关于上_下极限几种定义的等价性_图文(精)

合集下载

数学分析第五讲 上下极限定义与基本性质与应用

数学分析第五讲 上下极限定义与基本性质与应用
1 N yn A x k A n k 1 两边取上极限, 则有
能否用数列 极限保序性?
1 N lim sup yn A lim( xk A ) . n n n k 1
由 任意性: limsup yn A 0.
n
因此 lim inf yn A limsup yn A 0
n n
所以 lim yn A.
n
数列上下极限的定义与基本性质
例3 证明:
xn 0, lim xn A 0, 证明:lim n x1 x2
n n
xn A.
因为 lim xn A, 所以
n
0, N N * , n N : A xn A
n
8n +3
8n
8n
sinΒιβλιοθήκη 8n+3 4
1 2 = 1 8n 2
8n
lim x8n e
n n
lim x8n 1
n
2 e 2 2 2
lim x8n 2 e 1
lim x8n 3 e
总习题课

2 2
lim x8n 4 e , lim x8n 5 e
n n
2 , 2
lim x8n 6 e 1, lim x8n 7 e
2 n n 2 2 lim sup xn e 1,lim inf xn e n n 2
斯笃茨定理的应用
例3 1p 2 p 求极限 lim p n n
p p 1 2 n
np
n , p N *. p1
解:原式 lim

ch上极限与下极限

ch上极限与下极限

是 cos π,即
5
lim
n
xn
1,
lim xn
n
cos π 。 5
数学分析
例 9.2.2 求数列 xn n(1)n 的上极限与下极限。
解 此数列为
1, 2,
1 3 , 4,
1 5 , 6,
1 7 , 8,
…,
它没有上界,因而
lim
n
xn=

又由 xn 0,且{x2n1}的极限为 0,即知 lim xn= 0。 n
证 由 H supE 可知,存在k E (k 1,2,),使得
取 k

1 k
(k
lim
k

k

H。
1,2,)。
因为1是xn的极限点,所以在O(1,1)中有xn的无
穷多个项,取 xn1 O(1,1);
因为2 是xn 的极限点,所以在O(2 , 2 )中有xn 的无
当 = (或 )是{ xn}的极限点时,定义 sup E = (或 inf E = );当 = (或
)是{ xn}的唯一极限点时,定义 sup E = inf E = (或 sup E = inf E = )。那么定理 9.2.1 依然成立,而定理 9.2.2 只要改为
xnk
k
1, k
于是有
lim
k
xnk

lim
k

k

H。
由定义9.2.1, H 是xn的极限点,也就是说, H E 。
同理可证 h E。
数学分析
定义 9.2.2 E 的最大值 H = max E 称为数列{ xn}的上极限,
E 的最小值 h = min E 称为数列{ xn}的下极限,记为

数列上下极限的不同定义方式及相关性质

数列上下极限的不同定义方式及相关性质

目录数列上下极限的不同定义方式及相关性质摘要 (01)一、数列的上极限、下极限的定义 (01)1. 用“数列的聚点”来定义 (01)2. 用“数列的确界”来定义 (02)3. 数列上、下极限定义的等价性 (02)二、数列的上、下极限的性质及定理 (04)参考文献 (14)英文摘要 (15)数列上下极限的不同定义方式及相关性质摘 要:数列的上、下极限的概念是极限概念的延伸,由于它们在正项级数敛散性的判别法中的重要作用,又成为数学分析中重要的理论部分.本文主要讨论了数列的上下极限的两种定义方式及其等价证明和一些相关定理. 关键词:数列、上极限、下极限、聚点、函数一、数列的上极限、下极限的定义关于数列的上极限、下极限的定义常见的有如下两种形式: 1. 用“数列的聚点”来定义定义 1 若在数a 的任一邻域都含有数列{}n x 的无限多项,则称a 为数列{}n x 的一个聚点.例1 数列{(1)}1n nn -+有聚点1-与1; 数列{sin}4n π有1,-和1五个聚点; 数列1{}n 只有一个聚点0;常数列{1,1,,1,}只有一个聚点1.定义 2 有界数列{}n x 的最大聚点a 大与最小聚点a 小分别称为数列{}n x 的上极限和下极限,记作lim n a →+∞=大;lim n n a x →∞=小.例2 lim (1)11nn n n →+∞-=+(),lim 111n n n →∞-=-+lim sin14n n π→+∞=,limsin 14n n π→∞=- 11lim lim 0n n n n →+∞→∞==2. 用“数列的确界”来定义定义3 任给数列{}n x ,定义lim lim sup{}n k n n k nx x →+∞→∞≥=;lim liminf{}n k n k nn x x →∞≥→∞= (1)分别称为数列{}n x 的上极限和下极限.若定义1中的a 可允许是非正常点+∞或-∞,则:任一点列{}n x 至少有一个聚点,且存在最大聚点与最小聚点.不难证明:正上(下)界点列的最大(小)聚点为()+∞-∞.于是,无上(下)界点列有非正常上(下)极限()+∞-∞.例3 lim ((1)1)n n n →+∞-+=+∞,lim (1)n n n →+∞-=-∞,lim(1)n n n →∞-=-∞3. 数列上、下极限定义的等价性下面我们来证明一下数列上、下极限定义的等价性,即lim limsup{}n k n n k na x x →+∞→∞≥==大;lim liminf{}n k n k nn a x x →∞≥→∞==小.证明:如果limsup{}k n k nx →∞≥=+∞,由于sup{}k k nx ≥关于n 单调递减,所以sup{}k k nx ≥=+∞,n N ∀>.于是,可取1n ∈(自然数)1..1n s t x >,又可取2,n ∈221,..2,,n n n s t x >>所以,得到数列{}n x 的子列{}()n k x k →+∞→+∞.这就证明了+∞为数列的聚点,且为最大聚点a 大.由此可得lim lim sup{}n k n n k na x x →+∞→∞≥==+∞=大;如果limsup{}k n k nx →∞≥<+∞,则limsup{}k n k nx →∞≥=-∞或实数.设a 数列{}n x 的任一聚点,则必有{}n x 的子列,()i n x a i →→+∞.,n ∀∈,,i i n n i n ≥≥≥当时有sup{}i n k k nx x ≥≤,lim sup{}i n k i k na x x →∞≥=≤,limsup{}k n k na x →∞≥≤,所以,数列{}n x 的最大聚点满足lim lim sup{}n k n n k nx x →+∞→∞≥≤.另一方面, lim ,n n y x →+∞∀>易见,[)∞y,+中最多含有数列{}n x 中的有限多项.因此,,N ∃∈当k N >时,有k x y <,从而,当n N >时,有sup{},k k nx y ≥≤由此可得limsup{}k n k nx y →∞≥≤.令()lim nn y x +→+∞→,推出lim sup{}lim k n n n k nx x →∞→+∞≥≤.综合上述,有lim lim sup{}n k n n k na x x →+∞→∞≥==.类似的可证明或应用上式于{}n x -可证得lim liminf{}n k n k nn a x x →∞≥→∞==小.如果lim inf{}k n k nx →-∞≥=-∞,由于inf{}k k nx ≥关于n 单调递减,所以inf{}k k nx ≥=-∞,对n N ∀>.于是,可取自然数1n 使得11-<n x ,又可取自然数2n 12n n >使得22-<n x ……所以,得到数列{}n x 的子列{k n x }-∞→.这就证明了∞-为数列的聚点,且为最小聚点小a .由此可得lim lim inf{}n k n k nn a x x →-∞≥→∞==小;如果lim inf{}k n k nx →-∞≥>-∞,则lim inf{}k n k nx →-∞≥=+∞或实数.设a 数列{}n x 的任一聚点,则必有{}n x 的子列,()i n x a i →→+∞.任意的n 是自然数,,i i n n i n ≥≥≥当时有k n x ≥inf{}k k nx ≥lim inf{}i n k i k na x x →∞≥=≥lim inf{}k n k na x →+∞≥≥所以,数列{}n x 的最小聚点满足lim n n x →∞≥lim inf{}k n k nx →+∞≥.另一方面,对任意的y ≥lim n n x →∞易见,(-],y ∞中最多含有数列{}n x 中的有限多项.因此,存在N 是自然数当k N >时,有y x k >,从而,当n N >时,有inf{}k k nx ≥y ≥,由此可得lim inf{}k n k nx →+∞≥y ≥.令y →[lim n n x →∞]-,推出lim inf{}k n k nx →+∞≥≥lim n n x →∞.综合上述,有lim lim inf{}n k n k nn a x x →+∞≥→∞==小.下面进一步给出和数列上,下极限定义有关的性质及定理.二、数列的上、下极限的性质及定理设有数列{}n x 与数列{}n y ,则数列的上、下极限有以下性质性质 1 lim lim n n n n x x →+∞→∞≥; (2)性质 2 lim lim lim n n n n n n x A x x A →+∞→+∞→∞=⇔==例 4 用上下极限理论证明:若{}n x 是有界发散数列,则存在{}n x 的两个子列收敛于两个不同的极限.证明:因为数列发散的充要条件是lim lim n n n n x x →+∞→∞≠,于是存在{}n x 的两个子列{}{}''',k k n n x x ,使'lim lim k n n n n x x →+∞→+∞=,''lim lim k n n n n x x →+∞→∞=,即存在{}n x 的两个子列收敛于不同的极限.性质 3 (保不等式性质)设有界数列{}n x ,{}n y 满足:存在00N >,当0n N >时有n n x y ≤,则lim lim n n n n x y →+∞→+∞≤;lim lim n n n n x y →∞→∞≤;特别,若,αβ为常数,又存在00N >,当0n N >时有n a αβ≤≤,则lim lim n n n n a a αβ→+∞→∞≤≤≤性质 4 设0,0,(1,2,)n n x y n ≥≥=,则lim lim lim lim lim n n n n n n n n n n n x y x y x y →+∞→∞→∞→∞→∞⋅≤≤⋅ (3)lim lim lim lim lim n n n n n nn n n n n x y x y x y →+∞→+∞→+∞→+∞→∞⋅≤≤⋅(4)例5 证明:若{}n x 收敛,则对任意n y (1,2,)n =,有lim lim lim n n n n n n n x y x y →+∞→+∞→+∞=⋅(0)n x ≥证明:分三种情况讨论1、 若lim 0n n y →+∞>,则{}n y 中有无穷多项大于零,作新序列,0max{,0}00n n n n n y y y y y +>⎧==⎨≤⎩当时,当时则0n y +≥,且lim lim n n n n y y +→+∞→+∞=,对{}n x {}n y +应用(4)有lim lim lim lim lim n n n n n n n n n n n x y x y x y +++→+∞→+∞→+∞→+∞→∞⋅≤≤⋅因{}n x 收敛,所以 lim lim lim n n n n n n x x x →+∞→+∞→∞==,故上式表明 lim lim lim lim lim n n n n n n n n n n n x y x y x y ++→+∞→+∞→+∞→+∞→+∞=⋅=⋅但 lim lim lim n n n n n n n n n x y x y x y ++→+∞→+∞→+∞==()0n x ≥(因)所以 lim lim lim n n n n n n n x y x y →+∞→+∞→+∞=2、 若lim n n y →+∞=-∞,在限制条件下,lim 0n n x →+∞>,因此n 充分大时有0n x >,这时等式明显成立.3、 若lim 0n n y →+∞-∞<≤,可取充分大的正常数C>0,使得lim ()0n n y C →+∞+>,如此应用1、的结果, lim ()lim lim ()n n n n n n n x y C x y C →+∞→+∞→+∞+=⋅+再根据(3),此即 lim lim lim lim lim n n n n n n n n n n n x y x C x y x C →+∞→+∞→+∞→+∞→+∞+⋅=⋅+⋅从而 lim lim lim n n n n n n n x y x y →+∞→+∞→+∞=⋅,证毕.性质 5 在不发生()±∞∞)+(情况下,有如下不等式成立:1、lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+2、lim lim lim()n n n n n n n x y x y →∞→∞→∞+≤+3、lim ()lim lim n n n n n n n x y x y →+∞→+∞→+∞+≤+事实上,这里的等号可以不发生,如对{}{1,0,1,0,1,0,}n x =; {}{0,2,0,2,0,2,}n y =,这时{}{1,2,1,2,1,2,}n n x y +=lim lim 0lim()1n n n n n n n x y x y →∞→∞→∞+=<+=lim ()2lim lim 3n n n n n n n x y x y →+∞→+∞→+∞+=<+=例6 证明:若{}n x 收敛,则对任意n y (1,2,)n =,有lim ()lim lim n n n n n n n x y x y →+∞→+∞→+∞+=+证:我们已有lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+注意{}n x 收敛,因此lim lim lim n n n n n n x x x →+∞→+∞→∞==,所以上式即为 lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+即成立.例7 证明:(1)lim lim lim()lim lim n n n n n n n n n n n x y x y x y →+∞→∞→∞→∞→∞+≤+≤+(2)lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+证: 先证: lim ()lim n n n n x x →+∞→+∞-=-(1) 设lim n n x a →+∞=,则依上极限定义,0ε∀>,数列{}n x 中至多只有N 项大于a ε+,而有穷项小于a ε-,即对{}n x -,至多有N 项小于a ε--,而有穷项大于a ε-+,所以依下极限定义,有 lim()n n x a →∞-=-,即lim()lim n n n n x x →+∞→∞-=-.设 lim n n x a →∞=,lim n n y b →∞=,lim()n n n x y a b →∞+=+用反证法,设c a b <+,依下极限定义,0ε∀>,N ∃,当n N >时,有n n x y c ε+<+不妨设 1()2a b c ε=+-,则当n N >时, n n x y c a b εε+<+<+- 又有 lim n n x a →∞=,lim n n y b →∞=,依下极限定义,则当1n N >时,2n x a ε<-,当2n N < 时2n y b ε<-,由此推出矛盾,故a b c +≤,即lim lim lim()n n n n n n n x y x y →∞→∞→∞+≤+,又令n n n d x y =+,则()n n n x d x =+-.于是lim lim()lim n n n n n n d y x →∞→∞→∞+-≤,由于 lim()lim n n n n y y →+∞→∞-=-,所以 lim lim()lim lim n n n n n n n n n d x y x y →+∞→∞→∞→∞≤+≤+(2) 以n y -及n x -分别代替题(1)中的n x 与n y ,有lim()lim()lim ()lim lim n n n n n n n n n n n y x x y y x →+∞→∞→∞→∞→∞-+-≤-+≤+-,由 lim()lim n n n n x x →+∞→∞-=-得 lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→+∞--≤-+≤--,即 lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+,当{}:0,1,2,0,1,2,n x ;{}:2,3,1,2,3,n y 时,题(1)(2)中仅不等号成立.性质 6lim ()lim n n n n x x →+∞→∞-=-;lim()lim n n n n x x →+∞→∞-=-;性质 7 若 lim 0n n x →∞>,则1lim lim1n n n nx x →+∞→∞⋅=; (7)例7 证:若0,(1,2,)n a n >=且1lim lim1n n n na a →+∞→+∞⋅=,则数列{}n a 收敛.证明:若lim 0n n a →∞=,则∃子列{}k n a ,lim 0k n k a →+∞=,于是有1limkk n a →+∞=+∞,这与1lim lim1n n n na a →+∞→+∞⋅=相矛盾,这样应当有lim 0n n a →+∞>,然后用上下极限等价定义来证明.性质8 当 n x a →,且0n x ≥,则下式右端有意义(不是0⋅∞型)时,有lim lim n n n n n x y a y →∞→∞=;lim lim n n n n n x y a y →+∞→+∞=.证明:以第二式为例给出证明首先设 lim 0n n y b →+∞=>,其中b 为有限数或+∞.令 ,00,0.n n n n y y z y >⎧=⎨≤⎩当;当则lim lim n n n n z y b →+∞→+∞==;lim lim n n n n n n x z x y →+∞→+∞=.由0,0n n x z ≥≥得lim lim lim lim lim n n n n n n n n n n n x z x z x z →+∞→+∞→+∞→+∞→∞≤≤⋅,即lim lim lim n n n n n n n a z x z a z →+∞→+∞→+∞≤≤⋅,也就是lim lim n n n n n x z a z →+∞→+∞=⋅,代回到n y 就得到lim lim n n n n n x y a y →+∞→+∞=⋅.其次设 lim 0n n y b →+∞=≤ (b 为有限数)只要用1n y b +代替n y (其中10b b +>),就可得证. 最后 lim n n y →+∞=-∞,这时即n y →-∞,且0a ≠(否则出现0⋅∞型),显然n n x y →-∞.下面定理指出,对一切数列{}n x 的上、下极限必存在(包括±∞). 定理 1(1)有界数列{}n x 至少有一个聚点,存在最大聚点与最小聚点,且这两个聚点都为实数,它们分别为上极限lim n n x →+∞与下极限lim n n x →∞;(2)如果数列{}n x 无上界,则lim n n x →+∞=+∞,此时+∞为数列{}n x 的最大聚点;如果数列{}n x 有上界b① 若[],,a b a b ∀<中含有数列{}n x 的有限项,则lim lim n n n n x x →+∞→∞=-∞=,此时lim n n x →+∞=-∞;② 若[],,a b a b ∃<中含有数列{}n x 的无限项,则数列{}n x 以实数为最大聚点,它就是lim n n x →+∞;(3) 如果数列{}n x 无下界,则lim n n x →∞=-∞,此时-∞为数列{}n x 的最小聚点;如果数列{}n x 有下界a① 若[],,b a a b ∀>中含有数列{}n x 的有限项,则lim lim n n n n x x →+∞→∞=+∞=,此时lim n n x →+∞=+∞;② 若[],,b a a b ∃>中含有数列{}n x 的无限项,则数列{}n x 以实数为最小聚点,它就是lim n n x →∞.证明: (1) 因数列{}n x 有界,令{}[][]11|,,.n M M a b ∈⊂-=n x 将[]11,a b 两等分,则必有一等分含数列{}n x 的无限多项,记此区间为[]22,a b ,则[][]1122,,a b a b ⊃,且 ()221112b a b a M -=-=; 再将[]22,a b 两等分, 则必有一等分含数列{}n x 的无限多项,记此区间为[]33,a b ,则[][]2233,,a b a b ⊃,且()3322122M b a b a -=-=; 如此下去得到一个递降闭区间套:[][][]1122,,,k k a b a b a b ⊃⊃⊃⊃;10()2k k k Mb a k --=→→+∞, 且每个闭区间[],k k a b 都含有数列{}n x 的无限多项.由闭区间套定理知,[]01|,k k k x a b ∞=∃∈对0x 的任何开领域U,0,..s t ε∃> 000(;)(,)B x x x Uεεε=-+⊂,则N ∃∈,当k N >时,00[,](,)k k a b x x U εε⊂-+⊂,从而U 中含有数列{}n x 的无限多项,所以0x 为数列{}n x 的聚点.至于最大聚点的存在性,只需在上述证明过程中,当每次将区间[]11,k k a b --等分为两个区间时,若右边一个含数列的无限多项,将它取为[],k k a b ;若右边一个含数列的有限项,则取左边的子区间为[],k k a b .于是,所选[],k k a b 都含有数列{}n x 的无限多项,同时在[],k k a b 的右边都至多含有数列的有限项,其中()1111111()022k k k k k b a b a b a ----=-==-→ ()k →+∞ 再根据闭区间套定理知,[]01|,k k k x a b ∞=∃∈.下证0x 为数列{}n x 的最大聚点.(反证) 若不然,设另有数列{}n x 的聚点*00,x x >令*001()0,3x x δ=->则有 ***000(;)(,)B x x x δδδ=-+ 都含有数列{}n x 的无限多项,但当k 充分大时,***000(;)(,)B x x x δδδ=-+完全落在[],k k a b 的右边,这与上述[],k k a b 的右边都至多含有数列{}n x 的有限项矛盾.类似可证最小聚点的存在性,或用{}n x -代替{}n x .(2) 如果数列{}n x 无上界,则{}n x 必有子列{}k n x ,..lim k n n s t x →+∞=+∞,因此,+∞ 为数列{}n x 的最大聚点,从而lim n n x →+∞=+∞.如果数列{}n x 有上界b① 若[],,a b a b ∀<中含有数列{}n x 的有限项,则根据极限为-∞的定义可知,lim lim n n n n x x →+∞→∞=-∞=;② 若[],,a b a b ∃<中含有数列{}n x 的无限项,由(1)的结果, 数列{}[],n x a b 有最大聚点,显然它也是数列{}n x 的最大聚点,即为lim n n x →+∞; (3) 类似(2)可证明,或用{}n x -代替{}n x .定理 2 lim lim lim n n n n n n x a x x a →+∞→+∞→∞=⇔==.证明:()⇒ 设lim n n x a →+∞=,则对a 的任一邻域U ,N ∃∈,当n N >时,n x U ∈,从而a 为数列{}n x 的一个聚点.b a ∀≠, 则存在a 的开邻域a U ,b 的开邻域b U ,..a b s t U U φ= . 由于lim n n x a →+∞=,故N ∃∈,当n N >时,n a x U ∈,所以n b x U ∉,从而b U 中至多含有数列{}n x 的有限项(如12,,,N x x x )因此,b 不为数列{}n x 的聚点.综上可知,a 为数列{}n x 的唯一聚点,所以lim lim n n n n x a x →+∞→∞==.或者,因lim n n x a →+∞=,故{}n x 的任何子列{}k n x 也必有lim k n n x a →+∞=.因此,数列{}n x 有唯一的聚点,从而lim lim n n n n x a x →+∞→∞==.()⇐ 设lim lim n n n n x x a →+∞→∞==,则数列{}n x 只有一个聚点a ,因此,对a 的任一开邻域U ,在U 外只含有数列{}n x 的有限多项1,,k n n x x (否则数列{}n x 在U 外还有异于a 的聚点,这与数列{}n x 只有一个聚点相矛盾).于是,当{}1max ,,1k n N n n >=时,有n x U ∈,这就证明了lim n n x a →+∞=.定理 3 设{}n x 为有界数列,则下列结论等价:(1) a 大为数列{}n x 的上极限;(2) 0,,..N s t ε∀>∃∈当n N >时,有n x a ε<+大;且存在子列{}k n x ,..s t,k n x a k ε>-∀∈大;(3) ,a a ∀>大 数列{}n x 于a 的项至多有限个;,b a ∀<大 数列{}n x 于b 的项有无限多个.证明:(1)(2)⇒:因a 大为数列{}n x 的聚点,故0,ε∀>在()a a a εεε=-+大大大;(,)含有数列{}n x 的无限多项{}12|knx n n <<,则有,kn xa k ε>-∀∈大.又因a 大为数列{}n x 的最大聚点,故在a ε+大的右边至多只含有数列{}n x 的有限多项(否则必有数列{}n x 的聚点a ε≥+大,这与a 大为数列{}n x 的最大聚点相矛盾).设此有限项的最大指标为N ,则当n N >时,有n x a ε<+大.(2)(3)⇒:,a a ∀>大令a a ε=-大,由(2)知,N ∃∈,当n N >时,有n x a ε<+大()a a a a =+-=大大.故数列{}n x 于a 的项至多有限个.b a ∀<大,令a b ε=-大,由(2)知,存在数列{}n x 的子列{}k n x ,,k n x a b ε>-=大 k ∀∈,故数列{}n x 于b 的项有无限多个.(3)(1)⇒:设U 为a 大的任一开邻域,则0,..(;).s t B a a a U εεεε∃>=-+⊂大大大(,)由于a a a ε=+>大大,根据(3),{}n x 于a a ε=-大有无限多项.因此a a ε-+大大(, ε)中含有数列{}n x 的无限项,从而U 中含有数列{}n x 的无限项,这就证明了a 大为数列{}n x 的一个聚点.另一方面,a a ∀>大,记1()2a a ε=-大.由(3)知,数列{}n x 于()a a ε+>大大的项至多有限个.故a 不为数列{}n x 的一个聚点,这就证明了a 大为数列{}n x 的最大聚点,即a 大为数列{}n x 的上极限.定理 4 设{}n x 为有界数列,则下列结论等价:(1) a 小为数列{}n x 的下极限;(2) 0,,..N s t ε∀>∃∈当n N >时,有n x a ε>-小;且存在子列{}k n x ,..s t ,k n x a k ε<+∀∈小;(3) b a∀<小,数列{}n x中小于b的项至多有限个;a a∀>小,数列{}n x中小于a的项有无限多个.证明:类似定理3证明,或用{}n x-代替{}n x.从一些性质和定理的证明可以看出有些步骤用到数列上,下极限定义方面的证明过程.此外,关于不同对象的上、下极限的定义,本质上都起源于数列的上、下极限定义,比如,集合列的上,下限极等,在此就不做介绍了.参考文献:[1] 华东师大学数学系编.数学分析(上册).:高等教育,2001[2] 复旦大学数学系传璋等编.数学分析(下册).:高等教育出版,1979[3] 成章,黄玉民编. 数学分析(上册).科学,1998[4] 程其蘘.实变函数与泛函分析基础[M] .2版.:高等教育,2003[5] 朱成熹.近世实分析基础[M].:南开大学,1993[6] 匡继昌.实分析与泛函分析[M].:高等教育,2002[7] 薛昌兴.实变函数与泛函分析:上[M].:高等教育,1997[8] 裴礼文.数学分析中的典型问题与方法.:高等教育,1993[9] 吴良森,毛羽辉著.数学分析学习指导书(上册).:高等教育,2004[10] 胡适耕,显文著.数学分析原理与方法.:科学,2008[11] 纪修,於崇华著.数学分析第二版(下册).:高等教育.2004The sequence about limit with gathers the row on lower limit collectionHao Li-jiao2007 grades of mathematics,science college mathematics and the applied mathematicsprofessions 1 classAbstract:Sequence on, under the limit concept is limit concept extending,because they collect in the divergence distinction law in the seriesof positive terms the vital role, also becomes the theory which in themathematical analysis has no alternative but to say to be partial.This article mainly discussed the sequence about limit with to gatherthe row on lower limit collection as well as their a series of natureKey words: Sequence;Limit;Accumulation points;Sequence of sets;Function。

数学分析7.3上极限和下极限

数学分析7.3上极限和下极限

第七章 实数的完备性 3 上极限和下极限定义1:若在数a 的任一邻域内含有数列{x n }的无限多个项,则称a 为{x n }的一个聚点.注:点列(或数列)的聚点邻域中可以包含无限个相同的项;而点集(或数集)的聚点邻域中只能包含无限个不同的项。

定理7.4:有界点列(数列){x n }至少有一个聚点,且存在最大聚点与最小聚点.证:∵{x n }为有界数列,∴存在M>0,使得|x n |≤M ,记[a 1,b 1]=[-M,M]. 将[a 1,b 1]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 2,b 2],则[a 1,b 1]⊃[a 2,b 2],且b 2-a 2=21(b 1-a 1)=M. [a 2,b 2]含有{x n }中无穷多个项; 将[a 2,b 2]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 3,b 3],则 ∴[a 2,b 2]⊃[a 3,b 3],且b 3-a 3=21(b 2-a 2)=2M. [a 3,b 3]含有{x n }中无穷多个项; 依此规律,将等分区间无限进行下去,可得区间列{[a n ,b n ]}满足 [a n ,b n ]⊃[a n+1,b n+1],且b n -a n =2-n 2M→0 (n →∞),即{[a n ,b n ]}是区间套,且 每一个闭区间都含有{x n }中无穷多个项,而 其右边至多只有{x n }中有限多个项.由区间套定理,存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε), ∴U(ξ; ε)内含有{x n }中无穷多个项,∴ξ为{x n }的一个聚点. 若ξ为{x n }的唯一的聚点,则ξ同时为{x n }的最大聚点和最小聚点. 若{x n }有聚点ζ>ξ,则令δ=31(ζ-ξ)>0,在U(ζ,δ)内含有{x n }中无穷多个项, 且当n 充分大时,U(ζ,δ)将落在[a n ,b n ]的右边,矛盾。

数学分析7.3上极限和下极限

数学分析7.3上极限和下极限

第七章 实数的完备性 3 上极限和下极限定义1:若在数a 的任一邻域内含有数列{x n }的无限多个项,则称a 为{x n }的一个聚点.注:点列(或数列)的聚点邻域中可以包含无限个相同的项;而点集(或数集)的聚点邻域中只能包含无限个不同的项。

定理7.4:有界点列(数列){x n }至少有一个聚点,且存在最大聚点与最小聚点.证:∵{x n }为有界数列,∴存在M>0,使得|x n |≤M ,记[a 1,b 1]=[-M,M]. 将[a 1,b 1]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 2,b 2],则[a 1,b 1]⊃[a 2,b 2],且b 2-a 2=21(b 1-a 1)=M. [a 2,b 2]含有{x n }中无穷多个项; 将[a 2,b 2]等分成两个子区间,若右边的子区间含有{x n }中无穷多个项,则取右边的区间,否则取左边的区间为[a 3,b 3],则 ∴[a 2,b 2]⊃[a 3,b 3],且b 3-a 3=21(b 2-a 2)=2M. [a 3,b 3]含有{x n }中无穷多个项; 依此规律,将等分区间无限进行下去,可得区间列{[a n ,b n ]}满足 [a n ,b n ]⊃[a n+1,b n+1],且b n -a n =2-n 2M→0 (n →∞),即{[a n ,b n ]}是区间套,且 每一个闭区间都含有{x n }中无穷多个项,而 其右边至多只有{x n }中有限多个项.由区间套定理,存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε), ∴U(ξ; ε)内含有{x n }中无穷多个项,∴ξ为{x n }的一个聚点. 若ξ为{x n }的唯一的聚点,则ξ同时为{x n }的最大聚点和最小聚点. 若{x n }有聚点ζ>ξ,则令δ=31(ζ-ξ)>0,在U(ζ,δ)内含有{x n }中无穷多个项, 且当n 充分大时,U(ζ,δ)将落在[a n ,b n ]的右边,矛盾。

上极限和下极限

上极限和下极限
n? ?
xn.
(2)
前页 后页 返回

设 lim
n??
xn ?
A.
对于任意正数
?,

U ( A; ?)
之外 { xn} 只有有限项. 这样, 对任意的 B ? A, 若
取 ?0 ?
|B? 2
A|
?
0,
那么在 U (B;?0 ) 内( 此时必
? 在 U (;A 0) 之外 ) { xn} 只有有限项 . 这就是说 , B
A 分别称为 { xn } 的上、下极限 , 记为
A?
lim
n? ?
xn ,
A ? lim xn.
n? ?
前页 后页 返回
注 由定理 7.4 得知, 有界数列必有上、下极限 . 这样, 上、下极限的优越性就显现出来了 : 一个 数列若有界 , 它的极限可以不存在 , 此时想通过 极限来研究该数列往往是徒劳的 ; 但是有界数列 的上、下极限总是存在的 , 这为研究数列的性质 提供了一个新的平台 .
前页 后页 返回
例1 考察以下两个数列的上、下极限 :
lim
1
?
lim
1 ? 0 (?
1 lim)
;
n? ? n n? ? n
n? ? n
lim (? 1)n n ? 1, lim (?1)n n ? ? 1.
n? ?
n?1
n? ?
n?1
从中可大致看出数列的极限和数列的上、下极限
之间存在着的内在联系 . 详细讨论请见下文 .
xnk ? x0 , k ? ? . 定理7.4 有界数列至少存在一个聚点 , 并且有最大
聚点和最小聚点 .
前页 后页 返回

数列上下极限的不同定义方式和相关性质.

数列上下极限的不同定义方式和相关性质.

目录数列上下极限的不同定义方式及相关性质摘要 (01)一、数列的上极限、下极限的定义 (01)1. 用“数列的聚点”来定义 (01)2. 用“数列的确界”来定义 (02)3. 数列上、下极限定义的等价性 (02)二、数列的上、下极限的性质及定理 (04)参考文献 (14)英文摘要 (15)数列上下极限的不同定义方式及相关性质摘 要:数列的上、下极限的概念是极限概念的延伸,由于它们在正项级数敛散性的判别法中的重要作用,又成为数学分析中重要的理论部分.本文主要讨论了数列的上下极限的两种定义方式及其等价证明和一些相关定理. 关键词:数列、上极限、下极限、聚点、函数一、数列的上极限、下极限的定义关于数列的上极限、下极限的定义常见的有如下两种形式: 1. 用“数列的聚点”来定义定义 1 若在数a 的任一邻域内都含有数列{}n x 的无限多项,则称a 为数列{}n x 的一个聚点.例1 数列{(1)}1n nn -+有聚点1-与1; 数列{sin}4n π有1,22--和1五个聚点; 数列1{}n 只有一个聚点0;常数列{1,1,,1,}只有一个聚点1.定义 2 有界数列{}n x 的最大聚点a 大与最小聚点a 小分别称为数列{}n x 的上极限和下极限,记作lim n a →+∞=大;lim n n a x →∞=小.例2 lim (1)11nn n n →+∞-=+(),lim 111n n n →∞-=-+l i m s i n 14n n π→+∞=,l i m s i n 14n n π→∞=- 11lim lim 0n n n n →+∞→∞==2. 用“数列的确界”来定义 定义3 任给数列{}n x ,定义l i m l i m s u p{}n k n n k nx x →+∞→∞≥=;lim liminf{}n k n k nn x x →∞≥→∞= (1) 分别称为数列{}n x 的上极限和下极限.若定义1中的a 可允许是非正常点+∞或-∞,则:任一点列{}n x 至少有一个聚点,且存在最大聚点与最小聚点.不难证明:正上(下)界点列的最大(小)聚点为()+∞-∞.于是,无上(下)界点列有非正常上(下)极限()+∞-∞.例3 lim ((1)1)n n n →+∞-+=+∞,lim (1)n n n →+∞-=-∞,lim(1)n n n →∞-=-∞3. 数列上、下极限定义的等价性下面我们来证明一下数列上、下极限定义的等价性,即lim limsup{}n k n n k na x x →+∞→∞≥==大;lim liminf{}n k n k nn a x x →∞≥→∞==小.证明:如果l i m s u p {}k n k nx →∞≥=+∞,由于s u p {}kk nx ≥关于n 单调递减,所以sup{}k k nx ≥=+∞,n N ∀>.于是,可取1n ∈(自然数)1..1n s t x >,又可取2,n ∈221,..2,,n n n s t x >>所以,得到数列{}n x 的子列{}()n k x k →+∞→+∞.这就证明了+∞为数列的聚点,且为最大聚点a 大.由此可得lim lim sup{}n k n n k na x x →+∞→∞≥==+∞=大;如果limsup{}k n k nx →∞≥<+∞,则limsup{}k n k nx →∞≥=-∞或实数.设a 数列{}n x 的任一聚点,则必有{}n x 的子列,()i n x a i →→+∞.,n ∀∈,,i i n n i n ≥≥≥当时有sup{}i n k k nx x ≥≤,lim sup{}i n k i k na x x →∞≥=≤,limsup{}k n k na x →∞≥≤,所以,数列{}n x 的最大聚点满足lim lim sup{}n k n n k nx x →+∞→∞≥≤.另一方面, lim ,n n y x →+∞∀>易见,[)∞y,+中最多含有数列{}n x 中的有限多项.因此,,N ∃∈当k N >时,有k x y <,从而,当n N >时,有sup{},k k nx y ≥≤由此可得limsup{}k n k nx y →∞≥≤.令()lim nn y x +→+∞→,推出lim sup{}lim k n n n k nx x →∞→+∞≥≤.综合上述,有lim lim sup{}n k n n k na x x →+∞→∞≥==.类似的可证明或应用上式于{}n x -可证得lim liminf{}n k n k nn a x x →∞≥→∞==小.如果lim inf{}k n k nx →-∞≥=-∞,由于inf{}k k nx ≥关于n 单调递减,所以inf{}k k nx ≥=-∞,对n N ∀>.于是,可取自然数1n 使得11-<n x ,又可取自然数2n 12n n >使得22-<n x ……所以,得到数列{}n x 的子列{k n x }-∞→.这就证明了∞-为数列的聚点,且为最小聚点小a .由此可得lim lim inf{}n k n k nn a x x →-∞≥→∞==小;如果lim inf{}k n k nx →-∞≥>-∞,则lim inf{}k n k nx →-∞≥=+∞或实数.设a 数列{}n x 的任一聚点,则必有{}n x 的子列,()i n x a i →→+∞.任意的n 是自然数,,i i n n i n ≥≥≥当时有k n x ≥inf{}k k nx ≥lim inf{}i n k i k na x x →∞≥=≥lim inf{}k n k na x →+∞≥≥所以,数列{}n x 的最小聚点满足lim n n x →∞≥lim inf{}k n k nx →+∞≥.另一方面,对任意的y ≥lim n n x →∞易见,(-],y ∞中最多含有数列{}n x 中的有限多项.因此,存在N 是自然数当k N >时,有y x k >,从而,当n N >时,有inf{}k k nx ≥y ≥,由此可得lim inf{}k n k nx →+∞≥y ≥.令y →[lim n n x →∞]-,推出lim inf{}k n k nx →+∞≥≥lim n n x →∞.综合上述,有lim lim inf{}n k n k nn a x x →+∞≥→∞==小.下面进一步给出和数列上,下极限定义有关的性质及定理.二、数列的上、下极限的性质及定理设有数列{}n x 与数列{}n y ,则数列的上、下极限有以下性质性质 1 lim lim n n n n x x →+∞→∞≥; (2)性质 2 l i m l i m l i m n n n n n n x A x x A →+∞→+∞→∞=⇔==例4 用上下极限理论证明:若{}n x 是有界发散数列,则存在{}n x 的两个子列收敛于两个不同的极限.证明:因为数列发散的充要条件是lim lim n n n n x x →+∞→∞≠,于是存在{}n x 的两个子列{}{}''',k k n n x x ,使'l i m l i mk n n n n x x →+∞→+∞=,''lim lim k n n n n x x →+∞→∞=,即存在{}n x 的两个子列收敛于不同的极限.性质 3 (保不等式性质)设有界数列{}n x ,{}n y 满足:存在00N >,当0n N >时有n n x y ≤,则l i m l i m n n n n x y →+∞→+∞≤;lim lim n n n n x y →∞→∞≤;特别,若,αβ为常数,又存在00N >,当0n N >时有n a αβ≤≤,则lim lim n n n n a a αβ→+∞→∞≤≤≤性质 4 设0,0,(1,2,)n n x y n ≥≥=,则lim lim lim lim lim n n n n n n n n n n n x y x y x y →+∞→∞→∞→∞→∞⋅≤≤⋅ (3)lim lim lim lim lim n n n n n nn n n n n x y x y x y →+∞→+∞→+∞→+∞→∞⋅≤≤⋅(4)例5 证明:若{}n x 收敛,则对任意n y (1,2,)n =,有lim lim lim n n n n n n n x y x y →+∞→+∞→+∞=⋅(0)n x ≥证明:分三种情况讨论1、 若lim 0n n y →+∞>,则{}n y 中有无穷多项大于零,作新序列,0max{,0}00n n n n n y y y y y +>⎧==⎨≤⎩当时,当时则0n y +≥,且lim lim n n n n y y +→+∞→+∞=,对{}n x {}n y +应用(4)有lim lim lim lim lim n n n n n n n n n n n x y x y x y +++→+∞→+∞→+∞→+∞→∞⋅≤≤⋅因{}n x 收敛,所以 l i m l i m l i m n n nn n n x x x →+∞→+∞→∞==,故上式表明 l i m l i m l i m l i ml i m n nn n n n n n nnnx y x y x y++→+∞→+∞→+∞→+∞→+∞=⋅=⋅ 但 l i m l i m l i m n nn n n n n n nx y x y x y ++→+∞→+∞→+∞==()0n x ≥(因) 所以 l i m l i m l i m n n n nn n nx y xy →+∞→+∞→+∞=2、 若lim n n y →+∞=-∞,在限制条件下,lim 0n n x →+∞>,因此n 充分大时有0n x >,这时等式明显成立.3、 若lim 0n n y →+∞-∞<≤,可取充分大的正常数C>0,使得l i m ()0n n y C →+∞+>, 如此应用1、的结果, l i m ()l i m l i m ()n n n nn n nx yC x y C →+∞→+∞→+∞+=⋅+再根据(3),此即 l i m l i m l i m l i m l i m n n nn nnn n nnnx y x C x y x C →+∞→+∞→+∞→+∞→+∞+⋅=⋅+⋅ 从而 l i m l i m l i m n n n nn n nx y x y →+∞→+∞→+∞=⋅,证毕. 性质 5 在不发生()±∞∞)+(情况下,有如下不等式成立:1、lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+2、lim lim lim()n n n n n n n x y x y →∞→∞→∞+≤+3、lim ()lim lim n n n n n n n x y x y →+∞→+∞→+∞+≤+事实上,这里的等号可以不发生,如对{}{1,0,1,0,1,0,}n x =; {}{0,2,0,2,0,2,}n y =,这时{}{1,2,1,2,1,2,}n n x y +=lim lim 0lim()1n n n n n n n x y x y →∞→∞→∞+=<+=lim ()2lim lim 3n n n n n n n x y x y →+∞→+∞→+∞+=<+=例6 证明:若{}n x 收敛,则对任意n y (1,2,)n =,有lim ()lim lim n n n n n n n x y x y →+∞→+∞→+∞+=+证:我们已有lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+注意{}n x 收敛,因此lim lim lim n n n n n n x x x →+∞→+∞→∞==,所以上式即为 l i ml i m l i m ()l i ml i m n n nn nnn n nn n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+即成立. 例7 证明:(1)lim lim lim()lim lim n n n n n n n n n n n x y x y x y →+∞→∞→∞→∞→∞+≤+≤+(2)lim lim lim ()lim lim n n n n n n n n n n n x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+证: 先证: l i m ()l i m n n n n x x →+∞→+∞-=-(1) 设lim n n x a →+∞=,则依上极限定义,0ε∀>,数列{}n x 中至多只有N 项大于a ε+,而有穷项小于a ε-,即对{}n x -,至多有N 项小于a ε--,而有穷项大于a ε-+,所以依下极限定义,有 l i m ()n n x a →∞-=-,即lim()lim n n n n x x →+∞→∞-=-.设 l i mn n x a →∞=,lim n n y b →∞=,lim()n n n x y a b →∞+=+ 用反证法,设c a b <+,依下极限定义,0ε∀>,N ∃,当n N >时,有n n x y c ε+<+不妨设 1()2a b c ε=+-,则当n N >时, n n x y c a b εε+<+<+-又有 l i mn n x a →∞=,lim n n y b →∞=, 依下极限定义,则当1n N >时,2n x a ε<-,当2n N < 时2n y b ε<-, 由此推出矛盾,故a b c +≤,即lim lim lim()n n n n n n n x y x y →∞→∞→∞+≤+,又令n n n d x y =+,则()n n n x d x =+-.于是lim lim()lim n n n n n n d y x →∞→∞→∞+-≤,由于 l i m ()l i m n n n n y y →+∞→∞-=-,所以 l i ml i m ()l i m l i m n n n n n n n n n d x y x y→+∞→∞→∞→∞≤+≤+(2) 以n y -及n x -分别代替题(1)中的n x 与n y ,有lim()lim()lim ()lim lim n n n n n n n n n n n y x x y y x →+∞→∞→∞→∞→∞-+-≤-+≤+-,由 l i m ()l i m n n n n x x →+∞→∞-=-得 l i m l i ml i m ()l i m l i m n n n n nn n n nn nx y x y x y →+∞→+∞→+∞→+∞→+∞--≤-+≤--,即 l i ml i m l i m ()l i m l i m n n nn nnn n nnn x y x y x y →+∞→+∞→+∞→+∞→∞+≤+≤+,当{}:0,1,2,0,1,2,n x ;{}:2,3,1,2,3,n y 时,题(1)(2)中仅不等号成立.性质 6lim ()lim n n n n x x →+∞→∞-=-;l i m ()l i m n n n n x x →+∞→∞-=-;性质 7 若 lim 0n n x →∞>,则1l i ml i m 1n n n nx x →+∞→∞⋅=; (7) 例7 证:若0,(1,2,)n a n >=且1lim lim1n n n na a →+∞→+∞⋅=,则数列{}n a 收敛.证明:若lim 0n n a →∞=,则∃子列{}k n a ,lim 0k n k a →+∞=,于是有1limkk n a →+∞=+∞,这与1lim lim1n n n na a →+∞→+∞⋅=相矛盾,这样应当有lim 0n n a →+∞>,然后用上下极限等价定义来证明.性质8 当 n x a →,且0n x ≥,则下式右端有意义(不是0⋅∞型)时,有l i m l i m n n n n n x y a y →∞→∞=;l i m l i m n n n n n x y ay →+∞→+∞=.证明:以第二式为例给出证明首先设 l i m 0n n y b →+∞=>,其中b 为有限数或+∞.令 ,00,0.n n n n y y z y >⎧=⎨≤⎩当;当则lim lim n n n n z y b →+∞→+∞==;l i m l i m n n n nn n x z x y →+∞→+∞=. 由0,0n n x z ≥≥得lim lim lim lim lim n n n n n n n n n n n x z x z x z →+∞→+∞→+∞→+∞→∞≤≤⋅,即lim lim lim n n n n n n n a z x z a z →+∞→+∞→+∞≤≤⋅,也就是lim lim n n n n n x z a z →+∞→+∞=⋅,代回到n y 就得到lim lim n n n n n x y a y →+∞→+∞=⋅.其次设 l i m 0n n y b →+∞=≤ (b 为有限数)只要用1n y b +代替n y (其中10b b +>),就可得证. 最后 l i m n n y →+∞=-∞,这时即n y →-∞,且0a ≠(否则出现0⋅∞型),显然n n x y →-∞.下面定理指出,对一切数列{}n x 的上、下极限必存在(包括±∞).定理 1(1)有界数列{}n x 至少有一个聚点,存在最大聚点与最小聚点,且这两个聚点都为实数,它们分别为上极限lim n n x →+∞与下极限lim n n x →∞;(2)如果数列{}n x 无上界,则lim n n x →+∞=+∞,此时+∞为数列{}n x 的最大聚点;如果数列{}n x 有上界b① 若[],,a b a b ∀<中含有数列{}n x 的有限项,则lim lim n n n n x x →+∞→∞=-∞=,此时lim n n x →+∞=-∞;② 若[],,a b a b ∃<中含有数列{}n x 的无限项,则数列{}n x 以实数为最大聚点,它就是lim n n x →+∞;(3) 如果数列{}n x 无下界,则lim n n x →∞=-∞,此时-∞为数列{}n x 的最小聚点;如果数列{}n x 有下界a① 若[],,b a a b ∀>中含有数列{}n x 的有限项,则lim lim n n n n x x →+∞→∞=+∞=,此时lim n n x →+∞=+∞;② 若[],,b a a b ∃>中含有数列{}n x 的无限项,则数列{}n x 以实数为最小聚点,它就是lim n n x →∞.证明: (1) 因数列{}n x 有界,令{}[][]11|,,.n M M a b ∈⊂-=n x 将[]11,a b 两等分,则必有一等分含数列{}n x 的无限多项,记此区间为[]22,a b ,则[][]1122,,a b a b ⊃,且 ()221112b a b a M-=-=; 再将[]22,a b 两等分, 则必有一等分含数列{}n x 的无限多项,记此区间为[]33,a b ,则[][]2233,,a b a b ⊃,且()3322122M b a b a -=-=; 如此下去得到一个递降闭区间套:[][][]1122,,,k k a b a b a b ⊃⊃⊃⊃;10()2k k k Mb a k --=→→+∞, 且每个闭区间[],k k a b 都含有数列{}n x 的无限多项.由闭区间套定理知,[]01|,k k k x a b ∞=∃∈对0x 的任何开领域U,0,..s t ε∃>000(;)(,)B x x x U εεε=-+⊂,则N ∃∈,当k N>时,00[,](,)k k a b x x U εε⊂-+⊂,从而U 中含有数列{}n x 的无限多项,所以0x 为数列{}n x 的聚点.至于最大聚点的存在性,只需在上述证明过程中,当每次将区间[]11,k k a b --等分为两个区间时,若右边一个含数列的无限多项,将它取为[],k k a b ;若右边一个含数列的有限项,则取左边的子区间为[],k k a b .于是,所选[],k k a b 都含有数列{}n x 的无限多项,同时在[],k k a b 的右边都至多含有数列的有限项,其中()1111111()022k k k k k b a b a b a ----=-==-→ ()k →+∞ 再根据闭区间套定理知,[]01|,k k k x a b ∞=∃∈.下证0x 为数列{}n x 的最大聚点.(反证) 若不然,设另有数列{}n x 的聚点*00,x x >令*001()0,3x x δ=->则有 ***000(;)(,)B x x x δδδ=-+ 内都含有数列{}n x 的无限多项,但当k 充分大时,***000(;)(,)B x x x δδδ=-+完全落在[],k k a b 的右边,这与上述[],k k a b 的右边都至多含有数列{}n x 的有限项矛盾.类似可证最小聚点的存在性,或用{}n x -代替{}n x .(2) 如果数列{}n x 无上界,则{}n x 必有子列{}k n x ,..lim k n n s t x →+∞=+∞,因此,+∞为数列{}n x 的最大聚点,从而lim n n x →+∞=+∞.如果数列{}n x 有上界b① 若[],,a b a b ∀<中含有数列{}n x 的有限项,则根据极限为-∞的定义可知,lim lim n n n n x x →+∞→∞=-∞=;② 若[],,a b a b ∃<中含有数列{}n x 的无限项,由(1)的结果, 数列{}[],n x a b 有最大聚点,显然它也是数列{}n x 的最大聚点,即为lim n n x →+∞;(3) 类似(2)可证明,或用{}n x -代替{}n x . 定理 2 lim lim lim n n n n n n x a x x a →+∞→+∞→∞=⇔==.证明:()⇒ 设lim n n x a →+∞=,则对a 的任一邻域U ,N ∃∈,当n N >时,n x U ∈,从而a 为数列{}n x 的一个聚点.b a ∀≠, 则存在a 的开邻域a U ,b 的开邻域b U ,..a b s t U U φ= . 由于lim n n x a →+∞=,故N ∃∈,当n N >时,n a x U ∈,所以n b x U ∉,从而b U 中至多含有数列{}n x 的有限项(如12,,,N x x x )因此,b 不为数列{}n x 的聚点.综上可知,a 为数列{}n x 的唯一聚点,所以lim lim n n n n x a x →+∞→∞==.或者,因lim n n x a →+∞=,故{}n x 的任何子列{}k n x 也必有lim k n n x a →+∞=.因此,数列{}n x 有唯一的聚点,从而lim lim n n n n x a x →+∞→∞==.()⇐ 设lim lim n n n n x x a →+∞→∞==,则数列{}n x 只有一个聚点a ,因此,对a 的任一开邻域U ,在U 外只含有数列{}n x 的有限多项1,,k n n x x (否则数列{}n x 在U 外还有异于a 的聚点,这与数列{}n x 只有一个聚点相矛盾).于是,当{}1max ,,1k n N n n >=时,有n x U ∈,这就证明了lim n n x a →+∞=.定理 3 设{}n x 为有界数列,则下列结论等价:(1) a 大为数列{}n x 的上极限;(2) 0,,..N s t ε∀>∃∈当n N >时,有n x a ε<+大;且存在子列{}k n x ,..s t,k n x a k ε>-∀∈大;(3) ,a a ∀>大 数列{}n x 中大于a 的项至多有限个;,b a ∀<大 数列{}n x 中大于b 的项有无限多个.证明:(1)(2)⇒:因a 大为数列{}n x 的聚点,故0,ε∀>在()a a a εεε=-+大大大;(,)内含有数列{}n x 的无限多项{}12|knx n n <<,则有,kn xa k ε>-∀∈大.又因a 大为数列{}n x 的最大聚点,故在a ε+大的右边至多只含有数列{}n x 的有限多项(否则必有数列{}n x 的聚点a ε≥+大,这与a 大为数列{}n x 的最大聚点相矛盾).设此有限项的最大指标为N ,则当n N >时,有n x a ε<+大.(2)(3)⇒:,a a ∀>大令a a ε=-大,由(2)知,N ∃∈,当n N >时,有n x a ε<+大()a a a a =+-=大大.故数列{}n x 中大于a 的项至多有限个.b a ∀<大,令a b ε=-大,由(2)知,存在数列{}n x 的子列{}k n x ,,k n x a b ε>-=大 k ∀∈,故数列{}n x 中大于b 的项有无限多个.(3)(1)⇒:设U 为a 大的任一开邻域,则0,..(;).s t B a a a U εεεε∃>=-+⊂大大大(,)由于a a a ε=+>大大,根据(3),{}n x 中大于a a ε=-大有无限多项.因此a a ε-+大大(, ε)中含有数列{}n x 的无限项,从而U 中含有数列{}n x 的无限项,这就证明了a 大为数列{}n x 的一个聚点.另一方面,a a ∀>大,记1()2a a ε=-大.由(3)知,数列{}n x 中大于()a a ε+>大大的项至多有限个.故a 不为数列{}n x 的一个聚点,这就证明了a 大为数列{}n x 的最大聚点,即a 大为数列{}n x 的上极限.定理 4 设{}n x 为有界数列,则下列结论等价:(1) a 小为数列{}n x 的下极限;(2) 0,,..N s t ε∀>∃∈当n N >时,有n x a ε>-小;且存在子列{}k n x ,..s t,k n x a k ε<+∀∈小;(3) b a ∀<小, 数列{}n x 中小于b 的项至多有限个;a a ∀>小, 数列{}n x 中小于a 的项有无限多个.证明:类似定理3证明,或用{}n x -代替{}n x .从一些性质和定理的证明可以看出有些步骤用到数列上,下极限定义方面的证明过程.此外,关于不同对象的上、下极限的定义,本质上都起源于数列的上、下极限定义,比如,集合列的上,下限极等,在此就不做介绍了.参考文献:[1] 华东师范大学数学系编.数学分析(上册).北京:高等教育出版社,2001 [2] 复旦大学数学系陈传璋等编.数学分析(下册).北京:高等教育出版,1979 [3] 李成章,黄玉民编. 数学分析(上册).科学出版社,1998[4] 程其蘘.实变函数与泛函分析基础[M] .2版.北京:高等教育出版社,2003 [5] 朱成熹.近世实分析基础[M].天津:南开大学出版社,1993 [6] 匡继昌.实分析与泛函分析[M].北京:高等教育出版社,2002 [7] 薛昌兴.实变函数与泛函分析:上[M].北京:高等教育出版社,1997 [8] 裴礼文.数学分析中的典型问题与方法.北京:高等教育出版社,1993[9] 吴良森,毛羽辉著.数学分析学习指导书(上册).北京:高等教育出版社,2004 [10] 胡适耕,张显文著.数学分析原理与方法.北京:科学出版社,2008 [11] 陈纪修,於崇华著.数学分析第二版(下册).北京:高等教育出版社.2004The sequence about limit with gathers the row on lower limit collectionHao Li-jiao 200711150652007 grades of mathematics,science college mathematics and theapplied mathematics professions 1 classAbstract:Sequence on, under the limit concept is limit concept extending,because they collect in the divergence distinction law in the seriesof positive terms the vital role, also becomes the theory which in themathematical analysis has no alternative but to say to be partial.This article mainly discussed the sequence about limit with to gatherthe row on lower limit collection as well as their a series of natureKey words: Sequence;Limit;Accumulation points;Sequence of sets;Function。

数列极限的7个等价性质

数列极限的7个等价性质

0
距离小
x ,x ) . 开区间 ( 0 0
聚点
设集合 A , a . 若对于任意正数
, a 的 邻域中都含有 A 中无穷多个点, 则称 a 是A 的一个聚点.
( x ,x ) , A 中每个点都是A 的 例如, A 0 0
聚点,
x , x 0 0
记a是 A的
记作 x n . 一个聚点. 任取 x n 的一项, 1 1 令 in ( ,| ax |) . 在 a 的 邻域中取 2 m n 1 2 2 x n 中标号大于n1的一项, 记作 x n .
2
1 3 邻域中取 令 in ( ,| ax |) . 在 a 的 3 m n 2 3 x n 中标号大于 n2 的一项, 记作 x n 3 .
b 存在收敛子列 {ank }, { nk }.

lim ank c, 则 lim bn c, 且 k k k
k
c b . 有 a 因为 n n k k
c [a, b],
所以
. 使得 c
因为

是开集,
i m ( b a ) 0 , 且 l n n k k
|k 1 , 2 , , n , 覆盖, [ 1, 1] 被闭区间系 k
但不能被其任意一个有限子系覆盖.
1. 非空实数集若有上(下)界则必有上(下)确界. 2. 单调有界数列必收敛.
3. 区间套定理. 4.有界数列必有收敛子列. 5. 数列收敛当且仅当它是Cauchy列. 6. 有限覆盖定理.
开区间都不能覆盖 [ a , b ] , 至少有一个不能被 记作 [ a 1 , b 1 ] . 不能被
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档