线性代数3.矩阵及其运算
线性代数的矩阵运算

线性代数的矩阵运算矩阵是线性代数中一种重要的数学工具,矩阵运算是线性代数的核心内容之一。
通过矩阵运算,我们可以解决各种线性方程组,研究向量空间的性质,以及进行线性变换等。
本文将介绍线性代数中的矩阵运算,包括矩阵的加法、减法、乘法、转置以及求逆运算等。
1. 矩阵的加法和减法矩阵的加法和减法是相似的运算。
对于两个具有相同维度的矩阵A 和B,它们的加法运算定义为将相同位置的元素相加得到一个新的矩阵C,即C = A + B。
而矩阵的减法运算定义为将相同位置的元素相减得到一个新的矩阵D,即D = A - B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5 6][7 8 9] [10 11 12]它们的加法运算结果为:C = A + B = [1+4 2+5 3+6] = [5 7 9][7+10 8+11 9+12] [17 19 21]而减法运算结果为:D = A - B = [1-4 2-5 3-6] = [-3 -3 -3][7-10 8-11 9-12] [-3 -3 -3]这样,我们可以通过矩阵的加法和减法运算来对矩阵进行融合、分解和控制等操作。
2. 矩阵的乘法矩阵的乘法是矩阵运算中的关键操作,它可以将两个矩阵相乘得到一个新的矩阵。
对于两个矩阵A和B,若A的列数等于B的行数,则它们可以进行乘法运算。
设A是一个m×n的矩阵,B是一个n×p的矩阵,它们的乘法运算定义为两个矩阵对应元素的乘积之和。
新的矩阵C的行数等于A的行数,列数等于B的列数。
记作C = A × B。
例如,对于如下两个矩阵:A = [1 2 3]B = [4 5][6 7 8] [9 10][11 12]它们的乘法运算结果为:C = A × B = [1×4+2×9+3×11 1×5+2×10+3×12][6×4+7×9+8×11 6×5+7×10+8×12]= [59 64][149 163]矩阵的乘法可以应用于很多实际的问题中,比如线性方程组的求解、向量空间的转换等。
线性代数-矩阵的运算

线性代数-矩阵的运算1、矩阵的加减法定义A = (a ij)mxn 、B = (b ij)mxn;是两个同型矩阵(⾏数和列数分别相等),则矩阵A、B和定义为:只有同型矩阵才能进⾏加法计算运算定律交换律:A + B = B + A结合律:(A + B)+ C = A + (B + C)A + O = A = O + A (O为零矩阵)A + (-A) = O (矩阵减法的定义)设:则:2、矩阵的数乘定义数k与矩阵A乘法定义为:记作:kA = (ka ij)mxn;矩阵的加法和数乘运算,称为矩阵的线性运算。
运算定律结合律:(kl)A = k(lA)分配律:k(A+B) = kA + kB;(k + l)A = kA + lA;1A = A;0A = O3、乘法运算定义设A = (aij)mxs、B=(bij)sxn AB的乘发定义为注意:只有当A矩阵的列数等于B矩阵的⾏数,矩阵乘积AB才有意义;且乘积C矩阵的⾏数等于A矩阵的⾏数、C矩阵的列数等于B矩阵的列数。
如:A是(2x3)矩阵,B是(3x4)矩阵,则AB为(2x4)矩阵,BA⽆意义。
运算定律矩阵乘法不满⾜交换律:⼀般AB不等于BA,如果AB = BA,即记作A、B可交换AB = 0 未必 A = O或者 B = O不满⾜消除律,即AB = AC 未必B = C矩阵乘法满⾜下⾯运算律:结合律:(AB)C = A(BC)左分配律:A(B+C) = AB+AC右分配律:(B+C)A = BA+CAk(AB) = (kA)B = A(kB)设A为mxs矩阵,则 I m A = A ,AI s = A(I为单位矩阵)AO=O OA=OA k A l = A k+l (A k)l = A kl (kl皆为⾮负整数)矩阵乘法中,单位矩阵与零矩阵,有类似于数字乘法1,0的作⽤。
4、矩阵的转置定义mxn的矩阵A,⾏列交换后得到nxm的矩阵,称为A的转置矩阵,记作A'。
《线性代数》教案

《线性代数》教案一、前言1. 教学目标:使学生理解线性代数的基本概念、理论和方法,培养学生运用线性代数解决实际问题的能力。
2. 适用对象:本教案适用于大学本科生线性代数课程的教学。
3. 教学方式:采用讲授、讨论、练习相结合的方式进行教学。
二、教学内容1. 第一章:线性代数基本概念1.1 向量及其运算1.2 线性方程组1.3 矩阵及其运算1.4 行列式2. 第二章:线性空间与线性变换2.1 线性空间2.2 线性变换2.3 矩阵与线性变换2.4 特征值与特征向量3. 第三章:特征值与特征向量3.1 特征值与特征向量的定义3.2 矩阵的特征值与特征向量3.3 矩阵的对角化3.4 二次型4. 第四章:线性方程组的求解方法4.1 高斯消元法4.2 克莱姆法则4.3 矩阵的逆4.4 最小二乘法5. 第五章:线性代数在实际应用中的案例分析5.1 线性规划5.2 最小二乘法在数据分析中的应用5.3 线性代数在工程中的应用5.4 线性代数在计算机科学中的应用三、教学方法1. 讲授:通过讲解线性代数的基本概念、理论和方法,使学生掌握线性代数的基础知识。
2. 讨论:组织学生就线性代数中的重点、难点问题进行讨论,提高学生的思维能力和解决问题的能力。
3. 练习:布置适量的练习题,让学生通过自主练习巩固所学知识,提高解题能力。
四、教学评价1. 平时成绩:考察学生的出勤、作业、课堂表现等方面,占总评的30%。
2. 期中考试:考察学生对线性代数知识的掌握程度,占总评的40%。
3. 期末考试:全面测试学生的线性代数知识水平和应用能力,占总评的30%。
五、教学资源1. 教材:推荐使用《线性代数》(高等教育出版社,同济大学数学系编)。
2. 辅助教材:可参考《线性代数教程》(清华大学出版社,谢乃明编著)。
3. 网络资源:推荐学生浏览线性代数相关网站、论坛,拓展知识面。
4. 软件工具:推荐使用MATLAB、Mathematica等数学软件,辅助学习线性代数。
线性代数矩阵运算法则

线性代数矩阵运算法则线性代数是数学的一个重要分支,它研究的是向量空间和线性映射。
在线性代数中,矩阵是一种非常重要的数学工具,它可以用来表示线性变换和解线性方程组。
矩阵运算是线性代数中的重要内容,它包括矩阵的加法、减法、数乘、矩阵乘法等运算法则。
本文将详细介绍矩阵运算的各种法则,以及它们的应用。
1. 矩阵的加法。
设A和B是两个m×n的矩阵,它们的和记作C=A+B,其中C中的每个元素都等于A和B对应位置的元素之和。
即C的第i行第j 列的元素等于A的第i行第j列的元素加上B的第i行第j列的元素。
例如,如果。
A=[1 2 3。
4 5 6]B=[7 8 9。
10 11 12]则A+B=[8 10 12。
14 16 18]。
2. 矩阵的减法。
矩阵的减法与矩阵的加法类似,设A和B是两个m×n的矩阵,它们的差记作C=A-B,其中C中的每个元素都等于A和B对应位置的元素之差。
即C的第i行第j列的元素等于A的第i行第j列的元素减去B的第i行第j列的元素。
3. 矩阵的数乘。
设A是一个m×n的矩阵,k是一个实数,则kA记作B,其中B 中的每个元素都等于k乘以A对应位置的元素。
即B的第i行第j 列的元素等于k乘以A的第i行第j列的元素。
4. 矩阵的乘法。
设A是一个m×n的矩阵,B是一个n×p的矩阵,则它们的乘积记作C=AB,其中C是一个m×p的矩阵,C的第i行第j列的元素等于A的第i行与B的第j列对应元素的乘积之和。
即C的第i行第j列的元素等于A的第i行的每个元素与B的第j列的对应元素的乘积之和。
矩阵的乘法是线性代数中最重要的运算之一,它在解线性方程组和表示线性变换等方面有着重要的应用。
5. 矩阵的转置。
设A是一个m×n的矩阵,则A的转置记作AT,AT是一个n×m的矩阵,AT的第i行第j列的元素等于A的第j行第i列的元素。
即AT的第i行第j列的元素等于A的第j行第i列的元素。
线性代数 矩阵及其运算

A22 ...
... ...
An 2 ...
A1n A2n ... Ann
称矩阵A的伴随矩阵,记为A*
精选版课件ppt
27
伴 随 矩 阵 有 如 下 重 要 性 质 : AA*A*A(detA)E
矩阵运算举例
例 例 1 8 设 A123T, B11 21 3, CAB ,
求 Cn
精选版课件ppt
例4
如:A 11
11
B
1 1
11
AB O
BA
2 2
22
显然有:AB 0 AB BA
总结:矩阵乘法不满足交换律与消去律.
精选版课件ppt
18
例5 设
A1 1
2 1
1 1,
求AB与BA
1 2 B1 1
2 3
解
3 0 3
1 3 AB2 6
BA0 3 0 1 7 1
定理2.1 若矩阵A的第i行是零行,则乘积 AB的第i行
a..i.1
... ...
a..is.n......
... bnjs
... ...
cij
精选版课件ppt
14
例2 计算
2 1
1 8 10
1 3
4 01 3
2 4
051 9
2 5 22 15
精选版课件ppt
15
例3. 非齐次线性方程组的矩阵表示
a11x1 a12x2 a1nxn b1
a21x1
关于矩阵乘法的注意事项: (1)矩阵 A 与矩阵 B 做乘法必须是左矩阵的列数与右
矩阵的行数相等; (2)矩阵的乘法中,必须注意矩阵相乘的顺序,AB是
A左乘B的乘积,BA是A右乘B的乘积;
矩阵的运算及其运算规则

矩阵的运算及其运算规则矩阵是线性代数中的基本概念,也是数学、计算机科学、物理、经济学等领域中广泛运用的工具之一。
矩阵的运算是矩阵代数的重要组成部分,并且矩阵的运算规则是进行代数运算、求解线性方程组、计算特征值和特征向量等的关键。
1.基本矩阵运算矩阵的四则运算:加法、减法、乘法和除法是矩阵运算的基础。
加减法均是对应元素相加减,必须两个矩阵形状相同才可加减。
例如A、B是两个3\*3矩阵,那么它们相加后我们可以表示为C=A+B,C的每个元素都等于A和B对应位置的元素之和。
矩阵的乘法是相乘并对乘积元素求和,而不是元素相乘。
A\*B中A的列数应该等于B的行数,乘积C则应该是A的行数和B的列数构成的矩阵。
例如A是一个3\*2 的矩阵,B是一个2\*4 的矩阵,则将A的每一行和B的每一列依次相乘求和,得到一个3\*4的结果矩阵C。
除法在矩阵中一般不存在,但是可以通过矩阵的逆来实现除法运算。
如果乘积A\*B=C,且B是可逆的,那么我们可以利用B的逆矩阵来得出矩阵A,即A=B^{-1}C。
2.转置和逆矩阵矩阵的转置是将矩阵的行和列交换位置得到的新矩阵。
如果矩阵A的形状是m\*n,则转置后的矩阵形状是n\*m。
例如A=\begin{bmatrix}1 & 2 \\ 3 & 4 \\ 5 & 6\end{bmatrix},则A的转置为A^T=\begin{bmatrix}1 & 3 & 5 \\ 2 & 4 & 6\end{bmatrix}。
矩阵的逆矩阵是一个矩阵,使得矩阵和它的逆矩阵的乘积为单位矩阵。
只有方阵才有逆矩阵,而且并不是所有的方阵都有逆矩阵。
如果一个矩阵A不能求逆,那么我们称它是奇异矩阵或不可逆矩阵。
如果一个矩阵A可以求逆,那么我们称它是非奇异矩阵或可逆矩阵。
逆矩阵的求解方法有伴随矩阵法、高斯-约旦消元法、矩阵分块法等。
3.矩阵的性质及运算规则矩阵的性质包括转置、对称、正交、幂等、奇异等性质。
《线性代数》教案

《线性代数》教案一、前言1. 教学目标(1)理解线性代数的基本概念和原理;(2)掌握线性代数的基本运算方法和技巧;(3)能够应用线性代数解决实际问题。
2. 教学内容(1)线性方程组;(2)矩阵及其运算;(3)线性空间和线性变换;(4)特征值和特征向量;(5)二次型。
二、第一章:线性方程组1. 教学目标(1)理解线性方程组的定义和性质;(2)掌握线性方程组的求解方法;(3)能够应用线性方程组解决实际问题。
2. 教学内容(1)线性方程组的定义和性质;(2)线性方程组的求解方法:高斯消元法、克莱姆法则;(3)线性方程组的应用:线性规划、电路方程等。
三、第二章:矩阵及其运算1. 教学目标(1)理解矩阵的定义和性质;(2)掌握矩阵的运算方法;(3)能够应用矩阵解决实际问题。
2. 教学内容(1)矩阵的定义和性质;(2)矩阵的运算:加法、数乘、乘法;(3)矩阵的逆矩阵及其求法;(4)矩阵的应用:线性方程组、线性变换等。
四、第三章:线性空间和线性变换1. 教学目标(1)理解线性空间和线性变换的定义和性质;(2)掌握线性变换的表示方法;(3)能够应用线性变换解决实际问题。
2. 教学内容(1)线性空间的定义和性质;(2)线性变换的定义和性质;(3)线性变换的表示方法:矩阵表示、坐标表示;(4)线性变换的应用:图像处理、信号处理等。
五、第四章:特征值和特征向量1. 教学目标(1)理解特征值和特征向量的定义和性质;(2)掌握特征值和特征向量的求法;(3)能够应用特征值和特征向量解决实际问题。
2. 教学内容(1)特征值和特征向量的定义和性质;(2)特征值和特征向量的求法:幂法、矩阵对角化;(3)特征值和特征向量的应用:线性变换、振动系统等。
六、第五章:二次型1. 教学目标(1)理解二次型的定义和性质;(2)掌握二次型的标准形和规范形;(3)能够应用二次型解决实际问题。
2. 教学内容(1)二次型的定义和性质;(2)二次型的标准形和规范形:配方法、矩阵的对角化;(3)二次型的应用:最小二乘法、优化问题等。
线性代数中的矩阵运算

线性代数中的矩阵运算矩阵运算,在线性代数中是一个十分重要的概念,我们通常用矩阵来表示线性映射,这些矩阵之间的加、减、乘等运算,是我们学习矩阵的基础。
本文将从矩阵的定义、矩阵的加减、矩阵的乘法、矩阵的转置和逆等方面详细介绍矩阵运算。
一、矩阵的定义矩阵是一个由m行、n列元素排列成的矩形表格,其中每个元素都是一个数字(标量),通常用 A = [aij]表示。
其中,i表示行号,j表示列号, aij表示第i行、第j列的元素,矩阵的大小写成m×n表示,其中m表示行数,n表示列数。
二、矩阵的加减对于两个具有相同大小的矩阵A和B,它们的和C可以通过将每个对应的元素相加得到,即Ci,j = ai,j + bi,j,也可以用向量的形式表示C = A+B。
矩阵的差同理,Ci,j = ai,j - bi,j,用向量的形式表示C = A - B。
加减运算的性质:1.交换律:A + B = B + A,A - B ≠ B - A;2.结合律:(A + B) + C = A + (B + C), (A - B) - C ≠ A - (B - C);3.分配律:a(A + B) = aA + aB,(a + b)A= aA + bA。
三、矩阵的乘法对于两个矩阵A和B,只有满足A的列数等于B的行数时,A和B才能相乘。
设A为m行n列的矩阵,B是一个n行p列的矩阵,它们相乘得到的结果C是一个m行p列的矩阵。
在矩阵乘法中,相乘的行列数相等的两个矩阵必须一一对应进行相乘,并将所有乘积相加。
矩阵乘法的表达式:Cij = ∑ akj ᠖ bj i,其中k=1,2,,....,nC = AB,A的第i行乘以B的第j列,它们的乘积之和就是C的第i行第j列元素。
用向量的形式表示C = A×B。
在矩阵乘法中,乘法不具备交换律,即AB ≠ BA。
(只有在A、B中至少有一个为单位矩阵时,AB=BA)矩阵乘法的性质:1.结合律:A(BC) = (AB)C;2.分配律:A(B+C) = AB + AC;3.结合律:(aA)B = A(aB) = a(AB);4.单位矩阵: AI = IA = A;5.逆矩阵:存在矩阵B满足AB=I,则称矩阵A可逆,矩阵B 就是矩阵A的逆矩阵(A的行列式必须不等于零)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0 0
例如
0
0
0 0
0 0
0
0
注意:丌同型
0 0 0 0 . 的零矩阵是丌
相等的.
0 0 0 0
10
2.2 矩阵运算
一、矩阵的加法和减法
定义:设有两个 m×n 矩阵 A = (aij),B = (bij) ,那么矩阵 A 不 B 的加法和减法规定为:
a11 b11
A
B
a21
b21
a21b11
a22b21
a2sbs1
a21b12 a22b22 a2sbs2
a21b1n
a22b2n
a2sbsn
.
am1b11
am2b21
amsbs1
am1b12 am2b22 amsbs2
am1b1n
am2b2n
amsbsn
mn
17
例
? 2
1
4 2
2
22
3
aaaa1212111
aa1122 aa222
aaaa12123333aaaa1212111
bb1122 bb222
aaaa1212333322aaaa1212111
aa1122bb1122 aa222bb222
aa2212a3a3 1233
aa3311 aa3322 aa333 aa3311 bb3322 aa333 2aa3311 aa3322bb3322 a23a3 33
1
2
4 2
2 0
3 1
0
17
14 13
3
10
,
解法2
0
( AB)T
14
3
17
13
.
10
1 4 2 2 1 0 17
( AB)T
BT AT
7
2
0
0
3
a1n a2n ann
称为上三角阵
a11
方阵
A
a21
0
a22
0 O0
称为下三角阵
an1 an2 ann
上三角不下三角阵统称为三角阵
8
6、对称矩阵不反对称矩阵
定义 设A为n 阶方阵,如果满足 aij a ji i , j 1,2,,n
那末 A 称为对称(矩)阵.
12 6 1
2
3
2
4
6
1
1 2 3
20
对于n元线性方程组:
a11x1 a12 x2
a21x1
a22
x2
am1x1 am2 x2
a1n xn b1 a2n xn b2
amn xn bm
a11
记A
a21
a12
a22
a1n a2n
am1 am2 amn
a11 a12
即:
a21
a22
am1 am2
a1n x1 b1
a2n
x2
b2
amn xn bm
x1
x
x2
xn
b1
b
b2
bm
则此方程组可写成简洁的矩阵形式: Ax b
线性方程组的矩阵形式便于有关问题的研究.
21
例2.3
设A
1
0
10 ,B
9
7、同型矩阵不矩阵相等的概念
1. 两个矩阵的行数相等、列数相等时,称为同型矩阵.
1 2 14 3
例如
5
6
与
8
4 为同型矩阵.
3 7 3 9
2. 两个矩阵 A (aij ) 不 B (bij )为同型矩阵,并且对应元 素相等,即 aij bij (i 1, 2, , m; j 1, 2, , n) 则称矩阵 A 不 B 相等,记作 A = B .
则称方阵 A 与 B 是可交换的.
22
又比如:
2 4 2 4 0 0
3
6
22
1
2
22
0
0
22
结论:
(1) AB O 不能得出 A O或B O
(2)
AB AC
AO
不能得出
BC
23
矩阵乘法的运算规律
(1) 乘法结合律
( AB)C A(BC)
(2) 数乘和乘法的结合律 AB ( A)B (其中 是数)
对于n阶方阵A ,令
f ( A) am Am am1 Am1 a1 A a0En (am 0)
称上式为n阶方阵A的m次多项式. 25
例设
f (x)
x2
5
x
3
,对于A
2 3
,11
求 2 3
1 2
1
3
1
1
5
2 3
1
1
3
1 0
0
1
1 9
0
31
2
1
16
定义2.4
a11 a12 a1s b11 b12 b1n
a21
a22
a2s
b21
b22
b2n
am1
am2
ams
ms
bs1
bs 2
bsn sn
a11b11 a12b21 a1sbs1 a11b12 a12b22 a1sbs2 a11b1n a12b2n a1sbsn
3 2
10 15
5 5
3 0
0
3
6 2
6
4
.
26
四、矩阵的转置
定义:把矩阵 A 的行换成同序数的列得到的新矩阵,叫做
A的转置矩阵,记作AT .
1 4
比如
1
A
4
2 5
2
8
,
AT
2
5
;
2 8
B 18 6 ,
BT
18
6
.
n 阶方阵A为对称阵
AT A
n 阶方阵A为反对称阵
6
1 0
4.形如
0
2
0
0
0
0
的方阵称为对角阵.
n
可记作:
diag(1, 2 ,
, n )
方阵
A
0
0
0 0
全为同一个数 称为数量矩阵.
0
0
1 0
特别的,方阵
0
1
0
0
0
0
称为单位矩阵.
1
记作 En 或 E .
7
5、方阵
a11 a12
A
0 0
a22 O
0
a31 a32 a33 a31 a32 a33 a31 a32 a33
a11 a21
a12 a22
a13 a23
a11 a21
a12 a22
a13 a23
a31 a32 a33 a31 a32 a33
15
三、矩阵乘法 为便于研究线性方程组,我们引进矩阵乘法的定义.
例如: 3x1 2x2 x3 5. 可简记为:
am1
am2
amn
bm
2
二、矩阵的定义
由 m×n 个数排成的 m 行 n 列的数表:
a11 a12
a1n
a21 a22
a2n
am1 am2
amn
称为 m 行 n 列矩阵,简称 m×n 矩阵.
记作:
a11 a12
A
a21
a22
am1 am1
a1n
a2n
amn
简记为 A Amn (aij )mn (aij )
amn
行数丌一定等于列数 共有m×n个元素 本质上就是一个数表
(aij )mn
4
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
13 6 2
2 2
2 2
2 2
是一个 3 3 矩阵,
1 2
是一个 31 矩阵,
4
2 3 5 9 是一个1 4 矩阵,
4或4 是一个 11矩阵.
5
三、特殊的矩阵
am1 bm1
a12 b12 a22 b22
am2 bm2
a1n b1n
a2n
b2n
amn bmn
说明:只有当两个矩阵是同型矩阵时,才能进行加法运算.
11
知识点比较
a11 a12 a13 a11 b12 a13 a11 a12 b12 a13 a21 a22 a23 a21 b22 a23 a21 a22 b22 a23 a31 a32 a33 a31 b32 a33 a31 a32 b32 a33
设 A、B是同型矩阵, , 是数 ()A ( A) ( )A A A (A B) A B
备注 矩阵相加不数乘矩阵合起来,统称为矩阵的线性运算.
14
知识点比较
a11 a12 a13 a11 a12 a13 a11 a12 a13 a21 a22 a23 a21 a22 a23 a21 a22 a23
例如
A
6
8
0
是对称矩阵.
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相等.
定义 设B为n阶方阵,如果满足 aij a ji i, j 1,2,, n
那末 B 称为反对称(矩)阵.
0 2 1
例如
B
2
0
3
是反对称矩阵.
1 3 0
说明 反对称阵的主对角线上的元素(简称主元)都为0
3
这 m×n 个数称为矩阵A的元素,简称为元. 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.