光检测器(APD 特性表征公式)

合集下载

PIN和APD介绍

PIN和APD介绍

PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。

指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。

当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。

因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。

当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。

随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。

APD的倍增因子代表倍增后的光电流与首次光电流之比。

如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。

理论上反偏电压接近击穿电压时,M趋于无穷大。

),所以说他是可调的。

同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。

当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。

但此时产生的倍增噪声会远远大于倍增效应带来的好处。

因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。

APD倍增因子M的计算公式很多,一个常用的公式为M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。

对于Si 材料,n =1. 5 ~4 ;对于Ge 材料n = 2. 5~8 。

由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。

由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。

三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。

波分计算公式

波分计算公式

1再生段光衰耗、色散、光信噪比、Q值、BER值、DGD值计算说明1.1衰耗受限计算采用最坏值法设计:L=(Ps-Pr-C)/a式中:Ps:为光放大器(OAU板)单信道的最小输出功率,单位为dBm。

光功率放大器OAU单信道输出功率取为+1dBm。

Pr:为单信道接收端的最小允许输入功率,单位为dBm。

C:所有光连接器的衰减和,每个光连接器的衰减为0.5dB。

a:为光纤损耗系数(dB/km),包含了光纤衰减、光纤熔接衰减和光纤富裕度,默认值取0.275dB/km 。

衰耗受限距离计算:对于发端配置OAU(+1dB输出)、收端配置OAU(-32dB接收)的33dB的光中继段:L=(Ps-Pr-C)/a=[1-(-32)-2×0.5]/0.275=116km注:DWDM系统是OSNR受限系统,以上数据仅表明光放大器的在此距离内是不受限的。

本次工程站间距离及衰减已经过测试,指标值标注在传输系统配置图中。

1.2色散受限距离计算DCM的补偿方法详见3.1色散容限配置部分。

1.3级联光放大器时的光信噪比OSNR计算(1)、单个放大器产生的ASE噪声功率:一个光放大器产生的自发辐射噪声功率PASEˊ为PASEˊ=2Nsp(G-1)hv·△v(mw)式中:Nsp是放大器自发辐射因子v是光中心频率h是普朗克常数G是放大器的增益(倍数)△v是光接收机的带宽(取0.1nm)。

进而可以推导出,一个光放大器产生的以dBm计的自发辐射噪声功率:PASE = -58 + NFi + Gi(dBm)(1) 其中:NFi为光放大器噪声系数(dB);Gi为光放大器的增益(dB)。

(2)、复用通路光接收机输入端的信噪比①、系统模型包括N个级联光放大器的WDM系统模型如下图所示图中:L1、L2、… Ln-1分别是第1、2、… n-1个区段的衰减(dB);G1、G2、… Gn分别是第1、2、… n个光放大器的增益(dB)。

②、各光放大器产生的ASE噪声功率利用已经推导出的公式,首先分别计算出每个光放大器产生的ASE噪声功率PASEi (dBm)。

光检测器(APD特性表征公式)

光检测器(APD特性表征公式)

6.1 光电二极管的物理原理
光电二极管实际上类似于一个加了反向偏压的pn结。 它在发向偏压的作用下形成一个较厚的耗尽区。当光照射到 光电二极管的光敏面上时,会在整个耗尽区 (高场区) 及耗尽 区附近产生受激跃迁现象,从而产生电子空穴对。电子空穴 对在外部电场作用下定向移动产生电流。
只有少数载流子在电场作用下漂移
光检测器(APD特性表征公式)
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
主要内容
光电二极管的物理原理 光检测器噪声 检测器响应时间 雪崩倍增噪声 InGaAs APD结构 温度对雪崩增益的影响
光电检测器的要求
光电检测器能检测出入射在其上面的光功率,并完成光 /电信号的转换。对光检测器的基本要求是:
- 在系统的工作波长上具有足够高的响应度,即对一定的入 射光功率,能够输出尽可能大的光电流;
- 具有足够快的响应速度,能够适用于高速或宽带系统; - 具有尽可能低的噪声,以降低器件本身对信号的影响; - 具有良好的线性关系,以保证信号转换过程中的不失真; - 具有较小的体积、较长的工作寿命等。
目前常用的半导体光电检测器有两种:pin光电二极管 和APD雪崩光电二极管。
1. 能量大于或等于带隙
能量Eg的光子将激励价
带上的电子吸收光子的
能量而跃迁到导带上,
+-
可以产生自由电子空穴
对 (光生载流子)。
2. 耗尽区的高电
场使得电子空穴
对立即分开并在
反向偏置的结区
中向两端流动,
然后它们在边界
处被吸收,从而
在外电路中形成
光电流。
电子和空穴的扩散长度

光检测器介绍(PIN、APD详细讲解)

光检测器介绍(PIN、APD详细讲解)

例 (续)
光检测器暗电流:
iD2B 2qID B 2(1.6 1019 C)(4 109 A)(20106 Hz) 2.561020 A2
负载均方热噪声电流为:
iT2
4kBT B 4(1.381023 J / K)(293K) 20106 Hz 3231018 A2
倍增因子和响应度
光电二极管中所有载流子产生的倍增因子M定义为:
M

IM Ip

1

1
V /
VB
n
其中,IM 是雪崩增益后输出电流的平均值,而 Ip是未倍增时 的初级光电流,V是反向偏压,VB为二极管击穿电压,n一般 为 2.5~7。实际上,雪崩过程是统计过程,并不是每一个光 子都经历了同样的放大,所以M只是一个统计平均值。
因子F用于衡量由于倍增过程的随机性导致的检测器噪声的 增加。参数x称为过剩噪声指数,一般取决于材料,并在0~1 之间变化,x对于Si APD为0.3,对InGaAs APD为0.7,对Ge APD 为1.0。
总噪声
光检测器的总均方噪声电流为:
iN2


2 N

iQ2
iD2 B iD2 S

量子效率大约为90%,因此这个波长的响应度为:
q q hv hc
0.901.6 10 19 C
6.625 10 34 J s 3108 m/s
7.25 105
当波长为1300 nm时:
7.25 105A/W/m 1.30 106 m 0.942 A/W
当波长大于1600 nm时,光子能量不足以激发出一个电子,例
如In0.53Ga0.47As的带隙能量为Eg = 0.73 eV,故截止波长为:

PIN与APD介绍

PIN与APD介绍

PIN与APD介绍PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩⼆极管)饱与光功率⼜称饱与光功率即指最⼤负载。

指在⼀定得传输速率下,维持⼀定得误码率(10-10~10-12)时得光模块接收端最⼤可以探测到得输⼊光功率。

当光探测器在强光照射下会出现光电流饱与现象,当出现此现象后,探测器需要⼀定得时间恢复,此时接收灵敏度下降,接收到得信号有可能出现误判⽽造成误码现象,⽽且还⾮常容易损坏接收端探测器,在使⽤操作中应尽量避免超出其饱与光功率。

因此对于发射光功率⼤得光模块不加衰减回环测试会出现误码现象。

当APD输⼊光功率达到⼀定强度得时候,输出得光电流将趋于饱与。

随着温度得升⾼,APD得击穿电压V BR也随着上升,如果APD得⼯作电压(即⾼压)不变,APD得光电检测性能会变弱,灵敏度降低。

APD得倍增因⼦代表倍增后得光电流与⾸次光电流之⽐。

如图:由图可知,倍增因⼦M与反向偏置电压有关(反偏电压越⼤,斜率越⼤,M越⼤。

理论上反偏电压接近击穿电压时,M趋于⽆穷⼤。

),所以说她就是可调得。

同时可以瞧到APD雪崩光电⼆极管还存在⼀个雪崩电压(击穿电压)V B。

当反偏电压⼤于击穿电压时,M会急剧增⼤处于雪崩状态。

但此时产⽣得倍增噪声会远远⼤于倍增效应带来得好处。

因此实际使⽤中,总就是把反偏电压调到略⼩于雪崩电压得地⽅。

APD倍增因⼦M得计算公式很多,⼀个常⽤得公式为 M=1/1-(v/vB)n式中: n 就是由P-N 结材料决定得常数; V B 为理想反向偏压; V 为反向偏压得增加值。

对于Si 材料,n =1、 5 ~ 4 ;对于Ge 材料n = 2、 5~8 。

由式中还可瞧出,当| V | →| V B | 时, M → ∞, P-N结将发⽣雪崩击穿。

由公式可知,同样材料得APD管,同样偏置电压情况下,击穿电压越⼤,倍增因⼦越⼩。

PIN和APD介绍精编版

PIN和APD介绍精编版

PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。

指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。

当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。

因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。

当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。

随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。

APD的倍增因子代表倍增后的光电流与首次光电流之比。

如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。

理论上反偏电压接近击穿电压时,M趋于无穷大。

),所以说他是可调的。

同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。

当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。

但此时产生的倍增噪声会远远大于倍增效应带来的好处。

因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。

APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。

对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。

由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。

由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。

三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。

3.5APD光检测器

3.5APD光检测器
APD就是利用雪崩效应使光电流得到倍增的高灵敏度的检测器。
光电二极管
用雪崩光电二极管(APD)将光信号转换为电信号的过程如图所示。光信号包括信号光 和背景光;电信号输出包含信号、背景、咕电流和非倍增的暗电流;对三种电流.即 信号、背景和暗电流产生雪崩增益;系统的输出包含信号和噪声。
图2 光电检测过程
3) 光电二极管的响应速度是指它的光电转换速度。
4 暗电流主要由体内暗电流和表面暗电流组成。
谢谢
2
APD检测器
光电二极管
APD的雪崩倍增效应,是在二极管的P-N结上加高反向电压,在结区形成一个强电场; 在高场区内光生载流子被强电场加速,获得高的动能,与晶格的原子发生碰撞,使价 带的电子得到了能量;越过禁带到导带,产生了新的电子—空穴对;新产生的电子— 空穴对在强电场中又被加速,再次碰撞,又激发出新的电子—空穴对……如此循环下 去,形成雪崩效应,使光电流在管子内部获得了倍增。
3
APD光电检测器工作特性
PIN光电二极管
1 在一定波长的光照射下,光电检测器的平均输出电流与入射的平均光功率之
比称为响应度(或响应率)。
2 量子效率定义为通过结区的载流子数与入射的光子数之比,常用符号η 表示。
通过结区的光生载流子 数 Ip / e 入射到器件上的光子数 P / h
光纤通信技术与设备
第五讲 A P D 光检测器
目录
概述
1
APD检测器2Biblioteka APD检测器工作特性3
1
概述
概述
雪崩光电二极管应用光生载流子在其耗尽区(高场区)内的碰撞电离效应而获得光生
电流的雪崩倍增。
入射光 抗反射 膜
N+ P
强电场 区

光电探测器响应度公式

光电探测器响应度公式

光电探测器响应度公式
光电探测器的响应度(Responsivity)是衡量光电探测器探测效率的物理量之一,定义为光电流与入射光功率之比。

响应度公式通常表达为R=Iph/Pin,其中Iph为净光电流,Pin为光功率。

单位为A/W。

此外,响应度R也可以表示为光电转换器(又称光检测器)的平均输出电流Ip与光电转换器(又称光检测器)的平均输入功率Po的比值,即R=Ip/Po。

在PIN管中,光电流Ip和入射光功率Po、电子电荷e、普朗克常数h以及入射光频率f之间有关系,公式为Ip=(e Poη)/(h f),其中η为量子效率。

因此,响应度R也可以写为R=η/(h f/e)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P(x) P0 (1 es ()x )
P(x)
其中s()为材料在波长处的吸收
系数,P0是入射光功率,P(x)是通 过距离x后所吸收的光功率。
s() 增加
x
不同材料吸收系数与波长的关系
光吸收系数 (cm-1) 光穿透深度 (mm)
特定的材料只能用于 某个截止波长范围内
光子能量增大方向
耗尽区
pin光电二极管的工作原理
1. 能量大于或等于带隙
能量Eg的光子将激励价 带上的电子吸收光子的
能量而跃迁到导带上,
+-
可以产生自由电子空穴
对 (光生载流子)。
2. 耗尽区的高电
场使得电子空穴
对立即分开并在
反向偏置的结区
中向两端流动,
然后它们在边界
处被吸收,从而
在外电路中形成
光电流。
电子和空穴的扩散长度
材料的截止波长c由
其带隙能量Eg决定:
c

hc Eg

1.24 Eg (eV)
若波长比截止波长更长, 则光子能量不足以激励出 一个光子。
此图还说明,同一个 材料对短波长的吸收很强
烈 (s大) 。而且短波长激
发的载流子寿命较短,因 为由GaAs材料组成的,在300 k时 其带隙能量为1.43 eV,其截止波长为:
I p q (A/W)
Pin hv 例:能量为1.53x10-19 J的光子入射到光电二极管上,此二极管 的响应度为0.65 A/W,如果入射光功率为10 mW,则产生的光 电流为:
I p Pin (0.65 A/W) (10 μW) 6.5μA
响应度、量子效率 vs. 波长
当波长大于1600 nm时,光子能量不足以激发出一个电子,例
如In0.53Ga0.47As的带隙能量为Eg = 0.73 eV,故截止波长为:
c

1.24 Eg

1.24 0.73
1.7 μm
当波长<1100 nm时,光子在接近光电二极管的表面被吸收,
所产生的电子空隙对的复合寿命很短,很多载流子并没有产
量子效率大约为90%,因此这个波长的响应度为:
q q hv hc
0.901.6 10 19 C
6.625 10 34 J s 3108 m/s
7.25 105
当波长为1300 nm时:
7.25 105A/W/m 1.30 106 m 0.942 A/W
只有少数载流子在电场作用下漂移
多数载流子的 扩散行为被反 向电场抑制
由于常态下少数载流子含量很少,因此漂移行为非常微弱
pin光电二极管的结构
pin 光电二极管是在掺杂浓度很高的p型、n型半导体之间加 一层轻掺杂的n型材料,称为i (本征)层。由于是轻掺杂,电 子浓度很低,加反向偏置电压后形成一个很宽的耗尽层。
目前常用的半导体光电检测器有两种:pin光电二极管和 APD雪崩光电二极管。
6.1 光电二极管的物理原理
光电二极管实际上类似于一个加了反向偏压的pn结。它 在发向偏压的作用下形成一个较厚的耗尽区。当光照射到光 电二极管的光敏面上时,会在整个耗尽区 (高场区) 及耗尽区 附近产生受激跃迁现象,从而产生电子空穴对。电子空穴对 在外部电场作用下定向移动产生电流。
生光电流。所以在短波长段,响应度的值迅速降低。
雪崩二极管 (APD)
耗尽区
高阻材料
当电载流子在材料中流动时,一些电子 - 空穴对会重新
复合而消失,此时电子和空穴的平均流动距离分别为Ln和Lp, 这个距离即扩散长度,分别由下式决定:
Ln Dn n 1/2
Lp Dp p 1/2
Dn和Dp分别为电子和空穴的扩散系数,n和p为电子和空穴
重新复合所需的时间,称为载流子寿命。 在半导体材料中光功率的吸收呈指数规律:
c

hc Eg

6.6251034 J s 3108 m / s
1.43eV (1.61019 J / eV )
869nm
因此,检测器不能用于波长范围大于869 nm的系统中。
pin的量子效率
如果耗尽区宽度为w,在距离w内吸收光功率为:
Pw Pin (1 esw )


5.4 106 6 106
90%
在实际的应用中,检测器的量子效率一般在30%-95%之间。 一般增加量子效率的办法是增加耗尽区的厚度,使大部分的 入射光子可以被吸收。但是,耗尽区越宽,pin的响应速度就 越慢。因此二者构成一对折衷。
pin的响应度
光电二极管的性能常使用响应度来表征:
第六章 光检测器
主要内容
光电二极管的物理原理 光检测器噪声 检测器响应时间 雪崩倍增噪声 InGaAs APD结构 温度对雪崩增益的影响
光电检测器的要求
光电检测器能检测出入射在其上面的光功率,并完成光/ 电信号的转换。对光检测器的基本要求是:
- 在系统的工作波长上具有足够高的响应度,即对一定的入 射光功率,能够输出尽可能大的光电流; - 具有足够快的响应速度,能够适用于高速或宽带系统; - 具有尽可能低的噪声,以降低器件本身对信号的影响; - 具有良好的线性关系,以保证信号转换过程中的不失真; - 具有较小的体积、较长的工作寿命等。
0.65
1.0 0.9 0.45


Ip /q Pin / hv

1
Rf
1 es w
给定波长,与Pin无关
I p q q
Pin hv hc
给定波长,R为常数
由光子能量不足造成
造成原因:1) 材料对短波长吸收强烈; 2) 高能量载流子寿命短

如上图所示,波长范围为1300 nm - 1600 nm,InGaAs的
如果二极管的入射表面反射系数为Rf,初级光电流为:
Ip

Pin (1
Rf
)(1 esw )
q hv
其中q是电子电荷。量子效率定义为产生的电子-空隙对与入射 光子数之比:
Ip /q
Pin / hv

有一个InGaAs材料的光电二极管,在100ns的脉冲时段内 共入射了波长为1300nm的光子6×106 个,平均产生了 5.4× 106 个电子空隙对,则其量子效率可以等于:
相关文档
最新文档