ANSYS钢筋混凝土建模方法概述

合集下载

如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型

如何在ANSYS中模拟钢筋混凝土的计算模型最近做了点计算分析,结合各论坛关于这方面的讨论,就一些问题探讨如下,不当之处敬请指正。

一、关于模型钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。

考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。

裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。

离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。

随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。

就ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。

而其裂缝的处理方式则为分布裂缝模型。

二、关于本构关系混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。

混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。

就ANSYS而言,其问题比较复杂些。

1 ANSYS混凝土的破坏准则与屈服准则是如何定义的?采用tb,concr,matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)。

W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。

理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。

钢筋混凝土建模步骤

钢筋混凝土建模步骤

钢筋混凝土建模步骤在土木工程结构中,最为常用的一种结构形式就是钢筋混凝土结构,在各类房屋、水坝、桥梁、道路中都有广泛应用。

ANSYS软件提供了专门的钢筋混凝土单元和材料模型。

本算例将介绍ANSYS软件分析混凝土一些基本应用。

(1) 首先建立有限元模型,这里我们选用ANSYS软件自带的专门针对混凝土的单元类型Solid 65,进入ANSYS主菜单Preprocessor->ElementType->Add/Edit/Delete,选择添加Solid 65号混凝土单元。

(2) 点击Element types窗口中的Options,设定Stress relax after cracking 为Include,即考虑混凝土开裂后的应力软化行为,这样在很多时候都可以提高计算的收敛效率。

(3) 下面我们要通过实参数来设置Solid 65单元中的配筋情况。

进入ANSYS主菜单Preprocessor-> Real Constants->Add/Edit/Delete,添加实参数类型1与Solid 65单元相关,输入钢筋的材料属性为2号材料,但不输入钢筋面积,即这类实参数是素混凝土的配筋情况。

(4) 再添加第二个实参数,输入X方向配筋为0.05,即X方向的体积配筋率为5%。

(5) 下面输入混凝土的材料属性。

混凝土的材料属性比较复杂,其力学属性部分一般由以下3部分组成:基本属性,包括弹性模量和泊松比;本构关系,定义等效应力应变行为;破坏准则,定义开裂强度和压碎强度。

下面分别介绍如下。

(6) 首先进入ANSYS主菜单Preprocessor-> Material Props-> Material Models,在Define Material Model Behavior 窗口中选择Structural-> Linear -> Elastic-> Isotropic,输入弹性模量和泊松比分别为30e9和0.2(7) 下面输入混凝土的等效应力应变关系,这里我们选择von Mises屈服面,该屈服面对于二维受力的混凝土而言精度还是可以接受的。

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

(完整版)ansys钢筋混凝土梁的建模方法约束方程法

用约束方程法模拟钢筋混凝土梁结构问题描述建立钢筋线对钢筋线划分网格后形成钢筋单元bhP 位移载荷建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图混凝土的应力云图混凝土开裂fini/clear,nostart/config,nres,5000/filname,yue su fang cheng 5 jia mi hun nin tu /prep7/title,rc-beamb=150h=300a=30l=2000displacement=5!定义单元类型et,1,solid65et,2,beam188et,3,plane42!定义截面类型sectype,1,beam,csolid,,0secoffset,centsecdata,8,0,0,0,0,0,0,0,0,0sectype,2,beam,csolid,,0secoffset,centsecdata,4,0,0,0,0,0,0,0,0,0!定义材料属性,混凝土材料属性mp,ex,1,24000mp,prxy,1,0.2tb,conc,1,1,9tbdata,,0.4,1,3,-1!纵向受拉钢筋mp,ex,2,2e5mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350!横向箍筋,受压钢筋材料属性mp,ex,3,2e5mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!生成钢筋线k,,k,,bkgen,2,1,2,,,hk,,a,ak,,b-a,akgen,2,5,6,,,h-2*akgen,21,5,8,,,,-100 *do,i,5,84,1l,i,i+4*enddo*do,i,5,85,4l,i,i+1l,i,i+2*enddo*do,i,8,88,4l,i,i-1l,i,i-2*enddo!受拉钢筋lsel,s,loc,y,alsel,r,loc,x,alsel,a,loc,x,b-a lsel,r,loc,y,acm,longitudinal,line type,2mat,2secnum,1 lesize,all,50lmesh,allallscmsel,u,longitudinalcm,hooping reinforcement,line!箍筋,受压钢筋type,2mat,2secnum,2lesize,all,50lmesh,all/eshape,1!将钢筋节点建为一个集合cm,steel,node!生成面单元,以便拉伸成体单元a,1,2,4,3lsel,s,loc,y,0lsel,a,loc,y,hlesize,all,,,10lsel,alllsel,s,loc,x,0lsel,a,loc,x,blesize,all,,,20type,3amesh,all!拉伸成混凝土单元type,1real,3mat,1extopt,esize,30extopt,aclear,1vext,all,,,,,-lalls!建立约束方程cmsel,s,hooping reinforcement cmsel,a,longitudinalnsll,s,1ceintf,,ux,uy,uzallsel,all!边界条件约束nsel,s,loc,y,0nsel,r,loc,z,0d,all,uyd,all,uxnsel,s,loc,y,0nsel,r,loc,z,-ld,all,uyd,all,ux!施加外部荷载/solunsel,allnsel,s,loc,y,hnsel,r,loc,z,-1000d,all,uy,-displacement alls!求解nlgeom,on nsubst,200 outres,all,all neqit,100pred,oncnvtol,f,,0.05,2,0.5 allselsolvefinish/post1allselplcrack,0,1plcrack,0,2!时间历程后处理/post26nsel,s,loc,z,-l/2*get,Nmin,node,0,num,min nsol,2,nmin,u,yprod,3,2,,,,,,-1nsel,s,loc,y,0nsel,r,loc,z,0*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nminrforce,5,Nmin,f,y*do,i,2,ndinqr(1,13)ni=ndnext(n0)rforce,6,ni,f,yadd,5,5,6n0=ni*enddoprod,7,5,,,,,,1/1000/axlab,x,uy/axlab,y,p(kn) xvar,3 plvar,7。

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS--理论基础(混凝土及钢筋单元)

ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;—-加强材料只能受拉压,不能承受剪切力。

三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型—-分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。

2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck —Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck—Prager等),三参数、五参数模型;混凝土开裂前,采用Druck—Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型.4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf—Ol—闭合裂缝的剪切传递系数,0。

9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt-静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。

加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性.例1、矩形截面钢筋混凝土板在中心点处作用-2mm的位移,分析板的受力、变形、开裂(采用整体模型分析法).材料性能如下:1、混凝土弹性模量E=24GPa,泊松比ν=0。

ANSYS 理论基础(混凝土及钢筋单元)

ANSYS  理论基础(混凝土及钢筋单元)

ANSYS 理论基础一、钢筋混凝土模型1、Solid65单元——模拟混凝土和岩石等抗压能力远大于抗拉能力的非均匀材料开发的单元,可以模拟混凝土中的加强钢筋(或玻璃纤维、型钢等);普通8节点三维等参元,增加针对混凝土材料参数和整体式钢筋模型;基本属性:——可以定义3种不同的加固材料;——混凝土具有开裂、压碎、塑性变形和蠕变的能力;——加强材料只能受拉压,不能承受剪切力。

三种模型:分离式模型——把混凝土和钢筋作为不同的单元来处理,各自划分单元,或钢筋视为线单元(杆件link-spar8或管件pipe16,20);钢筋和混凝土之间可以插入粘结单元来模拟界面的粘结和滑移;整体式模型——将钢筋分布于整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料;组合式模型——分层组合式:在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设(如应变沿截面高度为直线);或采用带钢筋膜的等参单元。

2、本构模型线性弹性、非线性弹性、弹塑性等;强度理论——Tresca、V on Mises、Druck-Prager等;3、破坏准则单轴破坏(Hongnested等)、双轴破坏(修正的莫尔库仑等)、三轴破坏(最大剪应力、Druck-Prager等),三参数、五参数模型;混凝土开裂前,采用Druck-Prager屈服面模型模拟塑性行为;开裂失效准则,采用William-Warnke五参数强度模型。

4、基本数据输入混凝土:ShrCf-Op—张开裂缝的剪切传递系数,0~1ShrCf-Ol—闭合裂缝的剪切传递系数,0.9~1UnTensSt—抗拉强度,UnCompSt—单轴抗压强度,(若取-1,则以下不必要)BiCompSt—双轴抗压强度,HydroPrs—静水压力,BiCompSt—静水压力下的双轴抗压强度,UnCompSt—静水压力下的单轴抗压强度,TenCrFac—拉应力衰减因子。

加固材料(材料号、体积率、方向角)二、其他材料模型在Ansys中,可在Help菜单中查阅各种不同单元的特性。

ANSYS分析钢筋混凝土结构技巧及实例详解

ANSYS分析钢筋混凝土结构技巧及实例详解

0 前言利用ANSYS分析钢筋混凝土结构时,其有限元模型主要有分离式和整体式两种模型。

这里结合钢筋混凝土材料的工作特性,从模型建立到非线性计算再到结果分析的全过程讲述了利用ANSYS进行钢筋混凝土结构分析的方法与技巧,并以钢筋混凝土简支梁为例,采用分离式有限元模型,说明其具体应用。

1 单元选取与材料性质1. 1 混凝土单元ANSYS中提供了上百种计算单元类型,其中Solid65单元是专门用于模拟混凝土材料的三维实体单元。

该单元是八节点六面体单元,每个节点具有三个方向的自由度( UX , UY , UZ) 。

在普通八节点线弹性单元Solid45 的基础上,该单元增加了针对于混凝土的材性参数和组合式钢筋模型,可以综合考虑包括塑性和徐变引起的材料非线性、大位移引起的几何非线性、混凝土开裂和压碎引起的非线性等多种混凝土的材料特性。

使用Solid65 单元时,一般需要为其提供如下数据:1)、实常数(Real Constants) :定义弥散在混凝土中的最多三种钢筋的材料属性,配筋率和配筋角度。

对于墙板等配筋较密集且均匀的构件,一般使用这种整体式钢筋混凝土模型。

如果采用分离式配筋,那么此处则不需要填写钢筋实常数。

2)、材料模型(Material Model) :在输入钢筋和混凝土的非线性材料属性之前,首先必须定义钢筋和混凝土材料在线弹性阶段分析所需的基本材料信息,如:弹性模量,泊松比和密度。

3)、数据表(Data Table) :利用数据表进一步定义钢筋和混凝土的本构关系。

对于钢筋材料,一般只需要给定一个应力应变关系的数据表就可以了,譬如双折线等强硬化(bilinear isotropic hardening)或随动硬化模型( kinematic hardening plasticity)等。

而对于混凝土模型,除需要定义混凝土的本构关系外,还需要定义混凝土材料的破坏准则。

在ANSYS中,常用于定义混凝土本构关系的模型有:1)多线性等效强化模型(Multilinear isotropic hardening plas2ticity ,MISO模型),MISO模型可包括20条不同温度曲线,每条曲线可以有最多100个不同的应力-应变点;2)多线性随动强化模型(Multilinear kinematic hardening plas2ticity ,MKIN 模型),MKIN 模型最多允许5个应力-应变数据点;3)Drucker2Prager plasticity(DP)模型。

ANSYS混凝土问题分析

ANSYS混凝土问题分析

ANSYS混凝土问题分析1.关于模型钢筋混凝土有限元模型根据钢筋的处理方式分为三种:分离式、整体式和组合式模型◆分离式模型:把混凝土和钢筋作为不同的单元来处理,即混凝土和钢筋各自被划分为足够小的单元,两者的刚度矩阵是是分开来求解的,考虑到钢筋是一种细长的材料,通常可以忽略起横向抗剪强度,因此可以将钢筋作为线单元处理。

钢筋和混凝土之间可以插入粘结单元来模拟钢筋与混凝土之间的粘结和滑移。

一般钢筋混凝土是存在裂缝的,而开裂必然导致钢筋和混凝土变形的不协调,也就是说要发生粘结的失效与滑移,所以此种模型的应用最为广泛。

◆整体式模型:将钢筋分布与整个单元中,假定混凝土和钢筋粘结很好,并把单元视为连续均匀材料,与分离式模型不同的是,它求出的是综合了混凝土与钢筋单元的整体刚度矩阵;与组合式不同之点在于它不是先分别求出混凝土与钢筋对单元刚度的贡献然后再组合,而是一次求得综合的刚度矩阵。

◆组合式模型组合式模型分为两种:一种是分层组合式,在横截面上分成许多混凝土层和若干钢筋层,并对截面的应变作出某些假设,这种组合方式在钢筋混凝土板、壳结构中应用较广;另一种组合方法是采用带钢筋膜的等参单元。

当不考虑混凝土和钢筋二者之间的滑移,三种模型都可以。

分离式和整体式模型使用于二维和三维结构分析。

就ANSYS而言,可以考虑分离式模型:混凝土(SOLID65)+钢筋(LINK单元或PIPE单元),认为混凝土和钢筋粘结很好。

如要考虑粘结和滑移,则可引入弹簧单元进行模拟,如果比较困难也可以采用整体式模型(带筋的SOLID65)。

2.本构关系及破坏准则◆本构关系混凝土本构关系的模型对钢筋混凝土结构的非线性分析有重大影响。

混凝土的本构就是表示在各种外荷载作用下的混凝土应力应变的响应关系。

在建立混凝土本构关系时一般都是基于现有的连续介质力学的本构理论,在结合混凝土的力学特性,确定甚至调整本构关系中各种所需的材料参数。

通常,混凝土的本构关系可以分为线性弹性、非线性弹性、弹塑性及其他力学理论等四类。

用ANSYS建立钢筋混凝土梁模型

用ANSYS建立钢筋混凝土梁模型

用ANSYS 建立钢筋混凝土梁模型问题描述:钢筋混凝土梁在受到中间位移荷载的条件下的变形以及个组成部分的应力情况。

一、用合并节点的方法模拟钢筋混凝土梁1.用solid65号单元以及beam188单元时材料特性钢材的应力应变关系混凝土的弹性模量采用线弹性B=150mmH=300mm图1钢筋混凝土结构尺寸图建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元合并单元节点后施加约束以及位移载荷进入求解器进行求解钢筋单元的受力云图混凝土的应力云图混凝土开裂2 使用单元solid45号单元与beam188 钢筋的应力应变关系不变,而混凝土应力应变关系为:混凝土单元钢筋单元力与位移曲线合并节点时的命令流:fini/clear,nostart/config,nres,5000/prep7/title,rc-beamb=150h=300a=30l=2000fcu=40ec=2.85e4displacement=10!定义单元类型et,1,solid45et,2,beam188et,3,plane42!定义截面类型sectype,1,beam,csolid,,0 secoffset,centsecdata,8,0,0,0,0,0,0,0,0,0 sectype,2,beam,csolid,,0 secoffset,centsecdata,4,0,0,0,0,0,0,0,0,0!定义材料属性,混凝土材料属性mp,ex,1,ecmp,prxy,1,0.2tb,kinh,1,,16tbpt,,0.000179067,5.10tbpt,,0.000358133,9.67tbpt,,0.0005372,1.37e1tbpt,,0.000716267,1.72e1 tbpt,,0.000895333,2.01e1 tbpt,,0.0010744,2.26e1tbpt,,0.001253467,2.44e1 tbpt,,0.001432533,2.58e1 tbpt,,0.0016116,2.66e1tbpt,,0.001790667,2.69e1 tbpt,,0.0019916,2.65e1tbpt,,0.002393467,2.57e1 tbpt,,0.002795333,2.48e1 tbpt,,0.0031972,2.40e1 tbpt,,0.003599067,2.32e1 tbpt,,0.0038,2.28e1tb,conc,1,1,9tbdata,,0.4,1,3,-1!纵向受拉钢筋mp,ex,2,2e5mp,prxy,2,0.3tb,bkin,2,1,2,1tbdata,,350!横向箍筋,受压钢筋材料属性mp,ex,3,2e5mp,prxy,3,0.25tb,bkin,3,1,2,1tbdata,,200!生成钢筋线k,,k,,bkgen,2,1,2,,,hk,,a,ak,,b-a,akgen,2,5,6,,,h-2*akgen,21,5,8,,,,-100*do,i,5,84,1l,i,i+4*enddo*do,i,5,85,4l,i,i+1l,i,i+2*enddo*do,i,8,88,4l,i,i-1l,i,i-2*enddo!受拉钢筋lsel,s,loc,y,alsel,r,loc,x,alsel,a,loc,x,b-alsel,r,loc,y,acm,longitudinal,linetype,2mat,2secnum,1lesize,all,50lmesh,allallscmsel,u,longitudinalcm,hooping reinforcement,line!箍筋,受压钢筋type,2mat,2secnum,2lesize,all,50lmesh,all/eshape,1!将钢筋节点建为一个集合cm,steel,node!生成面单元,以便拉伸成体单元a,1,2,4,3lsel,s,loc,y,0lsel,a,loc,y,hlesize,all,,,8lsel,alllsel,s,loc,x,0lsel,a,loc,x,blesize,all,,,10type,3amesh,all!拉伸成混凝土单元type,1real,3mat,1extopt,esize,20extopt,aclear,1vext,all,,,,,-lalls!合并节点nummrg,allnumcmp,all!边界条件约束nsel,s,loc,y,0nsel,r,loc,z,0d,all,uyd,all,uxnsel,s,loc,y,0nsel,r,loc,z,-l d,all,uyd,all,ux!施加外部荷载/solunsel,allnsel,s,loc,y,hnsel,r,loc,z,-1000d,all,uy,-displacementalls!求解nlgeom,onnsubst,50outres,all,allneqit,50pred,oncnvtol,f,,0.05,2,0.5allselsolvefinish/post1allsel/device,vector,1!时间历程后处理/post26nsel,s,loc,z,-l/2*get,Nmin,node,0,num,min nsol,2,nmin,u,yprod,3,2,,,,,,-1nsel,s,loc,y,0nsel,r,loc,z,0*get,Nnum,node,0,count *get,Nmin,node,0,num,min n0=Nminrforce,5,Nmin,f,y*do,i,2,ndinqr(1,13)ni=ndnext(n0)rforce,6,ni,f,yadd,5,5,6n0=ni*enddoprod,7,5,,,,,,1/1000/axlab,x,uy/axlab,y,p(kn)xvar,3plvar,7二、用约束方程法模拟钢筋混凝土梁1.用solid65号单元以及beam188单元时混凝土以及钢筋采用线弹性关系:建立钢筋线对钢筋线划分网格后形成钢筋单元建立混凝土单元对钢筋线节点以及混凝土节点之间建立约束方程后施加约束以及位移载荷进入求解器进行求解;钢筋单元的受力云图混凝土的应力云图混凝土开裂2 使用单元solid45号单元与beam188 使用混凝土的本构关系曲线钢材的本构关系曲线钢筋的von mises 应力混凝土的应力用在solid45号单元下,用合并节点法、约束方程法建立模中钢筋与混凝土之间的关系的时候的一个力与位移全程曲线的比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用大型通用有限元软件ANSYS进行钢筋混凝土结构的建模、计算分析、结果处理是目前
针对钢筋混凝土进行数值模拟的重要步骤。

如何采用ANSYS进行钢筋混凝土建模,能否把
握有限元模型的可行性、合理性是将有限元理论应用到实际工程中较为关键的一环。

按照目前在建模中对钢筋的处理方式,ANSYS钢筋混凝土建模方法主要分为三种:整体式、分离式以及组合式,每种方法都具有不同的建模特点,现略做总结如下。

一、整体式建模
ANSYS采用Solid65单元来模拟混凝土,所谓整体式建模也即是在建模过程中,通过对65单
元进行实常数的设置来考虑钢筋对混凝土结构的作用。

这种方法将钢筋弥散于整个单元中,
并视单元为连续均匀材料。

与其他方法比较,整体式建模的单元刚度矩阵综合了钢筋和混凝
土单元的刚度矩阵,并且是一次性求得综合的刚度矩阵。

因此,在采用整体建模方法时,在建模之前,应首先求得单元各个方向的配筋率,并设置实
常数,一般适用于体量较大,配筋比较规整的钢筋混凝土结构。

整体式建模所得计算结果对
比实验来讲,其计算的开裂荷载误差较小,但开裂荷载后的整体荷载位移曲线与实验相比误
差较大。

但采用整体建模方法的主要好处是能有效避免因为单元细分导致的应力奇异问题,
有利于提高整体计算的收敛性性能。

二、分离式建模
与整体式建模方法不同,分离式建模是指在建模过程中,考虑钢筋与混凝土的相互作用,分
别选用不同的单元来模拟钢筋和混凝土。

一般而言,钢筋采用线单元link8模拟,混凝土选
用配筋率为0的素混凝土Solid65单元模拟。

由于采用不同单元建模,如果认为结构在受外部荷载作用时,钢筋与混凝土在相互约束情况
下会产生相对滑移,这时可以在钢筋与混凝土之间添加粘结单元来模拟钢筋与混凝土之间的
粘结与滑移,一般采用非线性弹簧conbin39。

如果认为两者之间连接紧密,不会出现滑移,
可视为刚性连接,只需通过合并节点即可,也即是相当于两者节点耦合。

从上述表述可见,分离式模型可以揭示钢筋与混凝土之间相互作用的微观机理,而这也是整
体式模型无法做到的。

因此在需要对结构构件内的微观机理分析时,应采用分离式模型。


同时也可预见,由于要分别建立钢筋模型以及混凝土模型,在前期建模时工作量较大。

同时,因为在建模时需要划分出钢筋线,很容易导致在网格划分时单元形状的严重扭曲,从而加大
了在非线性计算过程中应力奇异现象出现的概率,整个结构计算收敛性较差。

三、组合式建模
组合式建模综合了整体式建模与分离式建模的建模特点,在实际工程中相比而言更具有操作性。

所谓组合式建模也即是当存在形状复杂钢筋线或者预应力钢筋或者有特殊材料制作的钢
筋时,对这部分特殊钢筋采用分离式建模,对其他普通钢筋则采用整体式建模。

该种方法相比其他方法来讲在可以探讨特殊钢筋的微观机理时,工作量适中,同时整体结构
计算的收敛性性能也大为改善。

综上所述,在实际操作中,如果结构体量较大,配筋比较规整,则可以考虑采用整体建模;
如果结构体量较小,划分钢筋线工作量较小或者存在特殊钢筋时,可以考虑采用分离式建模;如果这两种情况皆有,则可以考虑采用组合式的建模。

如果朋友们在进行钢筋混凝土非线性计算时,屡次出现收敛困难,而调整参数又无多大改善时,是否可以考虑换一种建模方式呢?。

相关文档
最新文档