比例线段与黄金分割
初中数学比例线段黄金分割

例 6:若 ABC 三边 a : b : c 6 : 4 : 3 ,三边上的高分别为 h1、h2、h3 ,求 h1 : h2 : h3 的值。
自我检测
一、填空题
1.(1)若 5x-7y = 0,则 x =______. (2)已知 x y 3 , 那么 x =______.
y
y7
y
(3)若
x 2
如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边。
三角形一边的平行线判定定理的推论: 如果一条直线截 三角形的两边的延长线 (这两边的延长线在第三边的 同侧)所得的 对应线段成比例,那么 这条直
线平行于三角形的 第三边。 平行线分线段成比例定理 : 两条直线被三条 平行的直线所截,截得的对应线段成 比例。 推论: 两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等。
;
7. 若 x:y:z=2:7:5,且 x-2y+3z=6,则 x=
,y=
,z=
;
8.设x3 =y5 =z7 ,则x+yy =__
_,3yy+-32zz =__
__.
3
9.如图是两个相似四边形,已知数据如图所示,则 x=_____,y=_____,α =______.
5 1200 4
300
6
1300
, MN=
PQ, PQ=
MN.
4.如图,C 是线段 AB 的中点,D 在 BC 上,且 AB=24cm,
BD=5cm, 则 AC∶CB=
;AC∶AB=
;A
C
DB
BC∶ BD=
;CD∶AB=
;AD∶CD=
黄金分割及比例线段

3、黄金分割矩形4、人体中的黄金分割之美
5、美妙的黄金分割和黄金数6、线段黄金分割点的几种求法
7、中考黄金分割问题两例8、“黄金分割”考题透视
9、“比例线段”变式多多10、证明比例线段方法多多
11、巧用面积比来证线段比12、巧用面积比,妙解几何题
1、“黄金分割”之美
所谓的黄金分割矩形,是指矩形的长∶宽= ∶1,黄金分割矩形有一种特别的性质:在这种矩形中分出一个以宽为边长的正方形后,余下的矩形仍然是一个黄金分割矩形(如图2),由于它具有这一特性,因此每次余下的矩形都与原矩形相似,也就是说黄金分割矩形具有碎形自相似性的特质。
图2图3图4图5
至于黄金螺旋,则是将黄金矩形依黄金比例的长宽比往外扩张,然后将正方形顶点依序连接起来,就成为“黄金螺旋”如图3,4,5。同样地,黄金螺旋也普遍存在于自然界中,如下右图6的鹦鹉螺即是最著名的例子
析解:由黄金分割的定义可知 的数值为 。依据“黄金分割”知识可知节目主持人站在线段AB的黄金点C,这样台下的观众看上去感觉最好.
点评:本题实际上是属于黄金分割问题,即若点C把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.
3、黄金分割矩形
美丽宜人的黄金分割矩形是古希腊时代被认为地球上最具有调和性而美丽的比例。在古希腊时代,除了著名的巴特农神殿之外(如右图1),有许多建筑物、美术品、工艺品都具有十分接近黄金分割的作品。文艺复兴时代的万能艺术家达文西(Leonardo da Vinci,1452~1519)据说用黄金分割的长方形绘画。黄金分割不仅是几何学,也是整个数学的重要内容。十七世纪德国著名的天文学家、数学家开普勒(kepler,1571~1630)曾经这样说过:“几何学里有两件宝,一是勾股定理,另一个是黄金分割”。
黄金分割的三个公式短比整

黄金分割的三个公式短比整
黄金分割的三个公式是:黄金分割比例公式、黄金分割点公式和
黄金分割线公式。
1.黄金分割比例公式:黄金分割比例公式是指黄金分割的比值,
即将一条线段分为两段时,两段之比等于整条线段与较长一段之比。
用数学表示为a/b=b/(a+b)(a>b>0),其中a为较短的线段,b为较
长的线段。
该比例约等于1.618。
2.黄金分割点公式:黄金分割点公式是指根据黄金分割比例,确
定一个线段上的分割点。
设整条线段长度为L,较短线段长度为a,则
黄金分割点离起始点的距离为a/L=0.618。
3.黄金分割线公式:黄金分割线公式是指通过黄金分割点划出一
条线段,使得线段划分后的两段比例与原线段的比例相等。
设整条线
段长度为L,黄金分割点离起始点的距离为x,则划分线段的长度为
xL/L=0.618L。
黄金分割在数学、艺术和设计领域被广泛应用。
除了上述公式外,黄金分割还有一些其他衍生的应用,例如黄金矩形、黄金螺旋等。
黄
金分割的特性被认为具有美感和视觉上的和谐,因此常被用于设计画作、建筑等领域。
拓展应用包括金融市场中的价格分析、人体比例的研究等。
人教版初三数学归纳总结笔记-比例线段与黄金分割

⼀⽐例及⽐例线段是系年103888488加2A B58101连地连等设k法⽅法iCcikbiksk⻮⼒⼆灵⼗成⼆Ík64i了红⽓b⼆号⼆华ai bi C当i j i I6i4i381215x y z2345-81215i b⼆4k ci5kat b t E Nk224k-2以设a c-2k o a 6b8C10a t b7k20c b k3040ABC为直⻆三⻆形i o_o30得a3k⼆⽐例及⽐例线段1基本性质⼀吐⾎2个⼭动加11-8a48-y xty It动⼗⼆038⼆可加td另⼆号718⼏⼗⼏1⼏⼗1m t I18⼏⼗m8mntfmtn2tn8mnt8ntmtmllmtuj mtElmtnjlm nsim tnim⼗⼏⼆7年216冲①1为⽐例中项14⽐12a②a为⽐例中次i⼼从4a2③4为⽐例中项i和k a a16-2-186万吃A CBD751-16-8⼒动-601加3加上0Xi3倽加22合⽐性质b彘了等地性质i台⼆柒⼆年⼆章⼆千⼆步⼆三故原⾮主城1 datbtbtctl.tnfatbtc.HR⼆zlatbat btc to k2at btc⼆0k其⼆1丝55 4千⼆为千⼆千⼆k年⼆k 团箱性质有abtbzctz34⼆⼈⼆9k则以23k b21k源或是c ˇˇˇ1aty lt会mbtdm⼀⼆1⼗号mㄡi元fi a bjt三⻩⾦分割a railA l p B不妨设AB l AT则叩⼆1-ai f答N1-a any⼆0u-12㐀或a严倽1x XH 器器型f l titiXX 步骤0作的中垂线交1扔于川点②延⻓AB⾄17点使131213川③作MD中重线截⽐⼆BM④连AC截CH⼆CB⑤在AB上截取那⼆AH60下结论如图点P即为所求Bi d设A Bi2K则⾮你顺A P BPB⼆A BPA13万⽔器⽿器等76⽶x-型281万-1120⼒1万11X201万-D x20-8-errors 加30-10万p吓6mD1C a2lb aslb cjxlb ailb aJIb a xlb ayxib ailb aj xlb ajli51-XX4-10X⼆⼗等加⼆严倒四⻩⾦三⻆形1定义若⼀个三⻆形以底和膀之地为⻩⾦分割地则称这个三⻆形为⻩⾦三⻆形A器型AB CB C器型D0136OCD NBC360 BCE.li3CD.oABDOAECOABC72072036张36A器⼆兵D Z⼆⼗㐙36l i Tx360噐⼆架piABPBGSnpisrPBABI.SI⼆名不1-1匹C1BE⼆吓⼆厅箭⼆箭⼋⽉下洲⼆所i tl为AB⻩⾦分割点ig i AH TBH AB即952五平⾏线分线段成⽐例B器等⼀吓冷z13⾄ˇˇ11器ˇ12毙⼆千⾏43⼈杀了⼆⽅⼒38解得xgi.BE2。
八年级数学讲义比例线段与黄金分割

比例线段与黄金分割知识提要: 1.比例线段①概念:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段. ②比例线段中的相关概念已知四条线段a 、b 、c 、d ,如果ab=cd(a∶b=c∶d),那么a 、b 、c 、d 叫做组成比例的项.线段a 、d 叫做比例外项,线段b 、c 叫做比例内项,线段d 叫做a 、b 、c 的第四比例项.如果作为比例内项是两条相同的线段,即a∶b=b∶c,那么线段b 叫做线段a 、c 的比例中项. 2.比例性质若dcb a =,则ad=bc 反比性质 若d c b a =,则c da b =更比性质 若d c b a =,则d bc a =合比性质 若d c b a =,则ddc b b a +=+等比性质 若nm f e d c b a ==== ,则n m f e d c b a n f d b m e c a =====++++++++(其中0≠++++n f d b )。
3.黄金分割:把线段AB 分成两条线段AC 和BC ,(AC >BC),且使AC 是AB 和BC 的比例中线,叫做把线段AB 黄金分割,C 点叫做线段AB 的黄金分割点.常规题型1.已知线段4a cm =,5b cm =,6c cm =。
(1)求,a b 的比例中项。
(2)求,,a c b 的第四比例项。
2.在1∶500000的地图上,A 、B 两地的距离是64 cm ,则这两地间的实际距离是________.3.已知点M 将线段AB 黄金分割(AM >BM ),则下列各式中不正确的是( )A.AM ∶BM =AB ∶AMB.AM =215-ABC.BM =215-AB D.AM ≈0.618AB典型例题 例1.已知:a cb d =,求证:.a bcd a b c d++=--同步练习:已知:5y-4x =0,求(x+y)∶(x -y) 例2.若34a b =,32b c =,45c d =,则22ac b d +等于多少?例3.已知x∶y∶z=1∶3∶5.求 的值.例4.如果0z ≠,且475x y z =+,2x y z +=,求::x y z 之值。
比例线段和黄金分割

比例线段和黄金分割一.比例线段:[基本概念]比例:如果两个数的比值与另两个数的比值相等,就说这四个数成比例。
比例的基本性质:如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/ b=c/d;如果a/b=c/d,那么(a+b)/b=(c+d)/d。
比例线段:1.两条线段的长度比叫做这两条线段的比。
2.在同一单位下,四条线段长度为a、b、c、d,其关系为a:b=c:d,那么,这四条线段叫做成比例线段,简称比例线段。
3.一般的,如果三个数a,b,c满足比例式a:b=b:c,则b就叫做a,c的比例中项。
4.d为第四比例项。
若a:b=c:d(b.d≠0),则有1)ad=bc2)b:a=d:c (a.c≠0)3)a:c=b:d ; c:a=d:b4)(a+b):b=(c+d):d5)a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)6)(a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)二.黄金分割:介绍把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。
其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。
另一侧则是3-5^/2。
由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。
这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618(1-0.618)/0.618=0.618这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面两个数是:1、1,后面的每个数都是它前面的两个数之和。
例如:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。
斐波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
初二下第7讲-比例线段、黄金分割

第7讲:相似形(一)专题一 比例线段一、知识梳理1、两条线段的比:同一长度单位下两条线段长度的比叫两条线段的比。
求线段的比例时要把两条线段化为 (注两条线段的比没有单位),并要注意其 ;成比例线段:在四条线段a ,b ,c ,d 中,若 ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段,如果a ∶b=c ∶d (或ac b =2),则b 叫做a 、c 的比例中项。
2、比例线段的性质:(1)比例的基本性质:如果 b a = d c ,那么 。
若b a = c b,即 __,则称b是a,c的 (2)比例的更比性质:如果d c b a =,那么d b c a =。
(3)比例的反比性质:如果d c b a =,那么cda b =。
(4)比例的合、分比性质:如果 b a = d c,那么 。
(5)、比例的等比性质:如果 b a = d c …=nm(b+d+…+n ≠0),那么 。
二、重难点高效突破线段的比与成比例线段 例1、 线段a=5cm,b=0.3m.则ba=____ 例2、 已知四条线段a ,b ,c ,d 的长度,试判断它们是否是成比例线段。
(1) a =8,b=4,c=2.5,d=5; (2)a=16,b=0.1,c=1.2 d=20;例3、已知1,5,5三个数,再添一个数,使之能与已知的三个数组成比例式,这个数应该是_____例4、AB 两地相距320km ,那么在比例尺1∶20,000,000的地图上,它们相距________cm.例5、小颖测得2m 高的标杆在太阳下的影长为1.2m ,同时又测得一棵树的影长为3.6m ,这棵树的高度为___________.例6.(1)已知;,3d d c b b a d c b a ++==和求 (2)如果成立吗?为什么?那么为常数)ddc b b a k kd c b a +=+==,((3)已知线段a=2,b=3,c=7,d 是a 、b 、c 的第四比例项,则d=_________。
《比例线段:黄金分割》

2、取AD的中点E,连接EB.
3、延长长DA至F,使EF=EB.
F
G
4、以线段AF为边作正方形AFGH.
所以点H就是AB的黄金分割点. A
HB
E
你能说说这种作法的道理吗? D C
❖如图,已知线段AB按照如下方
法作图:
1.经过点B作BD⊥AB,使
BD 1 AB. 2
2.连接AD,在AD上截 取DE=DB.
B
A
FN
C
G
M
H
E
D
如图,正五边形ABCDE的5条边相等,
5个内角也相等.
⑴找找看,图中是否有黄金三角形?
⑵点F是线段 AC、,AN
BE、的BG黄金分割点.、 ABN
点G呢?
A
B
ABG
BCM
FN
找一找
BCF
C
CN E
AEH
G
M
CDH
AEF
H
CDN
E ED M
D
ED G
Gab c d e
如果在一个黄金矩形里去掉一个 正方形,那么留下的矩形又是一个黄 金矩形,再去掉一个正方形,又得到 一个更小的黄金矩形。
如果 AC = BC
AB
AC
AC = AB
BC
AC
∙ AC2=AB BC
那么称线段 AB 被点 C 黄金分割 点 C 叫做线段 AB 的黄金分割点, AC 与 AB 的 比值叫做黄金数.
AC = BC =
5 1 ≈0. 618
AB AC
2
例3: 已知线段AB的长度是l,点P是线段
AB的一点,PABP
《比例线段:黄金分割》
黄金分割美的魅力 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例线段与黄金分割
【知识要点】
1.把b a 的值叫做线段b a ,的比,若d
c b a =,则称线段
d c b a ,,,成比例线段。
2.bc ad d c b a d
c b a =⇔=⇔=::,其中
d c b a ,,,分别叫第一、第二、第三、第四比例项,d a ,称为外项,c b ,称为内项;外项的积等于内项的积。
3.n
1=实际距离图上距离,我们称为比例尺,进行有关比例尺的计算时,要注意统一单位 4.比例性质:①基本性质:
bc ad d c b a =⇔=;②反比性质:c
d a b d c b a =⇔=; ③更比性质:a b c a d c b a =⇔=; ④合比性质:d b c b b a d c b a ±=±⇔=; ⑤等比性质:n n b a b a b a b a === 332211,则1
12121b a b b b a a a n n =+++++ 5.比例中项:若ac b =2,则称b 是ac 的比例中项
6.若点P 分线段AB 得到较长线段是较短线段和整条线段的比例中项,则称点P 是线段AB 的黄金分割点;
7.2
15,215--==较长线段较短线段整条线段较长线段叫做黄金比值。
相似多边形
相似多边形 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。
相似多边形性质
相似多边形性质定理1:相似多边形周长比等于相似比。
相似多边形性质定理2:相似多边形对应对角线的比等于相似比。
相似多边形性质定理3:相似多边形中的对应三角形相似,其相似比等于相似多边形的相似比。
相似多边形性质定理4:相似多边形面积的比等于相似比的平方。
相似多边形性质定理5:若相似比为1,则全等
相似多边形的性质定理主要根据它的定义:对应角相等,对应边成比例。
相似多边形的判定
对应角相等,对应边成比例的多边形是相似多边形. 所有对应边成比例,那么这两个多边形相似
练习:
1、若a:b:c=3:5:7,且3a+2b-4c=9,则a+b+c 的值等于( )
2.若2:1:::===d c c b b a ,则=d a :________
3.若3:2:1::=c b a ,则
c b a c b a +---的值为________ 4.已知8
75c b a ==,且20=++c b a ,则=-+c b a 2________ 5.若4:3:2::=c b a ,且5=-+c b a ,则b a -的值是________
6.如果32=b a ,且3,2≠≠b a ,那么=-++-5
1b a b a 7.在Rt △ABC 中,斜边AB =205,40
9=BC AC ,试求AC ,BC 的值。
8.在△ABC 中,AB =12,点E 在AC 上,点D 在AB 上,若AE =6,EC =4,且
EC AE DB AD =。
(1) 求AD 的长;
(2) 试问
AC
EC AB DB =能成立吗?请说明理由。
9.若65432+==+c b a ,且2a -b +3c =21.试求a ∶b ∶c . 10.(1)已知b a a b b a x +=+=+=
222,求x 的值 (2)已知5
24232x z z y y x -=-=-,求y x z y x -++2的值 11、已知a b a -=32,求b
a b a +-34的值。
黄金分割:
1、 若点C 是线段AB 的黄金分割点,AB=8 cm ,AC>BC,求AC 的值。
2. 已知点P 是线段MN 的黄金分割点,MP>NP,且MP=)15(-cm,求MN 的值。
3. 点C 是线段AB 的黄金分割点,AC>BC,求
AB
BC 的值 。
A C
B
D E B C A 4. 若把长为10cm 的线段黄金分割后,求其中较短的线段长度是多少?
5. 已知线段AB=6,点C 为线段AB 的黄金分割点,(AC>BC),求下列各式的值:
(1)AC -BC; (2)BC AC ⋅
6. 如图:在ABC ∆中,D 、E 分别是边AB 、AC 上的点,且EC
AE BD AD =, (1)你能说明
AC EC AB
BD =吗? (2)若AB=12,AE=6,EC=4,求出AD 的长。
(3)若53===BC DE AC AE AB AD ,且ABC ∆的周长为30,求出ADE ∆的周长。
7. 已知:如图,ABC ∆中,D 是BC 上的一点, BD AC AB =,且AB=7cm,AC=5cm,BC=8cm, 求BD , DC 的长。
相似多边形: 1.如图1-4-13,梯形ABCD 中,AD ∥BC ,EF ∥BC ,将梯形ABCD 分成两个相似的梯形,梯形AEFD 和梯形EBCF ,若AD=3,BC=4,则EF 的长为__________.
2、如图,在△ABC 中,D 是BC 边上一点,E 是AC 边上一点.且满足AD =AB ,∠ADE =∠
A C
B A
C B A B
D C
E A B D C
F E D C B A
C .
(1)求证:∠AED =∠ADC ,∠DEC =∠B ;
(2)求证:AB 2=AE •AC .
3、如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC=AC ,∠ACB 的平分线CF 交AD 于点F .点E 是AB 的中点,连结EF . (1)求证:EF∥BC;
(2)若△ABD 的面积是6.求四边形BDFE 的面积
4、如图,AD 是直角三角形ABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BD
BE AD AF 吗?说说你的理由。
5、梯形ABCD 中,AD ∥BC ,E ,F 分别为AB ,CD 上一点,且梯形AEFD ∽梯形EBCF ,若AD =4,BC =9。
试求AE :EB 的值。
(本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。