光检测器(APD 特性表征公式)
PIN和APD介绍

PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
波分计算公式

1再生段光衰耗、色散、光信噪比、Q值、BER值、DGD值计算说明1.1衰耗受限计算采用最坏值法设计:L=(Ps-Pr-C)/a式中:Ps:为光放大器(OAU板)单信道的最小输出功率,单位为dBm。
光功率放大器OAU单信道输出功率取为+1dBm。
Pr:为单信道接收端的最小允许输入功率,单位为dBm。
C:所有光连接器的衰减和,每个光连接器的衰减为0.5dB。
a:为光纤损耗系数(dB/km),包含了光纤衰减、光纤熔接衰减和光纤富裕度,默认值取0.275dB/km 。
衰耗受限距离计算:对于发端配置OAU(+1dB输出)、收端配置OAU(-32dB接收)的33dB的光中继段:L=(Ps-Pr-C)/a=[1-(-32)-2×0.5]/0.275=116km注:DWDM系统是OSNR受限系统,以上数据仅表明光放大器的在此距离内是不受限的。
本次工程站间距离及衰减已经过测试,指标值标注在传输系统配置图中。
1.2色散受限距离计算DCM的补偿方法详见3.1色散容限配置部分。
1.3级联光放大器时的光信噪比OSNR计算(1)、单个放大器产生的ASE噪声功率:一个光放大器产生的自发辐射噪声功率PASEˊ为PASEˊ=2Nsp(G-1)hv·△v(mw)式中:Nsp是放大器自发辐射因子v是光中心频率h是普朗克常数G是放大器的增益(倍数)△v是光接收机的带宽(取0.1nm)。
进而可以推导出,一个光放大器产生的以dBm计的自发辐射噪声功率:PASE = -58 + NFi + Gi(dBm)(1) 其中:NFi为光放大器噪声系数(dB);Gi为光放大器的增益(dB)。
(2)、复用通路光接收机输入端的信噪比①、系统模型包括N个级联光放大器的WDM系统模型如下图所示图中:L1、L2、… Ln-1分别是第1、2、… n-1个区段的衰减(dB);G1、G2、… Gn分别是第1、2、… n个光放大器的增益(dB)。
②、各光放大器产生的ASE噪声功率利用已经推导出的公式,首先分别计算出每个光放大器产生的ASE噪声功率PASEi (dBm)。
光检测器(APD特性表征公式)

6.1 光电二极管的物理原理
光电二极管实际上类似于一个加了反向偏压的pn结。 它在发向偏压的作用下形成一个较厚的耗尽区。当光照射到 光电二极管的光敏面上时,会在整个耗尽区 (高场区) 及耗尽 区附近产生受激跃迁现象,从而产生电子空穴对。电子空穴 对在外部电场作用下定向移动产生电流。
只有少数载流子在电场作用下漂移
光检测器(APD特性表征公式)
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
主要内容
光电二极管的物理原理 光检测器噪声 检测器响应时间 雪崩倍增噪声 InGaAs APD结构 温度对雪崩增益的影响
光电检测器的要求
光电检测器能检测出入射在其上面的光功率,并完成光 /电信号的转换。对光检测器的基本要求是:
- 在系统的工作波长上具有足够高的响应度,即对一定的入 射光功率,能够输出尽可能大的光电流;
- 具有足够快的响应速度,能够适用于高速或宽带系统; - 具有尽可能低的噪声,以降低器件本身对信号的影响; - 具有良好的线性关系,以保证信号转换过程中的不失真; - 具有较小的体积、较长的工作寿命等。
目前常用的半导体光电检测器有两种:pin光电二极管 和APD雪崩光电二极管。
1. 能量大于或等于带隙
能量Eg的光子将激励价
带上的电子吸收光子的
能量而跃迁到导带上,
+-
可以产生自由电子空穴
对 (光生载流子)。
2. 耗尽区的高电
场使得电子空穴
对立即分开并在
反向偏置的结区
中向两端流动,
然后它们在边界
处被吸收,从而
在外电路中形成
光电流。
电子和空穴的扩散长度
光检测器介绍(PIN、APD详细讲解)

例 (续)
光检测器暗电流:
iD2B 2qID B 2(1.6 1019 C)(4 109 A)(20106 Hz) 2.561020 A2
负载均方热噪声电流为:
iT2
4kBT B 4(1.381023 J / K)(293K) 20106 Hz 3231018 A2
倍增因子和响应度
光电二极管中所有载流子产生的倍增因子M定义为:
M
IM Ip
1
1
V /
VB
n
其中,IM 是雪崩增益后输出电流的平均值,而 Ip是未倍增时 的初级光电流,V是反向偏压,VB为二极管击穿电压,n一般 为 2.5~7。实际上,雪崩过程是统计过程,并不是每一个光 子都经历了同样的放大,所以M只是一个统计平均值。
因子F用于衡量由于倍增过程的随机性导致的检测器噪声的 增加。参数x称为过剩噪声指数,一般取决于材料,并在0~1 之间变化,x对于Si APD为0.3,对InGaAs APD为0.7,对Ge APD 为1.0。
总噪声
光检测器的总均方噪声电流为:
iN2
2 N
iQ2
iD2 B iD2 S
量子效率大约为90%,因此这个波长的响应度为:
q q hv hc
0.901.6 10 19 C
6.625 10 34 J s 3108 m/s
7.25 105
当波长为1300 nm时:
7.25 105A/W/m 1.30 106 m 0.942 A/W
当波长大于1600 nm时,光子能量不足以激发出一个电子,例
如In0.53Ga0.47As的带隙能量为Eg = 0.73 eV,故截止波长为:
PIN与APD介绍

PIN与APD介绍PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩⼆极管)饱与光功率⼜称饱与光功率即指最⼤负载。
指在⼀定得传输速率下,维持⼀定得误码率(10-10~10-12)时得光模块接收端最⼤可以探测到得输⼊光功率。
当光探测器在强光照射下会出现光电流饱与现象,当出现此现象后,探测器需要⼀定得时间恢复,此时接收灵敏度下降,接收到得信号有可能出现误判⽽造成误码现象,⽽且还⾮常容易损坏接收端探测器,在使⽤操作中应尽量避免超出其饱与光功率。
因此对于发射光功率⼤得光模块不加衰减回环测试会出现误码现象。
当APD输⼊光功率达到⼀定强度得时候,输出得光电流将趋于饱与。
随着温度得升⾼,APD得击穿电压V BR也随着上升,如果APD得⼯作电压(即⾼压)不变,APD得光电检测性能会变弱,灵敏度降低。
APD得倍增因⼦代表倍增后得光电流与⾸次光电流之⽐。
如图:由图可知,倍增因⼦M与反向偏置电压有关(反偏电压越⼤,斜率越⼤,M越⼤。
理论上反偏电压接近击穿电压时,M趋于⽆穷⼤。
),所以说她就是可调得。
同时可以瞧到APD雪崩光电⼆极管还存在⼀个雪崩电压(击穿电压)V B。
当反偏电压⼤于击穿电压时,M会急剧增⼤处于雪崩状态。
但此时产⽣得倍增噪声会远远⼤于倍增效应带来得好处。
因此实际使⽤中,总就是把反偏电压调到略⼩于雪崩电压得地⽅。
APD倍增因⼦M得计算公式很多,⼀个常⽤得公式为 M=1/1-(v/vB)n式中: n 就是由P-N 结材料决定得常数; V B 为理想反向偏压; V 为反向偏压得增加值。
对于Si 材料,n =1、 5 ~ 4 ;对于Ge 材料n = 2、 5~8 。
由式中还可瞧出,当| V | →| V B | 时, M → ∞, P-N结将发⽣雪崩击穿。
由公式可知,同样材料得APD管,同样偏置电压情况下,击穿电压越⼤,倍增因⼦越⼩。
PIN和APD介绍精编版

PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)APD:avalanche photodiode(雪崩二极管)饱和光功率又称饱和光功率即指最大负载。
指在一定的传输速率下,维持一定的误码率(10-10~10-12)时的光模块接收端最大可以探测到的输入光功率。
当光探测器在强光照射下会出现光电流饱和现象,当出现此现象后,探测器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端探测器,在使用操作中应尽量避免超出其饱和光功率。
因此对于发射光功率大的光模块不加衰减回环测试会出现误码现象。
当APD输入光功率达到一定强度的时候,输出的光电流将趋于饱和。
随着温度的升高,APD的击穿电压V BR也随着上升,如果APD的工作电压(即高压)不变,APD的光电检测性能会变弱,灵敏度降低。
APD的倍增因子代表倍增后的光电流与首次光电流之比。
如图:由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。
理论上反偏电压接近击穿电压时,M趋于无穷大。
),所以说他是可调的。
同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。
当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。
但此时产生的倍增噪声会远远大于倍增效应带来的好处。
因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。
APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。
对于Si 材料,n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。
由式中还可看出,当| V | →| V B | 时, M → ∞, P-N结将发生雪崩击穿。
由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。
三、光电检测器光电检测器是把光信号功率转换成电信号电流的器件。
3.5APD光检测器

光电二极管
用雪崩光电二极管(APD)将光信号转换为电信号的过程如图所示。光信号包括信号光 和背景光;电信号输出包含信号、背景、咕电流和非倍增的暗电流;对三种电流.即 信号、背景和暗电流产生雪崩增益;系统的输出包含信号和噪声。
图2 光电检测过程
3) 光电二极管的响应速度是指它的光电转换速度。
4 暗电流主要由体内暗电流和表面暗电流组成。
谢谢
2
APD检测器
光电二极管
APD的雪崩倍增效应,是在二极管的P-N结上加高反向电压,在结区形成一个强电场; 在高场区内光生载流子被强电场加速,获得高的动能,与晶格的原子发生碰撞,使价 带的电子得到了能量;越过禁带到导带,产生了新的电子—空穴对;新产生的电子— 空穴对在强电场中又被加速,再次碰撞,又激发出新的电子—空穴对……如此循环下 去,形成雪崩效应,使光电流在管子内部获得了倍增。
3
APD光电检测器工作特性
PIN光电二极管
1 在一定波长的光照射下,光电检测器的平均输出电流与入射的平均光功率之
比称为响应度(或响应率)。
2 量子效率定义为通过结区的载流子数与入射的光子数之比,常用符号η 表示。
通过结区的光生载流子 数 Ip / e 入射到器件上的光子数 P / h
光纤通信技术与设备
第五讲 A P D 光检测器
目录
概述
1
APD检测器2Biblioteka APD检测器工作特性3
1
概述
概述
雪崩光电二极管应用光生载流子在其耗尽区(高场区)内的碰撞电离效应而获得光生
电流的雪崩倍增。
入射光 抗反射 膜
N+ P
强电场 区
光电探测器响应度公式

光电探测器响应度公式
光电探测器的响应度(Responsivity)是衡量光电探测器探测效率的物理量之一,定义为光电流与入射光功率之比。
响应度公式通常表达为R=Iph/Pin,其中Iph为净光电流,Pin为光功率。
单位为A/W。
此外,响应度R也可以表示为光电转换器(又称光检测器)的平均输出电流Ip与光电转换器(又称光检测器)的平均输入功率Po的比值,即R=Ip/Po。
在PIN管中,光电流Ip和入射光功率Po、电子电荷e、普朗克常数h以及入射光频率f之间有关系,公式为Ip=(e Poη)/(h f),其中η为量子效率。
因此,响应度R也可以写为R=η/(h f/e)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(x) P0 (1 es ()x )
P(x)
其中s()为材料在波长处的吸收
系数,P0是入射光功率,P(x)是通 过距离x后所吸收的光功率。
s() 增加
x
不同材料吸收系数与波长的关系
光吸收系数 (cm-1) 光穿透深度 (mm)
特定的材料只能用于 某个截止波长范围内
光子能量增大方向
耗尽区
pin光电二极管的工作原理
1. 能量大于或等于带隙
能量Eg的光子将激励价 带上的电子吸收光子的
能量而跃迁到导带上,
+-
可以产生自由电子空穴
对 (光生载流子)。
2. 耗尽区的高电
场使得电子空穴
对立即分开并在
反向偏置的结区
中向两端流动,
然后它们在边界
处被吸收,从而
在外电路中形成
光电流。
电子和空穴的扩散长度
材料的截止波长c由
其带隙能量Eg决定:
c
hc Eg
1.24 Eg (eV)
若波长比截止波长更长, 则光子能量不足以激励出 一个光子。
此图还说明,同一个 材料对短波长的吸收很强
烈 (s大) 。而且短波长激
发的载流子寿命较短,因 为由GaAs材料组成的,在300 k时 其带隙能量为1.43 eV,其截止波长为:
I p q (A/W)
Pin hv 例:能量为1.53x10-19 J的光子入射到光电二极管上,此二极管 的响应度为0.65 A/W,如果入射光功率为10 mW,则产生的光 电流为:
I p Pin (0.65 A/W) (10 μW) 6.5μA
响应度、量子效率 vs. 波长
当波长大于1600 nm时,光子能量不足以激发出一个电子,例
如In0.53Ga0.47As的带隙能量为Eg = 0.73 eV,故截止波长为:
c
1.24 Eg
1.24 0.73
1.7 μm
当波长<1100 nm时,光子在接近光电二极管的表面被吸收,
所产生的电子空隙对的复合寿命很短,很多载流子并没有产
量子效率大约为90%,因此这个波长的响应度为:
q q hv hc
0.901.6 10 19 C
6.625 10 34 J s 3108 m/s
7.25 105
当波长为1300 nm时:
7.25 105A/W/m 1.30 106 m 0.942 A/W
只有少数载流子在电场作用下漂移
多数载流子的 扩散行为被反 向电场抑制
由于常态下少数载流子含量很少,因此漂移行为非常微弱
pin光电二极管的结构
pin 光电二极管是在掺杂浓度很高的p型、n型半导体之间加 一层轻掺杂的n型材料,称为i (本征)层。由于是轻掺杂,电 子浓度很低,加反向偏置电压后形成一个很宽的耗尽层。
目前常用的半导体光电检测器有两种:pin光电二极管和 APD雪崩光电二极管。
6.1 光电二极管的物理原理
光电二极管实际上类似于一个加了反向偏压的pn结。它 在发向偏压的作用下形成一个较厚的耗尽区。当光照射到光 电二极管的光敏面上时,会在整个耗尽区 (高场区) 及耗尽区 附近产生受激跃迁现象,从而产生电子空穴对。电子空穴对 在外部电场作用下定向移动产生电流。
生光电流。所以在短波长段,响应度的值迅速降低。
雪崩二极管 (APD)
耗尽区
高阻材料
当电载流子在材料中流动时,一些电子 - 空穴对会重新
复合而消失,此时电子和空穴的平均流动距离分别为Ln和Lp, 这个距离即扩散长度,分别由下式决定:
Ln Dn n 1/2
Lp Dp p 1/2
Dn和Dp分别为电子和空穴的扩散系数,n和p为电子和空穴
重新复合所需的时间,称为载流子寿命。 在半导体材料中光功率的吸收呈指数规律:
c
hc Eg
6.6251034 J s 3108 m / s
1.43eV (1.61019 J / eV )
869nm
因此,检测器不能用于波长范围大于869 nm的系统中。
pin的量子效率
如果耗尽区宽度为w,在距离w内吸收光功率为:
Pw Pin (1 esw )
5.4 106 6 106
90%
在实际的应用中,检测器的量子效率一般在30%-95%之间。 一般增加量子效率的办法是增加耗尽区的厚度,使大部分的 入射光子可以被吸收。但是,耗尽区越宽,pin的响应速度就 越慢。因此二者构成一对折衷。
pin的响应度
光电二极管的性能常使用响应度来表征:
第六章 光检测器
主要内容
光电二极管的物理原理 光检测器噪声 检测器响应时间 雪崩倍增噪声 InGaAs APD结构 温度对雪崩增益的影响
光电检测器的要求
光电检测器能检测出入射在其上面的光功率,并完成光/ 电信号的转换。对光检测器的基本要求是:
- 在系统的工作波长上具有足够高的响应度,即对一定的入 射光功率,能够输出尽可能大的光电流; - 具有足够快的响应速度,能够适用于高速或宽带系统; - 具有尽可能低的噪声,以降低器件本身对信号的影响; - 具有良好的线性关系,以保证信号转换过程中的不失真; - 具有较小的体积、较长的工作寿命等。
0.65
1.0 0.9 0.45
Ip /q Pin / hv
1
Rf
1 es w
给定波长,与Pin无关
I p q q
Pin hv hc
给定波长,R为常数
由光子能量不足造成
造成原因:1) 材料对短波长吸收强烈; 2) 高能量载流子寿命短
例
如上图所示,波长范围为1300 nm - 1600 nm,InGaAs的
如果二极管的入射表面反射系数为Rf,初级光电流为:
Ip
Pin (1
Rf
)(1 esw )
q hv
其中q是电子电荷。量子效率定义为产生的电子-空隙对与入射 光子数之比:
Ip /q
Pin / hv
例
有一个InGaAs材料的光电二极管,在100ns的脉冲时段内 共入射了波长为1300nm的光子6×106 个,平均产生了 5.4× 106 个电子空隙对,则其量子效率可以等于: