (29)附录双容水箱串级控制程序 (31)1绪论液位控制问题是工业生产过程中的一类常见问题,例如在饮料、食品加工,溶液过滤、工生产等多种行业的生产加工过程当中都需要对液位进行适当的控制。
双容水箱液位串级控制系统的设计

目录摘要 (1)Abstract: (2)1 概述 (3)1.1 过程控制介绍 (3)1.2 液位串级控制系统介绍 (4)1.3 MATLAB软件介绍 (4)1.4 MCGS组态软件介绍 (5)2 被控对象建模 (7)2.1 水箱模型分析 (7)2.2 阶跃响应曲线法建立模型 (7)3 系统控制方案设计与仿真 (13)3.1 PID控制原理 (13)3.2 系统控制方案设计 (15)3.2 控制系统仿真 (16)4 建立仪表过程控制系统 (20)4.1 过程仪表介绍 (20)4.2 仪表过程控制系统的组建 (21)4.3 仪表过程控制系统调试运行 (24)5 建立计算机过程控制系统 (26)5.1 计算机过程控制系统硬件设计 (26)5.2 MCGS软件工程组态 (28)5.3 计算机过程控制系统调试运行 (38)6 结论 (40)双容水箱液位串级控制系统的设计摘要:本论文的目的是设计双容水箱液位串级控制系统。
在设计中充分利用自动化仪表技术,计算机技术,通讯技术和自动控制技术,以实现对水箱液位的串级控制。
首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。
其次,根据被控对象模型和被控过程特性设计串级控制系统,采用动态仿真技术对控制系统的性能进行分析。
然后,设计并组建仪表过程控制系统,通过智能调节仪表实现对液位的串级PID控制。
最后,借助数据采集模块﹑MCGS组态软件和数字控制器,设计并组建远程计算机过程控制系统,完成控制系统实验和结果分析。
关键词:液位模型 PID控制仪表过程控制系统计算机过程控制系统1.2液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。
在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。
通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。
双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。
2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。
3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。
4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。
5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。
二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。
PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。
2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。
然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。
3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。
液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。
4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。
控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。
5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。
可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。
6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。
三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。
其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。
实验三 双容水箱液位定值控制

实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计
在双容水箱液位串级控制系统中,通常有两个水箱,分别称为主水箱
和副水箱。
主水箱通常是较大的水箱,副水箱是较小的水箱。
系统的目标
是保持主水箱和副水箱的液位稳定在设定值附近。
系统的控制过程可以分为以下几个步骤:
1.流程测量:系统通过测量主水箱和副水箱的液位,获取当前的液位
信号。
2.控制计算:根据测量值和设定值,计算需要调节的阀门开度。
3.阀门控制:根据计算结果,控制阀门的开度,调节水的流入和流出
速度,以实现液位的控制。
4.反馈调整:根据阀门控制后的效果,不断调整阀门开度,使液位稳
定在设定值附近。
在实际的设计中,双容水箱液位串级控制系统通常采用PID控制器来
实现。
PID控制器包括比例(P)、积分(I)和微分(D)三个部分。
比
例部分根据偏差的大小进行调整,积分部分根据偏差的持续时间进行调整,微分部分根据偏差的变化速率进行调整。
通过不断调整PID参数,实现系
统的稳定性和响应速度的平衡。
另外,在实际的设计中,还需要考虑到系统的动态响应、稳定性、静
差和抗干扰性等因素。
可以采用仿真软件进行系统的建模和分析,优化系
统的设计参数。
总之,双容水箱液位串级控制系统作为一种常见的控制系统,在工业、农业和民用领域有着广泛的应用。
通过合理设计和调节控制参数,可以实
现液位的稳定控制,提高系统的稳定性和安全性。
同时,与实际的实验和仿真相结合,可以进一步优化系统的设计和控制策略。
实验05双容水箱液位定值控制实验

实验05双容水箱液位定值控制实验实验5 双容水箱液位定值控制实验一、实验目的1、掌握多容系统单回路控制的特点2、深入了解PID控制特点。
3、深入研究P、PI和PID调节器的参数对系统性能的影响。
二、实验设备A3000现场系统,任何一个控制系统。
三、实验原理与介绍1、系统结构水从中水箱进入,中水箱闸板开度8毫米,进入下水箱,下水箱闸板开度5-6毫米。
要保证中水箱闸板开度大约下水箱闸板开度,这样控制效果好些。
水流入量Qi由调节阀u控制,流出量Qo则由用户通过闸板来改变。
被调量为下水位H。
如图5-3-1所示。
实际上,可以通过控制连接到水泵上的变频器来控制压力,效果可能更好。
图5-3-1 双容水箱液位定值控制实验2、控制逻辑结构双容水箱液位控制系统如图5-3-2所示。
图5-3-2 双容水箱液位定值控制实验逻辑图这也是一个单回路控制系统,它与上一个实验不同的是有两个水箱相串联,控制的目的是使下水箱的液位高度等于给定值所期望的高度;具有减少或消除来自系统内部或外部扰动的影响。
显然,这种反馈控制系统的性能完全取决于调节器Gc(S)的结构和参数的合理选择。
由于双容水箱的数学模型是二阶的,故它的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃扰动),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比,若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和Ti调节得合理,也能使系统具有良好的动态性能。
比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,又使其动态性能得到进一步改善。
4、参考结果双容水箱液位控制实验PI控制器控制曲线如图5-3-3所示:图5-3-3 PI控制器控制曲线PID控制的曲线具有两个波,然后逐步趋于稳定。
由于系统延迟很大,这个稳定时间非常长。
比较好的效果是P=24, I=200,D=2。
如图5-3-4所示:图5-3-4 PID控制曲线从图可见,增加微分项之后,系统在有10%的扰动下,很快就进入稳定状态。
双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
自动控制课程设计双容水箱液位串级控制

自动控制课程设计课程名称:双容水箱液位串级控制学院:机电与汽车工程学院专业:电气工程与自动化学号:631224060430姓名:颜馨指导老师:李斌、张霞2014/12/30目录纲要.......................................................... (2)1前言.......................................................... (2)2对象剖析和液位控制系统的成立 (2)水箱模型剖析 (2)阶跃响应曲线法成立模型 (3)控制系统选择 (3)【2】3控制系统性能指标.............................................方案设计.......................................................4串级控制系统设计 (4)被控参数的选择 (4)控制参数的选择 (5)主副回路设计 (5)控制器的选择 (5)3PID控制算6法...............................................................PID算法 (6)PID控制器各校订环节的作用 (6)4系统仿真............................................ (7)系统构造图及阶跃响应曲线 (7)PID初步伐整 (10)PID不一样参数响应曲线 (12)系统阶跃响应输出曲线 (17)5加有扰乱信号的系统参数调整 (20)6心得领会..................................................................227参照文件..................................................................22纲要液位控制是工业生产以致平时生活中常有的控制,比方锅炉液位,水箱液位等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中,为槽 1 的时间常数,T1=R2C;T2 为槽 2 的时间常数,T2=R3C2。 经计算 T1=9.09,T2=17.43 上式即为双容液位过程的数学模型 与自衡单容过程的阶跃响应相比, 双容过程的阶跃响应一开始变化慢, 其原因是槽与槽 之间存在液体流通阻力而延缓了被控量的变化。显然,串联容器越多,则过控容量越大,时 间约延长。 双容过程也可以近似为有时延的单容过程。其做法是通过相应曲线Δ h2 的拐点作切线 (如虚线所示),与时间轴相交于 A 点,与Δ h2 的稳态值Δ h2 (∞)相交于 C 点,C 点在 时间轴上的投影为 B。此时,传递函数可近似为
图 7 双容水箱液位阶跃响应曲线
本课程设计采用负阶跃,得到响应曲线如图 8 所示。
图 8 双容水箱液位的负阶跃响应曲线(2)
根据上述公式,计算其特征参数 K、T1、T2 及传递函数。
K
h 2() 输入稳态值 12.3 = =12.3 xO 阶跃输入量 1 t1 t2 5.1 2.25 = =3.4 2.16 2.16
变化量(流量的变化量与原流量的比)则随阀杆位置的不同而不同。所以,线性调节阀在小 开时流量的相对变化量大,灵敏度高,控制作用强,容易产生振荡:而在大开度时流量的相 对变化量小,灵敏度低控制作用弱。由此可知,当线性调节阀工作在小开度或大开度时,其 控制性能均较差,因为不宜用于负荷变化大的过程。
第二章双容水箱特性Hale Waihona Puke 测试= q1 - q 2
h1 R2
q 2 = C2 dh 2 dt
= q 2 q3
h 2 R3
q3
式中,分别为流过阀 1、2、3 的流量;分别为槽 1、2 的液位;分别为槽 1、2 的容量系 数;分别为阀 2、3 的液阻。 进行拉斯变换,整理后的传递函数为
G( s)
1 R3 T1s 1 T 2 s 1
Simulink 仿真框图如图 9 所示:
图 9 实验法模型 Simulink 仿真框图
正阶跃响应曲线如图 10:
图 10 系统正阶跃响应 Simulink 仿真
对比仿真的正阶跃响应曲线和实验所得的负阶跃响应曲线, 两者结果相差无 几。可以验证计算的正确性。
2.2 双容水箱机理法建模 2.2.1 数据测量
2.接通总电源空气开关和钥匙开关,打开 24V 开关电源,给压力变送器上电,按下启 动按钮,打开相关部件电源。 3.打开上位机组态环境,进入本节实验项目的控制工程运行环境。 4.在上位机监控界面中将控制器设置为“手动”输出,并将输出值设置为一个合适的 值(一般为最大值的 40~70%,不宜过大,以免水箱中水溢出)。 5.打开三相电源开关,磁力驱动泵上电打水,适当增加/减少控制器的输出量,使下水 箱的液位处于某一平衡位置,记录此时的控制器输出值和液位值。 6.液位平衡后,突增(或突减)控制器输出量的大小,使其输出有一个正(或负)阶 跃增量的变化(即阶跃干扰,此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离 开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录下此时的控制器的输出 值和液位值,液位的响应过程曲线将如图 7 所示。
K e S (T1 S 1)(T2 S 1)
2.1.2 测试步骤
本课设选择中水箱和下水箱串联作为被测对象(也可选择上水箱和中水箱)。测试先将 储水箱中贮足水量, 然后将中水箱出水阀门 F1-10、 下水箱出水阀门 F1-11 开至适当开度 (要 求 F1-10 开度稍大于 F1-11 的开度)。具体步骤如下: 1.将实验控制器相关控制种类挂件挂到屏上,并将挂件的通讯线接好。
目 录
第一章 调节器流量特性测试................................................................... 1 1.1 调节器流量特性测试.................................................................... 1 1.2 调节器流量特性说明.................................................................... 3 第二章双容水箱特性的测试..................................................................... 3 2.1 双容水箱实验法建模.................................................................... 3 2.1.1 双容水箱对象特性测试系统................................................3 2.1.2 测试步骤............................................................................... 5 2.1.3 系统仿真............................................................................... 7 2.2 双容水箱机理法建模.................................................................... 8 2.2.1 数据测量............................................................................... 8 2.2.2 分析计算............................................................................... 8 2.2.3 系统仿真............................................................................. 10 第三章 双容水箱液位定值控制系统..................................................... 10 第四章 水箱液位串级控制系统............................................................. 13 4.1 系统分析...................................................................................... 13 4.2 控制步骤...................................................................................... 13 第五章 总结..............................................................................................15 附 录..........................................................................................................15
2.1 双容水箱实验法建模 2.1.1 双容水箱对象特性测试系统
双容水箱对象特性测试系统如图 4 所示:
图 4 双容水箱对象特性测试系统 (a)结构图 (b)方框图
由图 4 所示,被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。自衡是 指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重 新恢复平衡的过程。 双容水箱数学模型是两个单容水箱数学模型的乘积, 即双容水箱的数学 模型可用一个二阶惯性环节来描述:
第一章 调节器流量特性测试
1.1 调节器流量特性测试
根据实验室已有的仿真系统,连接系统,如图 1:
图 1:流量特性测试系统接线图
实验数据如表 1:
表 1 实验数据
相对流量(L/min) 相对开度(%) 相对流量(L/min) 相对开度(%)
0 0
2.5 70.5
0.1 40 2.8 75
0.3 42.5 3.0 77.6
values = spcrv([[x(1) x x(end)];[y(1) y y(end)]],3); plot(values(1,:),values(2,:))
1.2 调节器流量特性说明
如果忽略点(0,0),可以得到如下的流量特性曲线,如图 3:
图 3 工作流量特性(3)
可以知道,阀为直线流量特性的阀。 不论阀杆处于什么位置,只要阀杆的位移量相同,其流量的变化量则相同,但它的相对
图5
双容水箱液位的阶跃响应曲线 (b)下水箱液位
(a)中水箱液位
双容对象两个惯性环节的时间常数可按下述方法来确定。 在图 6 所示的阶跃响应曲线上 求取: (1) h2(t)|t=t1=0.4 h2(∞)时曲线上的点 B 和对应的时间 t1; (2) h2(t)|t=t2=0.8 h2(∞)时曲线上的点 C 和对应的时间 t2。
G(s)=G1(s)G2(s)=
k1 k2 K T1 s 1 T2 s 1 ( T1 s 1 )( T2 s 1 )
(1)
式中 K=k1k2,为双容水箱的放大系数,T1、T2 分别为两个水箱的时间常数。 被测量为下水箱的液位, 当中水箱输入量有一阶跃增量变化时, 两水箱的液位变化曲线 如图 5 所示。由图 5 可见,上水箱液位的响应曲线为一单调上升的指数函数(图 5 (a)); 而下水箱液位的响应曲线则呈 S 形曲线(图 5 (b)),即下水箱的液位响应滞后了,它滞后 的时间与阀 F1-10 和 F1-11 的开度大小密切相关。
2.2.2 分析计算
图 11 分离式双容液位过程 如图 11 所示为一分离式双容液位过程。图中 A 中设为过程输入量,第二个液位槽的液 位为过程输出量, 若不计第一与第二个液位槽之间液体输送管道所形成的时间延迟, 试求与 之间的数学关系。根据动态平衡关系,可列出以下增量方程,即: