数字电路课程设计

合集下载

复杂的数字电路课程设计

复杂的数字电路课程设计

复杂的数字电路课程设计一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:学生需要掌握数字电路的基本概念、逻辑门电路的组成及功能、组合逻辑电路和时序逻辑电路的设计方法。

2.技能目标:学生能够运用所学知识分析和设计简单的数字电路,具备一定的动手实践能力。

3.情感态度价值观目标:培养学生对电子技术的兴趣,提高学生分析问题、解决问题的能力,培养学生的创新精神和团队合作意识。

在教学过程中,我们需要根据课程性质、学生特点和教学要求,将目标分解为具体的学习成果,以便后续的教学设计和评估。

二、教学内容本节课的教学内容主要包括以下几个部分:1.数字电路的基本概念:数字信号、数字电路的分类及特点。

2.逻辑门电路:与门、或门、非门、异或门等基本逻辑门电路的组成及功能。

3.组合逻辑电路:加法器、编码器、译码器、多路选择器等组合逻辑电路的设计方法。

4.时序逻辑电路:触发器、计数器、寄存器等时序逻辑电路的设计方法。

5.数字电路的设计与实践:学生动手设计简单的数字电路,如计算器、电子钟等。

教学内容的安排和进度将根据学生的学习情况适时调整,以确保教学目标的达成。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师讲解数字电路的基本概念、逻辑门电路的组成及功能。

2.讨论法:学生分组讨论组合逻辑电路和时序逻辑电路的设计方法。

3.案例分析法:分析实际案例,让学生了解数字电路在生活中的应用。

4.实验法:学生动手设计简单的数字电路,提高实践能力。

四、教学资源本节课的教学资源包括:1.教材:《数字电路》等相关教材。

2.参考书:提供相关的学术资料和论文,以便学生深入研究。

3.多媒体资料:PPT、视频等教学课件,帮助学生更好地理解课程内容。

4.实验设备:逻辑门电路实验板、微控制器等实验设备,让学生动手实践。

教学资源的选择和准备将充分支持教学内容和教学方法的实施,丰富学生的学习体验。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式主要包括以下几个方面:1.平时表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习态度和理解程度。

数字电路逻辑设计课程设计

数字电路逻辑设计课程设计

数字电路逻辑设计课程设计一、课程目标知识目标:1. 理解数字电路基本概念,掌握逻辑门电路的工作原理和功能;2. 学会使用逻辑代数进行简单的逻辑表达式推导和化简;3. 掌握组合逻辑电路和时序逻辑电路的设计方法;4. 了解数字电路的测试和调试方法。

技能目标:1. 能够运用所学知识,设计简单的组合逻辑电路和时序逻辑电路;2. 能够使用逻辑门集成电路进行电路搭建和测试;3. 能够分析数字电路中存在的问题,并提出改进措施。

情感态度价值观目标:1. 培养学生对数字电路逻辑设计的兴趣,激发学习热情;2. 培养学生的团队协作精神,学会与他人共同解决问题;3. 增强学生的创新意识,敢于尝试新方法,提高解决问题的能力;4. 培养学生严谨的学习态度,注重实验操作的规范性和安全性。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握数字电路基本知识的基础上,能够运用所学技能进行逻辑设计,培养其创新思维和实际操作能力。

课程目标具体、可衡量,便于后续教学设计和评估。

二、教学内容1. 数字电路基本概念:逻辑门电路、逻辑函数、逻辑代数;2. 组合逻辑电路设计:编码器、译码器、多路选择器、算术逻辑单元;3. 时序逻辑电路设计:触发器、计数器、寄存器、移位寄存器;4. 数字电路测试与调试:故障分析、测试方法、调试技巧;5. 实践操作:使用集成电路搭建组合逻辑电路和时序逻辑电路,进行测试与分析。

教学大纲安排如下:1. 数字电路基本概念(1课时):介绍逻辑门电路、逻辑函数和逻辑代数,引导学生理解数字电路的基本组成和工作原理;2. 组合逻辑电路设计(2课时):讲解组合逻辑电路的设计方法,举例说明编码器、译码器等常见组合逻辑电路;3. 时序逻辑电路设计(2课时):介绍时序逻辑电路的特点,讲解触发器、计数器等时序逻辑电路的设计方法;4. 数字电路测试与调试(1课时):分析数字电路常见故障,教授测试与调试方法;5. 实践操作(2课时):指导学生使用集成电路进行组合逻辑电路和时序逻辑电路的搭建、测试与分析。

较简单的数电课程设计

较简单的数电课程设计

较简单的数电课程设计一、课程目标知识目标:1. 让学生掌握数字电路基础知识,理解常用逻辑门电路的原理及其功能。

2. 学会分析简单的数字电路,并能正确使用逻辑门电路进行组合设计。

3. 掌握二进制、八进制和十六进制数的概念及其转换方法。

技能目标:1. 培养学生运用所学知识进行数字电路分析和设计的能力。

2. 培养学生运用逻辑门电路解决实际问题的能力。

3. 提高学生动手实践和团队协作的能力。

情感态度价值观目标:1. 培养学生对数字电路的兴趣,激发学生探索电子世界的热情。

2. 培养学生严谨、细致的学习态度,树立良好的科学素养。

3. 增强学生的团队合作意识,培养学生的沟通与协作能力。

分析课程性质、学生特点和教学要求,本课程旨在帮助学生掌握数字电路基础知识,培养学生运用所学知识解决实际问题的能力。

课程目标具体、可衡量,便于学生和教师在教学过程中明确预期成果。

通过本课程的学习,学生将能够熟练运用数字电路知识,为后续相关课程打下坚实基础。

二、教学内容1. 数字电路基础知识:逻辑门电路原理、功能及其符号表示;数字信号与数字电路的特点。

2. 常用逻辑门电路:与门、或门、非门、与非门、或非门、异或门等。

3. 数字电路分析与设计:组合逻辑电路的分析方法,逻辑门电路的设计方法。

4. 数制及其转换:二进制、八进制、十六进制数的概念及其相互转换方法。

5. 实践操作:动手实践,运用逻辑门电路进行组合设计,完成简单的数字电路搭建。

教学内容按照以下进度安排:第一课时:数字电路基础知识,介绍常用逻辑门电路的原理和功能。

第二课时:数字电路分析与设计,学会分析组合逻辑电路。

第三课时:数制及其转换,掌握二进制、八进制、十六进制数的转换方法。

第四课时:实践操作,分组进行数字电路搭建,巩固所学知识。

教学内容与教材章节关联性如下:第一章:数字电路基础第二章:逻辑门电路第三章:组合逻辑电路分析与设计第四章:数制及其转换第五章:数字电路实践操作三、教学方法本课程采用以下教学方法,旨在激发学生的学习兴趣,提高教学效果:1. 讲授法:教师以清晰、生动的语言,结合多媒体教学手段,系统讲解数字电路基础知识、逻辑门电路原理及功能,使学生在短时间内掌握课程核心内容。

杭电数字电路课程设计

杭电数字电路课程设计

杭电数字电路课程设计一、课程目标知识目标:1. 学生能够理解数字电路的基本概念,掌握数字逻辑门的工作原理。

2. 学生能够掌握组合逻辑电路和时序逻辑电路的分析与设计方法。

3. 学生能够了解数字电路的测试与验证方法,并运用相关工具进行实践。

技能目标:1. 学生能够运用所学知识,设计简单的数字电路系统,并对其进行仿真与验证。

2. 学生能够运用逻辑门、触发器等组件搭建复杂的数字电路,培养实际操作能力。

3. 学生能够通过课程学习,提高团队协作和沟通能力,为后续项目实践打下基础。

情感态度价值观目标:1. 学生对数字电路产生兴趣,激发学习热情,培养自主学习的习惯。

2. 学生能够认识到数字电路在现代社会中的广泛应用,增强对所学专业的认同感。

3. 学生在课程学习过程中,培养严谨的科学态度,树立工程意识,提高创新能力。

课程性质:本课程为专业核心课程,旨在培养学生的数字电路设计能力,提高解决实际问题的能力。

学生特点:学生具备一定的电子技术基础知识,具有较强的逻辑思维能力和动手能力。

教学要求:结合课本内容,注重理论与实践相结合,强调学生在实际操作中掌握知识,培养技能。

通过课程学习,使学生能够独立设计并实现简单的数字电路系统。

二、教学内容1. 数字逻辑基础:包括数字逻辑概述、逻辑门电路、逻辑函数及其化简、逻辑门电路的测试与验证。

- 教材章节:第1章 数字逻辑基础- 内容安排:2学时2. 组合逻辑电路:包括组合逻辑电路的分析、设计方法,常用组合逻辑电路及其应用。

- 教材章节:第2章 组合逻辑电路- 内容安排:4学时3. 时序逻辑电路:包括时序逻辑电路的原理、分析、设计方法,触发器、计数器等时序电路的应用。

- 教材章节:第3章 时序逻辑电路- 内容安排:6学时4. 数字电路设计方法:包括数字电路设计流程、设计方法,以及基于硬件描述语言的数字电路设计。

- 教材章节:第4章 数字电路设计方法- 内容安排:4学时5. 数字电路仿真与验证:包括数字电路仿真软件的使用、仿真与验证方法,以及实际操作。

数字电路实验课程设计

数字电路实验课程设计

数字电路实验课程设计一、课程目标知识目标:1. 理解数字电路的基本概念,掌握常用的数字电路元件及其功能。

2. 学会分析简单的数字电路图,并能正确描述电路的工作原理。

3. 掌握数字电路的测试方法,能够运用测试仪器对电路进行调试和故障排查。

技能目标:1. 能够运用所学知识设计简单的数字电路,并进行实际搭建。

2. 培养动手操作能力,熟练使用数字电路实验设备,进行电路连接和测试。

3. 提高问题解决能力,通过实验分析,能够发现并解决数字电路中的问题。

情感态度价值观目标:1. 培养学生的团队合作意识,实验过程中能够相互协作,共同完成实验任务。

2. 激发学生对数字电路的兴趣,提高学习积极性,培养探索精神和创新意识。

3. 培养学生严谨的科学态度,注重实验数据的真实性,遵循实验操作规范。

分析课程性质、学生特点和教学要求,本课程目标旨在帮助学生掌握数字电路的基本知识和实践技能,通过实验课程,使学生在实践中深化理论认识,提高综合运用能力。

课程目标分解为具体学习成果,便于后续教学设计和评估,确保学生能够达到预期学习效果。

二、教学内容本课程教学内容主要包括以下几部分:1. 数字电路基础知识:介绍数字电路的基本概念、逻辑门电路、触发器等,参考教材第2章相关内容。

2. 常用数字电路元件:学习译码器、编码器、计数器、寄存器等元件的功能和应用,参考教材第3章相关内容。

3. 数字电路分析与设计:分析简单数字电路图,学会设计组合逻辑电路和时序逻辑电路,参考教材第4章相关内容。

4. 数字电路实验操作:教授实验操作规范,指导学生进行数字电路搭建、测试和调试,参考教材第5章相关内容。

5. 故障排查与问题解决:培养学生分析问题、解决问题的能力,学习数字电路故障排查方法,参考教材第6章相关内容。

教学内容安排如下:1. 第1周:数字电路基础知识学习。

2. 第2周:常用数字电路元件学习。

3. 第3周:数字电路分析与设计。

4. 第4周:数字电路实验操作及故障排查。

数字电路课程设计-数字式定时开关设计

数字电路课程设计-数字式定时开关设计

数字电路课程设计-数字式定时开关设计本设计旨在设计一个数字式定时开关,即可设置时间后自动控制开关的开/关状态。

该设计采用120V AC电源。

整个系统的核心是AT89C51微控制器。

在控制电路中,用户可以设置开关的启动时间和关闭时间。

在此设计中,我们使用了倒计时计数器,可以使开关在设定时间到达时自动关闭或打开。

以下是数字电路课程设计-数字式定时开关设计的详细说明:材料清单:1. AT89C51微控制器2. 16位数码管显示模块3. 蜂鸣器4. LED灯5. 继电器6. 按钮开关7. 电源电线8. 杜邦线9. 电阻和电容电路设计:图-1:数字式定时开关电路图如上图所示,整个电路由AT89C51微控制器,计数器,16位数码管,继电器,蜂鸣器,LED灯和按钮开关组成。

整个电路的供电电压为120V AC。

MCU输入为120V交流电源电压,为保证MCU安全,采用了稳流二极管电路降压至5V,在MCU和计数器外部电路中采用了电阻器和电容器滤波处理。

在该电路中,16位数码管用于显示倒数计时器的时间。

数码管显示模块使用计时寄存器来设置显示时间和更改时间。

倒计时计数器由74LS192芯片实现。

继电器用于控制电源的开关。

按键用于启动和停止计数器以触发继电器开关的动作。

操作:1. 设置时间:按下时间设置按钮,数码管显示时间设置,你可以更改时间,包括小时和分钟,用按键切换需要更改的位。

设置完成后,按时间设置按钮再次退出时间设置模式。

2. 开始计时:按下开始/停止按钮,计时器开始倒计时,同时继电器也开始工作。

3. 关闭计时器:当计时器到达指定时间后,它将停止计数并触发继电器打开/关闭开关。

此时,LED灯将发出信号。

总结:数字式定时开关是一种非常实用的电路设计,它可以自动打开/关闭设备,而无需实时操作。

此设计通过采用AT89C51微控制器和倒计时计数器等组件,实现了大量自动控制电路的功能。

设计过程中,需要注意安全问题,保证电路稳定运行,同时合理设计各个模块,并进行联合测试验收。

数电课程设计

数电课程设计

数电课程设计
摘要:
1.数电课程设计的概述
2.数电课程设计的主要内容
3.数电课程设计的实践方法
4.数电课程设计的重要性
正文:
【1.数电课程设计的概述】
数电课程设计,全称为数字电路课程设计,是电子信息工程、通信工程等专业教育中的重要实践环节。

它旨在通过实际操作,帮助学生深入理解和掌握数字电路的基本原理、设计方法和应用技巧,从而提升学生的实际工程能力。

【2.数电课程设计的主要内容】
数电课程设计的主要内容包括:数字逻辑门电路设计、组合逻辑电路设计、时序逻辑电路设计、触发器设计、寄存器设计、计数器设计、译码器设计、编码器设计等。

这些设计内容涵盖了数字电路的各个方面,既有理论知识的应用,也有实际操作的训练。

【3.数电课程设计的实践方法】
数电课程设计的实践方法主要包括:理论学习、实验操作、电路仿真、硬件实现等。

理论学习是基础,帮助学生理解数字电路的原理;实验操作和电路仿真是手段,让学生在实际操作中掌握设计方法;硬件实现是目标,让学生能够真正做出实际可用的电路。

【4.数电课程设计的重要性】
数电课程设计对于电子信息工程、通信工程等专业的学生来说,具有非常重要的意义。

首先,它可以帮助学生深入理解和掌握数字电路的基本原理和设计方法;其次,它可以提升学生的实际工程能力,使其能够在毕业后胜任实际工作;最后,它也是检验学生理论学习成果的重要方式。

数字逻辑与数字电路课程设计

数字逻辑与数字电路课程设计

数字逻辑与数字电路课程设计一、设计背景数字逻辑与数字电路是计算机科学专业的基础课程之一,它主要涵盖了数字信号的表示和处理,是计算机设计和实现中必备的一部分。

本次课程设计旨在让学生通过实践掌握数字逻辑和数字电路的知识,以及设计数字电路的能力。

通过完成本课程设计,学生可以加深对数字逻辑和数字电路的理解,同时提升他们的实践能力和解决问题的能力。

二、设计任务本次课程设计主要分为两个部分:数字逻辑实验和数字电路设计。

学生需要独立完成以下设计任务:1. 数字逻辑实验在本部分任务中,学生需要通过实验掌握数字逻辑的知识,包括数字信号的表示和处理,数字电路的基本构成,以及逻辑门电路的设计和实现。

具体的实验内容包括:•数字信号的表示和传输实验•逻辑门电路的设计和实现实验•组合逻辑电路设计实验•时序逻辑电路设计实验以上实验的具体内容和要求将在教学过程中给出。

2. 数字电路设计在本部分任务中,学生需要独立设计一个数字电路,该电路需要包括以下要求:•设计一个数字电路,要求满足特定的功能需求(需在教学过程中给出)•独立完成电路设计和仿真•备注电路设计思路和设计注意点•编写实验报告三、设计要求在完成本次课程设计时,学生需要满足以下要求:1.学生需要独立完成任务,并且不得抄袭或参考他人作业。

2.课程设计需要使用具有仿真能力的数字电路软件,如Proteus、Multisim等。

3.设计的电路需要经过仿真验证,并且保证实验结果是正确的。

4.实验报告需要使用Markdown文本格式,并附上仿真截图和思路分析。

5.实验报告需要在规定时间内提交,逾期不予评分。

四、设计评分本次课程设计的评分主要从以下几个方面进行考核:1.实验报告的格式是否正确,是否能够清晰地表达设计思路和仿真结果。

2.数字逻辑实验的完成情况和实验结果是否正确。

3.数字电路设计的完成情况和电路的功能是否满足要求。

4.总体评价:包括实验的难度、完成质量和表现等。

五、结语数字逻辑和数字电路是计算机科学专业必修的一门课程,本次课程设计旨在通过实践提高学生的数字电路设计能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号产生与变换电路的设计
摘要:在工程技术研究中,经常需要对各种各样的电子信号进行变换和测量,因而如何根据被测量电子信号的不同特征和测量要求,灵活、快速的选用不同特征的信号源是值得深入研究的课题。

信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和实验测试处理中,它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

信号产生与变换电路,能够给被测电路提供所需要的波形。

本设计采用以555定时器为主的数字电路作为信号的产生源。

由分立元件和模拟集成电路构成积分、滤波电路。

在选用电阻的过程中,使用可调电阻,可改变信号产生于变换电路的系统参数,实现对电路波形的调节,具有灵活的功能,提高了设计的应用价值。

关键字信号产生信号变换
1、设计思路与整体框图
在本信号产生与变换电路中,要求使用555定时器和LM324产生四种波形,其中,方波、三角波、正弦基波,如图1所示。

并要求能输出正弦三次谐波。

且幅值大于等于500mv 。

方波
三角波正弦波
图1 设计电路中的波形
根据题目要求,本次设计的基本完成思路是,首先由555定时器组成多谐振荡器产生方波,然后由LM324组成有源积分电路将方波转化为三角波,最后用二阶有源带通滤波电路将方波转化为正弦波,最后,将方波引入另一个由LM324组成的二阶有源带通滤波电路中,得到三次谐波。

如图2,为整体设计思路。

555定时器构成谐振电路
二阶有源带通滤波电路
有源积分电路
方波
三角波
正弦波
三次谐波
二阶有源带通滤波电路
图2 信号产生与变换电路的整体设计思路
在电路的搭建与其间的选择上,将遵循以上设计思路,进行设计。

2、硬件电路设计
2.1 方波发生电路的设计与计算
方波产生电路的核心部分是,由555定时器组成的多谐振荡电路如图3所示。

由于电路中的二极管1D 、2D 的单向导电性,使电容1C 的充放电回路分开,调节电位器3R 的值,就可调节多谐振荡器的占空比。

cc V 通过1R 和3R 的一部分记为12R 、1D 向电容1C 充电,充电时间为
1127.0C R t pH (2.1.1)
电容器1C 通过2D 、2R 和3R 的一部分记为22R 以及555中的三极管放电,放电时间为
1227.0C R t pH ≈ (2.1.2)
因而,振荡频率为
C
R R t t f pL pH )(43
.112212+≈
+=
(2.1.3) 电路输出波形的占空比为
%100(%)22
1212
⨯+=
R R R q (2.1.4)
A1
555_VIRTUAL
GND
DIS OUT
RST VCC THR CON
TRI VCC
5V
R110kΩ
R210kΩC10.01µF
C2
0.01µF R350kΩ
Key=A
50 %
D1
1N4149
D21N4149
R410Ω
XSC1
A
B
Ext Trig
+
+
_
_
+_
图3 555定时器组成的多谐振荡电路
为满足方波输出需求,需将占空比调至50%,取振荡频率为2KHz ,带入式(2.1.1—2.1.4)中,可以得出,12R 1C =22R 1C =410575.3-⨯S ,取12R =22R =35k Ω,
F 01.01u C =。

为使占空比可调,选用两个10k Ω的电阻与一个50k Ω的可调电阻串联。

即可实现占空比可调,振荡频率为2KHz 。

2.2 三角波发生电路的设计与计算
对方波进行有源积分即可实现输出三角波。

有源积分电路的电路图如图4所示,积分电路的工作原理如下:由于集成运放的反相输入端“虚地”与“虚断”,运放反相输入端的电流为零,则c r i i -=,故,可得积分电路输入电压和输出电压的关系。

该积分电路符合惯性环节的特征,令1R 与滑动变阻器6R 串联的等效电阻为61R 。

故可以得出传递函数为:
1
1)1()
()
(3561561
3535+-=+-=+
-==
Ts k s C R R R R s
C R s
C R s U s U G r c s (2.2.1)
其中,
61
5
R R k =
(2.2.2) 35C R T = (2.2.3)
U2A
LM324N 3
2
11
4
1
C30.1µF VCC
5V
R530kΩR650kΩKey=A
0 %
VEE
-5V
R1
10kΩ
图4 三角波发生电路
由于61R 可调,故可以改变放大倍数,实现对三角波的幅值可调。

其中,时间常数T 由积分电路输入信号的周期决定。

由于在积分的过程中,电压上升段与电压下降段的斜率是一样的,故可以输出三角波,而且幅值可调。

2.3 基波正弦波产生电路的设计与计算
三角波作为正弦波产生电路的输入信号。

将输入的三角波信号进行带通滤波,通过一个二阶有源带通滤波电路,如图5所示,将三角波转化为基波正弦波。

其中2R 与7C 组成低通网络,4C 与3R 组成高通网络,两者串联就组成了带通滤波电路,另一部分为同相比例放大电路。

C70.01µF
C40.01µF U3B
LM324N 5
6
11
4
7
R115kΩ
R212kΩ
R330kΩ
R41.5kΩ
R51kΩ
VEE
-5V
VCC
5V
图5 基波正弦波产生电路
为了计算的简便,设R R =1,R R 23=,则由KCL 方程可以算出带通滤波的传递函数为
()()
2
A 31A (s)A sCR sCR sCR
VF VF +-+=
(2.3.1) 式中VF A 为同向比例放大电路的电压增益,同样要求3A <VF ,电路才能稳定工作。


()⎪⎪

⎪⎭⎪
⎪⎪⎪
⎬⎫-==-=
VF 00A 311A 3A A Q RC w VF VF (2.3.2)
则 ()2
000
1A s A ⎪⎪⎭
⎫ ⎝⎛++
=
w s Qw s
Qw s (2.3.3)
其中()RC w 10=,既是特征角频率,也是带通滤波电路的中心角频率。

令jw s =带入式(2.3.3),则有
()⎪⎪⎭
⎫ ⎝⎛-+=
+⎪⎪⎭⎫ ⎝⎛-∙=w w w w jQ Q w w
j w w w jw Q jw 000
0000
1A 11A A (2.3.4) 表明当0w w =时,图5所示的电路具有最大的电压增益。

则由三角波周期、频率
可以计算出所选电路各元器件的值。

2.4 三次正弦波产生电路的设计与计算
将方波作为输入信号。

利用二阶有源带通滤波电路产生三次正弦谐波。

电路图如图6所示。

C50.01µF
C60.01µF C80.1µF
U3C
LM324N 10
9
11
4
8
VEE
-5V
VCC
5V
R10.5kΩ
R215kΩ
R32.5kΩ
R45kΩ
R98kΩR1015kΩ
R52.5kΩ
图6 三次正弦谐波产生电路
其工作原理与图5基波正弦波产生电路相识,只需要更改中心角频率与截止频率即可计算出三次正弦谐波产生电路的各元器件的大小。

3、电路仿真结果分析
1、方波发生电路的multisim 仿真结果:
当图3中555定时器组成的多谐振荡电路的滑动变阻器3R 调至中间位置时,所得仿真波形如图7所示,
图7 方波发生电路的multisim仿真结果1
当图3中555定时器组成的多谐振荡电路的滑动变阻器
R调至其他位置时,所
3
得仿真波形如图8所示,
图7 方波发生电路的multisim仿真结果2
2、三角波发生电路的multisim仿真结果:
图8 三角波发生电路的multisim仿真结果1
3、基波正弦波产生电路的multisim仿真结果:
4、三次正弦谐波产生电路的multisim仿真结果:
图11 三次正弦谐波产生电路的multisim仿真结果
以上实验结果均达到预期要求。

其中,方波发生电路可以输出不同占空比的方波,三角波发生电路实现了对幅值的调节,基波正弦波产生电路与三次正弦谐波产生电路均符合要求的幅值与频率。

仿真结果正常。

4、电路实验结果分析
总体设计电路如图12 所示。

各单独设计电路通过电气连接,最终实现了功能设计的统一,整体仿真结果如图13所示,成功达到预期目的,效果良好。

图12 信号产生与变换电路整体图
图13 信号产生与变换电路所有波形输出。

相关文档
最新文档