无机化学课件全套课件200p 推荐

合集下载

《无机化学绪论》课件

《无机化学绪论》课件
更好地认识其在社会发展和人类生活中的作用和价值。
04 无机化学实验基础
实验目的与要求
掌握无机化学实验的基本操作方 法和技能。
了解无机化学实验的基本原理和 实验方法。
培养实验观察、分析和解决问题 的能力,培养实验素养和科学精
神。
实验安全与防护
遵守实验室安全规定,确保实验安全 。
注意个人防护,佩戴必要的防护用品 ,如实验服、护目镜、手套等。
熟悉常见危险品和危险源,掌握应急 处理方法。
实验器材与试剂
熟悉实验所需的仪器、设备和试剂,了解其使用方法和注意事项。 掌握实验器材的清洗、保养和维修方法,确保实验器材的完好和准确。
注意试剂的储存和使用,避免试剂的浪费和污染。
05 无机化学的学习方法与建 议
学习无机化学的方法
01
02
03
04
掌握基础知识
通过分析分子结构可以预测物 质的溶解度、熔点、沸点等性 质。
酸碱反应与氧化还原反应
酸碱反应是指酸和碱之间的中和反应,通过质子的转移实现。 氧化还原反应涉及电子的转移,是许多化学反应的重要类型,如燃烧和电池反应。
酸碱反应和氧化还原反应是理解无机化学中许多反应机制的基础。
03 无机化学的分类与应用
单质与化合物
详细描述
根据性质,无机化合物可分为酸、碱、盐、氧化物等;根据组成,无机化合物可分为单质、二元化合物、三元或 多元化合物等;根据结构,无机化合物可分为分子晶体、原子晶体、离子晶体等。这些分类有助于理解和研究无 机化合物的性质和反应。
无机化合物的应用
总结词
无机化合物在生产和生活中的应用广泛。
详细描述
在生产中,无机化合物被广泛应用于农业、工业、医药、环保等领域。例如,化肥、农 药、建筑材料、冶金、电子工业、新能源等领域都离不开无机化合物的支持。在生活中 ,我们也经常接触到无机化合物,如水、食盐、氧气等。了解无机化合物的应用有助于

大学无机化学课件完整版

大学无机化学课件完整版

原子的大小可以用原子半径来表示,原子半径随着原子序数的增加而呈
现周期性的变化。同一周期内,从左到右原子半径逐渐减小;同一族内,
从上到下原子半径逐渐增大。
02
电离能
表示原子失去电子的难易程度。电离能越大,原子越难失去电子。同一
周期内,从左到右电离能逐渐增大;同一族内,从上到下电离能逐渐减
小。
03
电负性
离子键的强度
离子键的强度与离子的电 荷、半径及电子构型有关, 电荷越高、半径越小,离 子键越强。
共价键及共价分子
共价键的形成
01
原子间通过共用电子对形成的化学键称为共价键,共价键具有
方向性和饱和性。
共价分子的结构
02
共价分子中原子间通过共价键连接,形成分子构型和空间构型。
共价键的类型
03
根据电子对的成键方式,共价键可分为σ键和π键,其中σ键比π
生活中无机化学应用实例
食盐
食盐是氯化钠的俗称,是生活中最常用的调味品之一,也是人体 必需的无机盐之一。
肥皂
肥皂的主要成分是高级脂肪酸钠盐,属于无机盐类表面活性剂, 具有去污、乳化等作用。
陶瓷
陶瓷材料大多由无机非金属氧化物组成,如氧化铝、氧化硅等, 具有优良的物理和化学性质。
工业中无机化学应用实例
键更稳定。
金属键及金属晶体
金属键的形成
金属原子间通过自由电子的相互作用形成的化学键称为金属键。
金属晶体的结构
金属晶体中金属原子通过金属键连接,形成紧密堆积的结构,具有 良好的导电、导热和延展性。
金属键的强度
金属键的强度与金属原子的电负性、原子半径及价电子数有关,电 负性越小、原子半径越大、价电子数越多,金属键越强。

无机化学基础知识PPT课件

无机化学基础知识PPT课件

元素周期表是元素周期律用表 格表达的具体形式,它反映元 素原子的内部结构和它们之间 相互联系的规律。
元素性质递变规律
原子半径
同一周期(稀有气体除外),从 左到右,随着原子序数的递增, 元素原子的半径递减;同一族中, 由上而下,随着原子序数的递增, 元素原子半径递增。
主要化合价
同一周期中,从左到右,随着原 子序数的递增,元素的最高正化 合价递增(从+1价到+7价),第 一周期除外,第二周期的O、F 元素除外;最低负化合价递增 (从-4价到-1价)第一周期除外, 由于金属元素一般无负化合价, 故从ⅣA族开始。元素最高价的 绝对值与最低价的绝对值的和为8。
THANKS
感谢观看
酸碱指示剂
用于指示酸碱反应终点的 试剂,如酚酞、甲基橙等。
沉淀溶解平衡原理及应用
沉淀溶解平衡
应用
在一定条件下,难溶电解质在溶液中 的溶解与沉淀达到动态平衡。
通过控制溶液中的离子浓度,可实现 难溶电解质的分离、提纯和制备。
溶度积常数(Ksp)
表示难溶电解质在溶液中达到沉淀溶 解平衡时,各离子浓度幂的乘积,是 衡量难溶电解质溶解度的重要参数。
元素的金属性和非金 属性
同一周期中,从左到右,随着原 子序数的递增,元素的金属性递 减,非金属性递增;同一族中, 由上而下,随着原子序数的递增, 元素的金属性递增,非金属性递 减。
03
化学键与分子结构
离子键形成及特点
离子键的形成
通过原子间电子转移形成正、负离子,由静电作用相互吸引。
离子键的特点
较高的熔点和沸点,良好的导电性和导热性,在水溶液中易离 解。
03
波尔模型
电子只能在一些特定的轨道上运动,电子在这些轨道上运动时离核的远

无机化学第一章 PPT课件

无机化学第一章 PPT课件

若溶液由溶剂 A 和难挥发非电解质 B 组成:
* * pA = p* (1 x ) = p p A B A A xB
* Δp = p* p = p A A A xB
在稀溶液中:
nB nB nB xB = = = bBM A nA + nB nA mA /M A
由以上两式得:
Δp = p MAbB = kbB
(a) 在生理盐水中
(b) 在低渗 NaCl 溶液中
(c) 在高渗 NaCl 溶液中
图 1-2
红细胞在不同浓度 NaCl 溶液中的形态示意图
将红细胞置于渗透浓度高于 320 mmol· L-1 的 高渗 NaCl 溶液中,在显微镜下观察,可见红细 胞逐渐皱缩,这种现象医学上称为质壁分离。
例题
2.晶体渗透压力和胶体渗透压力 由小分子和小离子所产生的渗透压力称为 晶体渗透压力。 由大分子和大离子所产生的渗透压力称为 胶体渗透压力。 血浆的渗透压力主要是晶体渗透压力,而 胶体渗透压力很小。在 37 ℃ 时,血浆的渗透压 力为 770 kPa,其中胶体渗透压力仅约为 4 kPa。
(二) 渗透压力与浓度、温度的关系
1877 年,弗菲尔发现如下两个规律: (1)在热力学温度一定时,非电解质稀溶液 的渗透压力与溶液的浓度成正比; (2)在浓度一定时,非电解质稀溶液的渗透 压力与热力学温度成正比。 1886 年,范托夫归纳出非电解质稀溶液的渗 透压力与浓度和热力学温度之间的关系:
对于电解质稀溶液,渗透压力的计算公式可 以改写为:
= cos, B RT
例题
(四)渗透压力在医学上的意义
1.等渗溶液、低渗溶液和高渗溶液 医学上的等渗溶液、低渗溶液和高渗溶液是 以血浆的渗透压力或渗透浓度为标准来衡量的, 正常人血浆的渗透浓度为 280~320 mmol· L-1。医 学上规定渗透浓度在 280~320 mmol· L-1范围内的 溶液为等渗溶液;渗透浓度小于 280 mmol· L-1的 溶液为低渗溶液;渗透浓度大于 320 mmol· L-1的 溶液为高渗溶液。 将红细胞置于渗透浓度为 280~320 mmol· L-1 的等渗 NaCl 溶液中,在显微镜下观察,红细胞 的形态没有发生变化。 将红细胞置于渗透浓度低于 280 mmol· L-1 的低渗 NaCl 溶液中,在显微镜下观察,可见红 细胞逐渐胀大,最后破裂,释出血红蛋白使溶液 呈浅红色,这种现象医学上称为溶血。

《无机化学》课件

《无机化学》课件

酸碱反应与沉淀反应
总结词
酸碱反应和沉淀反应是无机化学中常见的反应类型,需要掌握其 基本原理和规律。
酸碱反应
理解酸碱质子理论,掌握酸碱反应的规律和特点,如强酸制备弱酸 、水解反应等。
沉淀反应
研究沉淀的形成和溶解,了解沉淀的生成、转化和溶解等基本规律 。
氧化还原反应与配位反应
总结词
01
氧化还原反应和配ቤተ መጻሕፍቲ ባይዱ反应是无机化学中的重要反应类型,需要
酸碱反应与离子平衡
酸碱反应
酸和碱之间的中和反应,生成盐和水 。
酸碱指示剂
离子平衡
溶液中离子间的相互作用和平衡状态 ,如水的电离平衡、沉淀溶解平衡等 。
用于指示溶液酸碱度的指示剂,如酚 酞、甲基橙等。
氧化还原反应与电化学
氧化还原反应
电子转移的反应,包括氧化和还 原两个过程。
原电池
将化学能转化为电能的装置,由 正负极和电解质溶液组成。
存储材料,为新能源技术的发展提供重要的支撑。
无机化学在环保领域的应用
总结词
无机化学在环保领域的应用主要涉及大气、水体和土壤的污染控制与治理,以及废物处理和资源化利用等方面。
详细描述
随着工业化和城市化进程的加速,环境污染问题日益严重。无机化学在环保领域的应用主要涉及大气、水体和土 壤的污染控制与治理,以及废物处理和资源化利用等方面。通过研究无机物质的性质和反应机制,可以开发出高 效、低成本的污染物处理技术和资源化利用方案,为环境保护事业的发展做出重要贡献。
无机化学在生物医学领域的应用
总结词
无机化学在生物医学领域的应用主要涉及药物设计与 合成、生物成像技术和生物医用材料等方面。
详细描述
生物医学领域的发展对于人类的健康和生活质量的提高 具有重要意义。无机化学在生物医学领域的应用主要涉 及药物设计与合成、生物成像技术和生物医用材料等方 面。通过研究无机化合物的生物活性和反应机制,可以 开发出高效、低毒的药物和生物医用材料,为疾病诊断 和治疗提供新的手段和途径。同时,无机化学在生物成 像技术方面也具有广泛的应用前景,如荧光探针、磁共 振成像等,为生物医学研究提供重要的技术支持。

大学无机化学课件完整版[优质ppt]

大学无机化学课件完整版[优质ppt]

机 化
n=1.0 mol时, Vm=22.414L=22.414×10-3 m3
学 基 础
R pV 101P3 a2 22 5.4 1 1 0 3m 43
nT
1.m 0 o2l7 .13K 5


8.31J4 m o 1K l1
R=8.314 kPaLK-1mol-1
人们将符合理想气体状态方程的气体,称 为理想气体。
无 机 化 学
基 无机化学
础 教 程
第一章 气体和溶液


§1.1 气体定律




§1.2 稀溶液的依数性


§1.1 气体定律
无 机
1.1.1 理想气体状态方程


基 础
1.1.2 气体的分压定律


1.1.1 理想气体状态方程
pV = nRT
R——摩尔气体常数
无 在STP下,p =101.325 kPa, T=273.15 Kp础源自教 程pM = RT
=m/V
1.1.2 气体的分压定律
组分气体:
理想气体混合物中每一种气体叫做组
无 分气体。

化 分压:


组分气体B在相同温度下占有与混合
础 教
气体相同体积时所产生的压力,叫做组分
程 气体B的分压。
pB

nBRT V
分压定律:
混合气体的总压等于混合气体中各组分
气体分压之和。
162mol
理想气体状态方程的应用:
1. 计算p,V,T,n中的任意物理量

pV = nRT
机 化
2. 确定气体的摩尔质量

无机化学(本科)全套教学课件pptx-2024鲜版

无机化学(本科)全套教学课件pptx-2024鲜版

9
酸碱平衡常数计算与应用
2024/3/28
酸碱平衡常数定义
01
表示酸碱反应平衡时,生成物浓度幂之积与反应物浓度幂之积
的比值。
酸碱平衡常数计算
02
通过测定平衡时各物质的浓度,利用平衡常数表达式进行计算。
酸碱平衡常数应用
03
用于预测酸碱反应的方向、程度和速率,以及判断酸碱的强度。
10
沉淀溶解平衡原理及影响因素
氧化剂与还原剂
氧化剂接受电子,还原剂失去电 子。 2024/3/28
氧化还原反应类型
根据反应物和生成物的性质分类, 如金属与非金属、酸与碱等。
氧化数概念
表示元素在化合物中的氧化状态, 通过计算化合价确定。
14
原电池与电解池工作原理
原电池工作原理
将化学能转化为电能的装置,由正负极和电 解质组成。
电极反应与电池反应
无机化学(本科)全套教 学课件pptx
2024/3/28
1
contents
目录
• 无机化学概述与基础知识 • 酸碱反应与沉淀溶解平衡 • 氧化还原反应与电化学基础 • 配位化合物与金属有机化学 • 无机固体化学与纳米材料 • 无机合成与绿色合成技术
2024/3/28
2
01
无机化学概述与基础知识
2024/3/28
2024/3/28
沉淀的溶解
利用某些试剂使已生成的 沉淀溶解,如胃药中的氢 氧化铝治疗胃酸过多。
分步沉淀
当溶液中存在多种难溶电 解质时,通过控制条件可 实现分步沉淀,从而分离 出各种难溶电解质。
12
03
氧化还原反应与电化学基础
2024/3/28
13
氧化还原反应原理及类型

《无机化学》课件.ppt

《无机化学》课件.ppt

10
Chemical Reaction
能否发生(反应方向)
能量转换(热效应)
化 学
反应限度(化学平衡)
反 应
反应速率
化 学
反应机理



首页
上一页
下一页
化反
学 热
应 的 可
力能
学性
反 应 的 现 实 性
末页
11
研究内容包括两个方面
①热化学:化学和物理变化中的能量转换 问题。以热力学第一定律为基础。 (the first law of thermodynamics)
题,起化学与工程技术间的桥梁作用。
首页
上一页
下一页
末页
1
2.《无机化学》课程的任务
1)了解近代化学的基本理论,掌握必要的 化学基本知识和基本技能。
2)了解化学在工程技术上的应用,能运用 化学的观点来理解相关学科中涉及化学的有 关问题。
3)学会正确的学习方法和研究问题的方法。
首页
上一页
下一页
末页
2
3.《无机化学》课程的学习内容
首页
上一页
下一页
末页
16
状态函数的特点
➢与状态一一对应;
➢状态函数之间是相互关联的,如pV=nRT;
➢当体系的状态发生变化时,状态函数的变化量只与体系的 始、末态有关,而与变化的实际途径无关。
以下例子
说明:当
外压从3pº变为p°
首页
上一页
下一页
末页
15
3. 状态与状态函数state and state function
状态就是体系一切性质的总和。
如体系的宏观性质都处于定值,则体系为平衡态。 状态变化时,体系的宏观性质也必然发生部分或 全部变化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面向21世纪课程教材
无机化学
第四版
大连理工大学无机化学教研室编
绪论
一、化学:在分子、原子或离子的层次上研究物质 的组成、结构、性质、变化及其内在联系和外界变 化条件的科学。
二、分类(传统)
1、有机化学:研究有机物的化学。
有机物——含碳元素的化合物(碳的氧化物、碳酸 盐及氰化物除外)
2、无机化学——研究元素和有机物以外的所有化合 物的化学。
1-1-1 理想气体状态方程式 描述气体状态的四个物理量:V、p、T、n 理想气体状态方程:pV=nRT 理想气体:气体分子不占空间、分子间无作用力。 真实气体在低压高温条件下近似看作理想气体。 单位:p——Pa, V——m3 , T ——K,
n—— mol 标准状态下,T = 273.15K , p =101325Pa ,
1-2-2 分压定律的应用 例1-3 P4
例1-4 P5
1-4 真实气体 理想气体:气体分子不占空间、分子间无作用力 真实气体在低压高温条件下近似看作理想气体 真实气体应用理想气体状态方程计算,有些气体
产生的偏差较小,如H2、O2、N2 等;有些气 体产生的偏差较大,如CO2、H2O(g) 等,而 另一些气体在高压下常出现偏差 产生偏差的原因: 1、气体分子体积的影响 2、气体分子间相互作用的影响
它以元素周期表和原子结构理论为基础,研究100 多种元素的单质和无机化合物的制备、结构、性质 及变化规律。
分支学科:生物无机、无机合成、无机高分子化学、 稀土化学、配位化学等。
3、分析化学:研究物质化学组分的鉴定、测定方 法和有关原理。
分支学科:光谱、色谱、质谱及核磁共振分析。 4、物理化学:以物理学的原理和方法研究物质及其
(2.0 3.0)mol (7.0 10.0)mol
1
3
(2.0 0)mol =1.0mol 2
ξ =1.0mol时,表明按该化学反应方程进 行了1.0mol反应,即表示1.0mol N2和 1.0mol的3H2反应并生成了1.0mol的 2NH3
从上面计算可看出,无论用反应物和产 物中的任何物种的物质的量的变化量来 计算反应进度ξ ,结果都相同。
2-2-3 热力学第一定律 数学表达式
由:始态U1 QW((传所递做的的热功量))终态U2
——混合气体的总压等于混合气体中各组分气体的 分压之和
数学表达式: p = p1 + p2 + p3+····· 根据 pBV=nBRT
n=n1 +n2+n3+····· 推出:pB /p = nB/n
令 xB = nB/n ---第B 组分气体的摩尔分数
则 pB = nB/n× p = xB p
反应,以寻求化学性质与物理性质本质联系的普遍 规律。是化学的理论部分。 三、重要性及学习方法 1、学习态度、方法。 2、听课效率、笔记、作业、实验。
主要参考书 大连理工大学 无机化学 第三版 武汉大学等 无机化学 第三版 北京师范大学等 无机化学 第三版 无机化学释疑与习题解析
第一章 气 体
1-1 理想气体状态方程式 气体的基本物理特征:扩散性和可压缩性 主要表现 1、气体没有固定的体积和形状 2、气体最易被压缩 3、不同种的气体能以任意比例相互均匀混合 4、气体的密度很小
n= 1 mol 气体的标准摩尔体积 V = 22.414x10 -3 m 3 气体常数 R=8.314 J·mol-1 ·K-1
1-1-2 理想气体状态方程式的应用 1、计算P、V、T、n 中的任意物理量 例1-1 P2
2、确定气体的密度和摩尔质量 例1-2 P3
1-2 气体混合物
1-2-1 混合气体分压定律
注意:状态函数的变化值并不是状态函数。
2-1-3 过程
定温过程:T始=T终 定压过程:p始=p终 定容过程:△V=0
2-1-4 相
相:系统中物理和化学性质完全相同而与 其它部分有明确界面的部分
均相系统或单相系统
非均相系统或多相系统
2-1-5 化学反应方程式和反应进度
1、正确书写化学反应方程式
(1)根据实验事实,正确写出反应物和产 物的化学式
真实气体的状态方程式---van der Waals 气体状态方程:
(p
a
n2 V2
)(V
nb)
nRT
式中a、b分别是对气体压力和体积较正中的 相关常量,称van der Waals常量。
每种气体的a、b值不同。
第二章 热 化 学
2-1 基本概念
2-1-1 系统和环境
系统: 敞开系统: 封闭系ห้องสมุดไป่ตู้:(本章主要研究对象) 隔离系统:(或孤立系统) 环境: 2-1-2 状态与状态函数
1、状态:
指系统物理性质和化学性质的综合表现
2、状态函数:
确定系统热力学状态的宏观性质的物理量,
如p、V、T、U、n 等
3、状态函数的特征:
A、状态函数随系统状态而发生改变。
B、状态函数的变化值仅取决于系统的始 终态,而与系统所经历的途径无关。
例:ΔT=308K–298K=10K只与系统的初 终态温度T有关,而与过程无关。
2-2 热力学第一定律
2-2-1 热和功 热Q——温度不同时的能量交换(传递) 功W——除热以外的其它形式传递的能 功的形式:包括体积功和非体积功。
对于体积功:
W V2 p dv V1
当p始 = p终 = p时,则: W = -p△V=-p(V2-V1) 注意:热与功与过程有关,因而它们都不是 状态函数。
规定:
Q与W的取值正、负有不同的规定: Q为正(+)值,则系统吸热
Q Q为负(-)值,则系统放热 W为正(+)值,则环境对系统作功
W W为负(-)值,则系统对环境作功
2-2-2 热力学能(或内能):
指热力学系统内部能量的总和。(用符号U 表示)
注意:
A、U属于状态函数,其单位为KJ(或J)。
B、系统内能(U)的绝对值无法确定,但可 通过实验确定其变化值(△U)。
(2)配平(包括原子种类和数量、离子电 荷)
(3)标明物质的状态( g , l , s , aq)
2、反应进度 P24
例: N2(g) + 3H2(g) = 2NH3(g) ξ
开始nB/mol 3.0 10.0 0
0
t时nB/mol 2.0 7.0 2.0 ξ
n(N2 ) n(H2 ) n(NH3) (N2 ) (H2 ) (NH3)
相关文档
最新文档