高中数学集合测试题(含答案和解析)

合集下载

(压轴题)高中数学必修一第一单元《集合》测试(有答案解析)

(压轴题)高中数学必修一第一单元《集合》测试(有答案解析)

一、选择题1.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则MN =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞2.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或24.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2805.已知集合{},M m m a a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①1A .4B .3C .2D .16.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .07.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤8.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+9.在整数Z 集中,规定被5除所得余数为k 的所有整数组成“一类”,记为[]k ,即[]{}|5,k x x n n Z k ==+∈,0,1,2,3,4k =,给出如下四个结论:①[]20183∈;②[]20183-∈;③[][][][][]01234Z =;④“整数a ,b 属于同‘一类’”的充要条件是“[]0a b -∈”;其中正确结论的个数是( )A .1B .2C .3D .410.对于集合A 和B ,令{,,},A B x x a b a A b B +==+∈∈如果{2,},S x x k k Z ==∈{}|21,T x x k x Z ==+∈,则S T +=( )A .整数集ZB .SC .TD .{41,}x x k k Z =+∈11.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦12.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 14.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.15.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____16.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.17.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______18.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________ 19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.已知集合{}220,A x x x x R =+-=∈,集合{}20,B x x px p x R =++=∈. (1)若{}1A B ⋂=,求AB ;(2)若12,x x B ∈且22123x x +=,求p 的值.23.设{}{},1,05U R A x x B x x ==≥=<<,求()UA B 和()U A B ∩24.已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-. (1)若()UA B R ⋃=,求a 的取值范围; (2)若AB B ≠,求a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.2.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.3.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.4.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.5.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,1==,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.6.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题7.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题8.A【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A 【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.9.C解析:C 【分析】根据“一类”的定义分别进行判断即可. 【详解】 ①201854033÷=⋯,2018[3]∴∈,故①正确;②20185(404)2-=⨯-+,2018[3]-∉,故②错误; ③因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故③正确;④整数a ,b 属于同 “一类”, ∴整数a ,b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.故④正确. 正确的结论为①③④3个. 故选:C . 【点睛】本题主要考查新定义的应用,利用定义正确理解“一类”的定义是解决本题的关键,是中档题.10.C解析:C由题意分别找到集合S ,T 中的一个元素,然后结合题中定义的运算确定S T +的值即可. 【详解】由题意设集合S 中的元素为:2,k k Z ∈,集合T 中的元素为:21,m m Z +∈, 则S T +中的元素为:()22121k m k m ++=++, 举出可知集合S T T +=. 故选:C . 【点睛】本题主要考查集合的表示方法,集合的运算法则等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1. ∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.14.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.15.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解. 【详解】 由题:B A ⊆当0a =时,B =∅符合题意; 当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=- 所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-. 故答案为:{}1,0,1- 【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.16.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a ≥或1a = 【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可. 【详解】由题意可得,集合A 为φ或有且仅有一个元素, 当A φ=时,方程()21210a x x -++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.17.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案. 【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾; ②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}Bx x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}-- 【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.18.【分析】先化简集合利用分类讨论和即可求出构成的集合【详解】由可得:即:解得或故:由可得:当时方程无实数解此时满足当时方程的实数解为故:由可得:或解得或的所有取值构成的集合为:故答案为:【点睛】本题主解析:11{0,,}24-【分析】先化简集合B ,利用A B ⊆,分类讨论=0a 和0a ≠,即可求出构成a 的集合. 【详解】由{}2280B x x x =--=可得:2280x x --= 即:()()240x x +-= 解得2x =-或4x = 故:{}2,4B =- {}10,A x ax x R =+=∈由10ax += 可得:1ax =-当0a =时,方程1ax =-无实数解,此时A =∅,满足A B ⊆ 当0a ≠时,方程1ax =-的实数解为1x a =-,故:1{}A a=- 由A B ⊆可得:12a -=-或14a -= 解得12a =或14a =-a 的所有取值构成的集合为:11{0,,}24-.故答案为:11{0,,}24-. 【点睛】本题主要考查了集合间的基本关系以及一元二次方程的解法,要注意集合A 是集合B 的子集时,集合A 有可能是空集.19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R RR,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解. 【详解】因为集合A 只有二个子集, 所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±. 【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可; (2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在. 【详解】{}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆42432a a -<<⎧∴⎨-<<⎩4233a ⇒-<<,即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件,则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅. 【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题.22.(1)12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭;(2))322p =-或)322p =或1p =-.【分析】(1)由{}1A B ⋂=可得1B ∈,求出p 后可求B ,从而可求A B .(2)利用韦达定理可得关于p 的方程,从而可求p 的值. 【详解】(1)因为{}1A B ⋂=,故1B ∈,所以2110p p +⨯+=,解得12p =-, 故20x px p ++=即为211022x x --=,其解为1211,2x x ==-,故11,2B ⎧⎫=-⎨⎬⎩⎭,而{}2,1A =-, 故12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭. (2)因为12,x x B ∈,故12,x x 为20x px p ++=的根.若12x x =,则12x x ==122x x ==-,此时20x px p ++=,故)322p =-或)322p =.若12x x ≠,则12,x x 为20x px p ++=的两个不同的解,而22123x x +=即为()2121223x x x x +-=,所以2230p p --=,解得1p =-或3p =.又240p p ∆=->,故0p <或4p >,故3p =舍去. 故p 的值为()3622p -=-或()3622p +=或1p =-.【点睛】易错点点睛:本题中,注意12,x x B ∈的含义为12,x x 为方程的根,解析中要注意根据两者是否相等分类讨论. 23.(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<, 所以{}|1UA x x =<,{0UB x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥.【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 24.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭.【分析】 (1)先计算UA ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出A B B =时a 的取值范围,再求其补集即可.【详解】(1)∵{}|02A x x =≤≤,∴{|0UA x x =<或}2x >,若()UA B R ⋃=,则320322a aa a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)若AB B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭,故A B B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞⎪⎝⎭ 【点睛】本题主要考查了集合的交并补运算,属于中档题. 25.(1)R (2)106m <≤或413m ≤≤【分析】(1)求出集合A ,B ,根据集合的并集运算即可; (2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围. 【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞, 所以{|04}B x x =<, 所以AB R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C AB ⊆,所以0132mm <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩, 解得106m <≤或413m ≤≤,故实数m 的取值范围106m <≤或413m ≤≤.【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.(1)(){|24}RA B x x ⋂=≤<(2)1a =【分析】化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围. 【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}RA B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a =综上,实数a 的取值范围是1a =. 【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题.。

(典型题)高中数学必修一第一单元《集合》测试题(含答案解析)

(典型题)高中数学必修一第一单元《集合》测试题(含答案解析)

一、选择题1.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-22.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b cB .()(),,c a b dC .(][),,a c d bD .()(),,c a d b3.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .()4,110+D .()1,110+4.集合{}*|421A x x N =--∈,则A 的真子集个数是( )A .63B .127C .255D .5115.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个6.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .47.设U 为全集,()UB A B =,则A B 为( )A .AB .BC .UB D .∅8.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .19.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,111.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,, D .{}12, 12.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .38二、填空题13.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.14.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{}2,,G x x a b a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号)15.设全集{}22,3,3U a a =+-,集合{},3A a =,{}2U C A =,则a =___________.16.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________17.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.18.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x B m n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)19.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________20.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.三、解答题21.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围.22.已知集合{}13A x x =<<,{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若A B B ⋃=,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.23.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求(1)()UA B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.24.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q∧为真,求a 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围. 26.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.2.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.3.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<, ()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.4.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N =--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3, 故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.5.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】 因为91(0,9)A xx ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---, 所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.6.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

高中数学--《集合与逻辑》测试题(含答案)

高中数学--《集合与逻辑》测试题(含答案)

高中数学--《集合与逻辑》测试题(含答案)1.已知集合A={0,1,2},集合B={x|x﹣1≥0},则A∩B的真子集个数为()A.1 B.2 C.3 D.4【答案解析】C解:因为集合A={0,1,2},集合B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2},故A∩B的真子集个数为22﹣1=3.故选:C.2.设集合A={y|y=3x,x∈R},B={x|y=,x∈R},则A∩B=.【答案解析】解:因为集合A={y|y=3x,x∈R}={y|y>0},B={x|y=,x∈R}={x|},所以A∩B=.故答案为:.3.设z是复数,则“z2=1”是“|z|=1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件【答案解析】A解:设z=x+yi(x,y∈R),①若z2=1时,则z2=(x+yi)2=x2﹣y2+2xyi=1,∴,∴,∴|z|=1,∴充分性成立,②若z=+i,满足|z|=1,但z2==﹣+i,∴必要性不成立,∴z2=1是|z|=1的充分不必要条件,故选:A.4.已知集合A={m|m=x2﹣y2,x、y∈Z),将A中的正整数从小到大排列为:a1,a2,a3,….若an=2021,则正整数n=.【答案解析】1516解:m=x2﹣y2=(x+y)(x﹣y),当x﹣y=1时,m=2y﹣1表示奇数;当x﹣y=2时,m=4y+4表示4的倍数,所以A中的整数从小到大排列为:1,3,4,5,7,8,9,11,12,13……即数列{an}满足a3k=4k(k∈N+),又2021=505×4+1,所以n=505×3+1=1516.故答案为:1516.5.已知函数f(x)=2sin(x+φ),则“”是“f(x)为偶函数”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件【答案解析】A解:①当φ=时,f(x)=2sin(x+)=2cosx,∵f(﹣x)=2cos(﹣x)=2cosx=f(x),∴f(x)为偶函数,②当f(x)为偶函数时,φ=+kπ,k∈Z,综上所述,φ=是f(x)为偶函数的充分不必要条件.故选:A.6.“0<a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:当a+b>0,ab<0时,显然ab≤4成立,反之不成立,当a>0,b>0时,则4≥a+b≥2,故≤2,ab≤4,充分性成立,令a=4,b=,由ab≤4推不出a+b≤4,故“0<a+b≤4”是“ab≤4”的充分不必要条件,故选:A.7.已知集合A={y|y<1},B={x|3x<1},则()A.A∪B=R B.A∩B={x|x<0} C.A∪B={x|x>1} D.A∩B=∅【答案解析】B解:∵A={y|y<1}={x|x<1},B={x|3x<1}={x|x<0},∴A∪B={x|x<1}∪{x|x<0}={x|x<1},A∩B={x|x<1}∩{x|x<0}={x|x<0}.故选:B.8.给定正整数n(n≥3),集合Un={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①Un=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3整除的数都在集合C 中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为SA,SB,SC,有SA=SB=SC;则称集合Un为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3的倍数,则Un不是可分集合;(Ⅲ)若Un为可分集合且n为奇数,求n的最小值.【答案解析】【分析】(I)取A={5,7},B={4,8},C={1,2,3,6},即可满足条件.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,可得SC≥3+6+…+3k,而这n个数的和为,即可得出矛盾.(Ⅲ)n=35.由于所有元素和为,又SB中元素是偶数,所以=3SB=6m (m为正整数),可得以n(n+1)=12m,由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.可得:k(12k﹣1)=m.定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,可得k≥3.即可得出.解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故SC≥3+6+…+3k=,而这n个数的和为,故SC==,矛盾,所以n是3的倍数时,Un一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又SB中元素是偶数,所以=3SB=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时Un中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…9.已知数列{an}的通项公式为,则“a2>a1”是“数列{an}单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】C【分析】数列{an}单调递增⇔an+1>an,可得a的范围.由“a2>a1”可得:2+>1+a,可得a的范围.即可判断出关系.解:数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n2+n.∴a<2.由“a2>a1”可得:2+>1+a,可得:a<2.∴“a2>a1”是“数列{an}单调递增”的充要条件,故选:C.10.已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.①若A={2,4,8,16},则card(TA)=;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=.【答案解析】6;2n﹣3解:①若A={2,4,8,16},则TA={6,10,18,12,20,24},∴card(TA)=6;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则TA={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴TA中共2n﹣3个元素,利用类比推理可得若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=2n﹣3.故答案为:6;2n﹣3.。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}1,0,2,2A =-,{}22B x x =≤,则A B =( )A .{}1,0,2-B .{}1,0-C .{}0,2D .{}0,2,22.设集合{}2260A x Z x x =∈+-≤,{}02B x x =<<,则()R A B ⋂=( )A .[]2,0-B .30,2⎛⎤ ⎥⎝⎦C .{}2,1,0--D .{}2,1--3.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(, C .{}0x x ≤D .{}32x x -≤<-4.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个5.设集合(){}2log 1A x y x ==-,{}1,0,3B =-,则A B =( ) A .{}0 B .{}1,1- C .{}1,0-D .1,0,1,26.设全集U =R ,已知集合2|4A x x x >={},|4B x y x ==-{},则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-8.已知集合{|1}A x y x ==+,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)9.设{}{}21,230A x x B x x x =>=--<,则()R A B ⋂=( )A .{}1x x >-B .{}11x x -<≤C .{}11x x -<<D .{}13x x <<10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .PB .QC .∅D .U 11.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( ) A .P Q R ⋂=B .P Q ⊆C .Q P ⊆D .P Q R =12.已知集合2{60}A xx x =--<|,{|231}B x x =+>,则A B ⋃=( )A .(1,3)-B .(2,)-+∞C .(2,1)--D .(,2)-∞-13.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-14.从集合{1,2,3}U =的非空子集中随机选择两个不同的集合A ,B ,则{1}A B ⋂=的概率为( ) A .421B .542C .17D .55615.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.设{1,2}{1,2,3,4}A =,则满足条件的集合A 共有________个.17.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______18.若对任意的x A ∈,有1A x ∈,则称A 是“伙伴关系集合”,则集合11,01,22M ⎧⎫=⎨⎬⎩⎭-,,的所有非空子集中,具有伙伴关系的集合的个数为________. 19.设函数()1ln 12mx f x x+=-是定义在区间(),n n -上的奇函数(0m >,0n >),则实数n 取值范围为______.20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.设集合{}1,2,3,,2021M =⋅⋅⋅,对M 的任一非空子集A ,令()A σ为集合A 中元素的最大值与最小值之和,则所有这样的()A σ的算术平均值为______.22.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.23.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.24.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .27.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.28.关于x 的不等式()()2220R ax a x a +--≥∈的解集为][(),12,-∞-⋃+∞.(1)求a 的值;(2)若关于x 的不等式()()2320x c a x c c a -++-<解集是集合A ,不等式()()210x x -+>的解集是集合B ,若A B ⊆,求实数c 的取值范围.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈.(1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式化简集合B ,再利用交集的定义计算作答. 【详解】解不等式22x ≤得:x ≤{|B x x =≤,因{}2A =-,所以{A B ⋂=-. 故选:A 2.C 【解析】 【分析】求解集合A ,然后进行交集补集运算即可. 【详解】集合()(){}{}|23202,1,0,1A x Z x x =∈-+≤=--,{}02B x x =<<{R|0B x x =≤或}2x ≥,则()R A B ⋂={}2,1,0--故选:C 3.D 【解析】 【分析】根据韦恩图,写出相应集合即可 【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是UA ,所以{}32UA x x =-≤<-;故选:D4.C 【解析】 【分析】根据题意,列举出符合题意的集合. 【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 5.C 【解析】 【分析】由对数函数定义域可求得集合A ,根据交集定义可得结果. 【详解】由10x ->得:1x <,即{}1A x x =<,{}1,0A B ∴=-. 故选:C. 6.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.A 【解析】 【分析】求出集合A ,根据集合的交集运算即可求得答案. 【详解】由题意得:{|1}{|1}A x y x x x ==+=≥-, 故{|11}A B x x ⋂=-≤<, 故选:A 9.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据补集、交集的定义计算可得; 【详解】解:由2230x x --<,即()()310x x -+<,解得13x ,所以{}{}2230|13B x x x x x =--<=-<<,又{}1A x x =>,所以{}R1A x x =≤,所以(){}R 11A B x x ⋂=-<≤;故选:B 10.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;【详解】解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 11.C 【解析】 【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解. 【详解】如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=, 所以Q P ⊆. 故选:C.12.B 【解析】 【分析】先计算出集合,A B ,再计算A B 即可. 【详解】因为{23}A xx =-<<∣,{1}B x x =>-∣,所以(2,)A B ⋃=-+∞. 故选:B. 13.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 14.A 【解析】 【分析】写出集合{1,2,3}U =的非空子集,求出总选法,再根据{1}A B ⋂=,列举出集合,A B 的所有情况,再根据古典概型公式即可得解. 【详解】解:集合{1,2,3}U =的非空子集有{}{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,1,2,3共7个,从7个中选两个不同的集合A ,B ,共有2742A =种选法,因为{1}A B ⋂=,当{}1A =时,则B 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2A =时,{}1,3B =共1种,同理当{}1B =时,则A 可为{}{}{}1,2,1,3,1,2,3共3种, 当{}1,2B =时,{}1,3A =共1种, 则符合{1}A B ⋂=的共有31318+++=种, 所以{1}A B ⋂=的概率为844221=. 故选:A. 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.4 【解析】 【分析】根据并集的定义,列举集合A . 【详解】由并集定义可知,集合A 中有元素3和4,所以满足条件的集合{}{}{}{}3,4,1,3,4,2,3,4,1,2,3,4A =共4个. 故答案为:4 17.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥18.7【解析】 【分析】在集合M 的子集中列举出满足“伙伴关系集合”的集合,从而可得结果. 【详解】因为x A ∈,则1A x ∈,就称A 是伙伴关系集合,集合11,0,,1,22M ⎧⎫=-⎨⎬⎩⎭,所以具有伙伴关系的集合有{}{}{}11111,1,,2,1,1,1,,2,1,,2,1,1,,22222⎧⎫⎧⎫⎧⎫⎧⎫----⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭共7个.故答案为:719.10,2⎛⎤⎥⎝⎦【解析】 【分析】由奇函数的定义和对数的运算性质,解方程可得m ,再由对数的真数大于0解不等式,然后利用集合的包含关系即可求解. 【详解】解:因为函数1()ln12mx f x x+=-是定义在区间(,)n n -上的奇函数(0,0)m n >>,所以()()f x f x -=-,即1112ln ln ln 12121mx mx xx x mx-+-=-=+-+, 所以112121mx xx mx--=++,即222114m x x -=-, 所以24m =,解得2m =±,又0m >, 所以2m =,此时,21()ln 12x f x x+=-, 由21012x x +>-,解得1122x -<<, 所以()11,22,n n ⎛-⎫⊆- ⎪⎝⎭,又0n >, 所以实数n 取值范围为10,2⎛⎤ ⎥⎝⎦.故答案为:10,2⎛⎤⎥⎝⎦.20.5 【解析】 【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人. 【详解】设第一、二题都没答对的有x 人, 则()()206166635x -+-++= ,所以5x = 故答案为:5 21.2022 【解析】 【分析】先分别求出集合M 的所有非空子集中最小的元素与最大的元素之和,从而得出答案. 【详解】集合{}1,2,3,,2021M =⋅⋅⋅的非空子集共有202121-个其中以1为最小元素的非空子集共有20202个,以2为最小元素的非空子集共有20192个, …………以2021为最小元素的非空子集共有021=个,所以集合M 的所有非空子集中最小的元素之和为202020190122220212⨯+⨯++⨯ ①其中以2021为最大元素的非空子集共有20202个,以20202为最大元素的非空子集共有20192个,…………以1为最大元素的非空子集共有021=个,所以集合M 的所有非空子集中最大的元素之和为202020190202122020212⨯+⨯++⨯ ②由① + ②可得:()()()202020190202112202022120212+⨯++⨯+++⨯202020190202222022220222=⨯+⨯++⨯()()2021202020192021122022222202220222112-=⨯+++=⨯=--所以所有这样的()A σ的算术平均值为:()20212021202221202221-=-故答案为:2022 22.4 【解析】 【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数. 【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2, 所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M = 故满足A M B ⊆⊆的集合M 的个数为4, 故答案为:4.23.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}-24.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断. (2)利用元素与集合的关系判断. (3)利用元素与集合的关系判断. (4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ; 13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数,当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果.27.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4}; (2){a |1<a ≤2}, 【解析】 【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得. (1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4}; (2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2,因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B , 综上,a 的取值范围为{a |1<a ≤2}. 28.(1)1;(2)72c --≤≤ 【解析】 【分析】(1)由给定条件可得-1,2是方程()2220ax a x +--=的根,且0a >,再借助韦达定理计算作答.(2)求出集合B ,按集合A 是空集和不是空集分类求解作答. (1)依题意,方程()2220ax a x +--=的解为-1,2,且0a >,于是得2122aa a -⎧=⎪⎪⎨-⎪=-⎪⎩,解得:1a =,所以1a =. (2)由(1)知,()(){}231210A x x c x c c =-++-<,而()1,2B =-,又A B ⊆,当A =∅时,()()2231811410c c c c c ∆=+--=++≤,解得77c --≤-+ 当A ≠∅时,2Δ1410311221(31)2(1)042(31)2(1)0c c c c c c c c c ⎧=++>⎪+⎪-<<⎪⎨⎪+++-≥⎪-++-≥⎪⎩,解得72c -+<≤综上得:72c --≤所以实数c的取值范围是72c --≤ 29.(1){23A B x x ⋂=-<≤或}9x =,A B R = (2)(){2R B A x x ⋂=≤-或}9x > 【解析】 【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R,然后再由交集的定义即可求解.(1)解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >, 所以(){2R B A x x ⋂=≤-或}9x >. 30.(1){|12}x x <<; (2)20,3⎛⎤ ⎥⎝⎦. 【解析】 【分析】(1)解一元二次不等式求集合A 、B ,应用集合的交运算求交集即可.(2)根据必要不充分关系有B A ≠⊂,即可求a 的范围. (1)由题设,{|12}A x x =-<<,当1a =时{|13}B x x =<<, 所以{|12}A B x x =<<; (2)由题设,{|3}B x a x a =<<,且{|12}A x x =-<<, 若p 是q 的必要不充分条件,则B A ≠⊂,又a 为正实数,即320a a ≤⎧⎨>⎩,解得203a <≤,故a 的取值范围为20,3⎛⎤⎥⎝⎦.。

(压轴题)高中数学必修一第一单元《集合》测试题(包含答案解析)

(压轴题)高中数学必修一第一单元《集合》测试题(包含答案解析)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<3.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤4.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥5.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆6.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞7.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5118.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1611.已知集合{}11A x x =-≤≤,{}220B x x x =-≤,则AB =( )A .{}12x x -≤≤B .{}10x x -≤≤C .{}12x x ≤≤D .{}01x x ≤≤12.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是( ) A .{}a |0a 6≤≤B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤二、填空题13.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________ 14.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.15.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.16.已知{|14}A x x =-≤≤,{|}B x x a =<,若A B =∅,则a 的取值范围是__________17.设集合22{2,3,1},{,2,1}M a N a a a =+=++-且{}2M N =,则a 值是_________.18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 20.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____. 三、解答题21.已知集合{|02}A x x =≤≤,{|32}B x a x a =≤≤-. (1)若()UA B R ⋃=,求a 的取值范围; (2)若AB B ≠,求a 的取值范围.22.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围.23.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.24.已知{}240A x x x =+=,(){}222110B x x a x a =+++-=,若B A ⊆,求a 的取值范围.25.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.26.已知全集U =R ,设集合{}213A x x =-≤,集合(){}2440B x x a x a =+-->,若A B A =,求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.B解析:B根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.3.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题4.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.5.D解析:D根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤, {}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.6.A解析:A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题.7.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3, 故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个. 属于基础题型.8.B【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.11.D解析:D 【解析】B ={x ∣x 2−2x ⩽0}={x |0⩽x ⩽2}, 则A ∩B ={x |0⩽x ⩽1}, 本题选择D 选项.12.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.二、填空题13.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1ax a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想14.【分析】对整数取值并使为正整数这样即可找到所有满足条件的值从而用列举法表示出集合【详解】因为且所以可以取234所以故答案为:【点睛】考查描述法列举法表示集合的定义清楚表示整数集属于基础题 解析:{}1,2,3,4-【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.15.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞, 即()()()()()(),44,22,00,11,44,M =-∞----+∞, 所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4--【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.16.【分析】根据集合所以集合没有公共元素列出两个集合的端点满足的不等关系结合数轴可以得出的范围得到结果【详解】集合由借助于数轴如图所示可得故答案为:【点睛】该题主要考查集合中参数的取值范围的问题两个集合解析:(,1]-∞-. 【分析】根据集合{|14}A x x =-≤≤,{|}B x x a =<,A B φ⋂=,所以集合,A B 没有公共元素,列出两个集合的端点满足的不等关系,结合数轴可以得出a 的范围,得到结果. 【详解】集合{|14}A x x =-≤≤,{|}B x x a =<, 由A B φ⋂=,借助于数轴,如图所示,可得1a ≤-, 故答案为:(,1]-∞-. 【点睛】该题主要考查集合中参数的取值范围的问题,两个集合的关系,属于中档题目.17.-2或0【分析】由可得即可得到或分别求解可求出答案【详解】由题意①若解得或当时集合中不符合集合的互异性舍去;当时符合题意②若解得符合题意综上的值是-2或0故答案为:-2或0【点睛】本题考查了交集的性解析:-2或0 【分析】 由{}2MN =,可得{}2N ⊆,即可得到22a a +=或22a +=,分别求解可求出答案.【详解】 由题意,{}2N ⊆,①若22a a +=,解得1a =或2a =-,当1a =时,集合M 中,212a +=,不符合集合的互异性,舍去; 当2a =-时,{2,3,5},{2,0,1}M N ==-,符合题意.②若22a +=,解得0a =,{2,3,1},{0,2,1}M N ==-,符合题意. 综上,a 的值是-2或0. 故答案为:-2或0. 【点睛】本题考查了交集的性质,考查了集合概念的理解,属于基础题.18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的解析:(,1)(2,3)(5,)-∞+∞【分析】 根据条件()()[3,5]A B =R R 可得()(),35,AB =-∞+∞,结合[1,2]BA =R的意义,可得集合A . 【详解】因为集合A 、B 是实数集R 的子集,若AB =∅,则[2,0]AB A =-=R,[1,2]BA B ==R,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]BA =R表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]BA =R中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故解析:3,3-或0 【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值. 【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意; 当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意; 当0x =时,{}{}1,9,0,1,0A B ==,满足题意; 当1x =时,不满足集合元素的互异性,舍去. 综上可得:x 的值为3,3-或0. 故答案为:3,3-或0. 【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】 求AB 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】{}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-;当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则AB ={-故答案为:{-【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题.三、解答题21.(1)1,2⎛⎤-∞ ⎥⎝⎦;(2)1,2a ⎡⎫+∞⎢⎣∈⎪⎭.【分析】 (1)先计算UA ,再利用数轴即可列出不等式组,解不等式组即可.(2)先求出A B B =时a 的取值范围,再求其补集即可.【详解】(1)∵{}|02A x x =≤≤,∴{|0UA x x =<或}2x >,若()UA B R ⋃=,则320322a aa a -≥⎧⎪⎨⎪-≥⎩,即12a ≤∴实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)若AB B =,则B A ⊆.当B =∅时,则32-<a a 得1,a >当B ≠∅时,若B A ⊆则0322a a ≥⎧⎨-≤⎩,得1,12a ⎡⎤∈⎢⎥⎣⎦,综上故a 的取值范围为1,2a ⎡⎫+∞⎢⎣∈⎪⎭,故A B B ≠时的范围为1,2⎡⎫+∞⎪⎢⎣⎭的补集,即1,.2⎛⎫-∞ ⎪⎝⎭【点睛】本题主要考查了集合的交并补运算,属于中档题.22.()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦【分析】先分类讨论A 是否是空集,再当A 不是空集时,分-2≤a <0,0≤a≤2,a >2三种情况分析a 的取值范围,综合讨论结果,即可得到a 的取值范围 【详解】若A=∅,则a <-2,故B=C=∅,满足C ⊆B ; 若A ≠∅,即a ≥-2,由23y x =+在[]2,a -上是增函数,得123y a -≤≤+,即{}123B y y a =-≤≤+ ①当20a -≤≤时,函数2z x =在[]2,a -上单调递减,则24a z ≤≤,即{}24C z a z =≤≤,要使C B ⊆,必须且只需234a +≥,解得12a ≥,这与20a -≤<矛盾;②当02a ≤≤时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则04z ≤≤,即{}04C z z =≤≤,要使C B ⊆,必须且只需23402a a +≥⎧⎨≤≤⎩,解得122a ≤≤;③当2a >时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则20z a ≤≤,即{}20C z z a =≤≤,要使C B ⊆,必须且只需2232a a a ⎧≤+⎨>⎩,解得23a <≤;综上所述,a 的取值范围是()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦.【点睛】本题考查了通过集合之间的关系求参数问题,考查了分类讨论的数学思想,要明确集合中的元素,对集合是否为空集进行分类讨论,做到不漏解.23.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤. 【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解. (2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}. (2)∵A ∩B =A , ∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤. 【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.24.{1a a =或}1a ≤- 【分析】求出集合A ,对集合B 中的元素个数进行分类讨论,结合B A ⊆可得出实数a 所满足的等式或不等式,进而可求得实数a 的取值范围. 【详解】{}{}2404,0A x x x =+==-,(){}222110B x x a x a =+++-=,对于方程()222110x a x a +++-=,()()()22414181a a a ∆=+--=+,且B A ⊆.①当B =∅时,∆<0,可得1a <-,合乎题意;②当集合B 中只有一个元素时,0∆=,可得1a =-,此时{}{}200B x x A ===⊆,合乎题意;③当集合B 中有两个元素时,B A =,则()221410a a ⎧+=⎨-=⎩,解得1a =.综上所述,实数a 的取值范围是{1a a =或}1a ≤-. 【点睛】本题考查利用集合的包含关系求参数,考查分类讨论思想的应用,考查计算能力,属于中等题. 25.(1)[)1,4A B =-(2)3,4⎛⎫+∞ ⎪⎝⎭(3)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦【分析】(1)计算得到142A xx ⎧⎫=<<⎨⎬⎩⎭,[)1,1B =-,求并集得到答案. (2)讨论B =∅和B ≠∅两种情况,分别计算到答案. (3)讨论B =∅和B ≠∅两种情况,分别计算到答案. 【详解】 (1)由40210x x ->⎧⎨->⎩,解得142A x x ⎧⎫=<<⎨⎬⎩⎭,当0m =时,[)1,1B =-,所以[)1,4AB =-.(2)当B =∅时,211m m -≥+,2m ≥,符合B A ⊆.当B ≠∅时,根据B A ⊆得211121214m m m m -<+⎧⎪⎪->⎨⎪+≤⎪⎩,解得324m <<.综上所述,m 的取值范围是3,4⎛⎫+∞⎪⎝⎭. (3)当B =∅时,211m m -≥+,2m ≥,符合A B =∅.当B ≠∅时,211112m m m -<+⎧⎪⎨+≤⎪⎩或211214m m m -<+⎧⎨->⎩,解得12m ≤-. 综上所述,m 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查了集合的并集,根据集合包含关系求参数,根据交集结果求参数,意在考查学生对于集合运算的综合应用.26.1a <-【分析】先化简集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>,再根据AB A =,转化为A B ⊆求解.【详解】集合{}{}21312A x x x x =-≤=-≤≤,集合(){}()(){}244040B x x a x a x x a x =+-->=-+>,因为A B A =,所以A B ⊆ ,当4a =-时,{}4B x x =≠-,满足A B ⊆,当4a >-时,{B x xa =或}4x <- ,要使A B ⊆成立,则1a <- 即41a -<<-,当4a时,{4B x x =-或}x a <,满足A B ⊆,综上:实数a 的取值范围1a <-. 【点睛】本题主要考查了集合的关系及基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .163.已知2{|1}A x x ==,1|B x x a ⎧⎫==⎨⎬⎩⎭,若B A ⊆,则a 的值为( )A .1或-1B .0或1或-1C .1-D .14.已知集合{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃=( ) A .{}2,3,4 B .{}1,2,3,4 C .{}15x x ≤≤D .{}05x x <≤5.设集合{}220A x x x =--≤,124x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()A B ⋃=R( )A .112x x ⎧⎫-<≤-⎨⎬⎩⎭B .{}1x x <-C .12x x ⎧⎫>-⎨⎬⎩⎭D .{}1x x ≥-6.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2} B .{1,2}xyC .(1,2)D .{(1,2)}7.已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭8.已知集合{}{}22540,7100A x x x B x x x =-+<=-+<,则A B ⋃=( )A .()1,2B .()1,5C .()2,4D .()4,5 9.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--10.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( ) A .1B .2C .3D .411.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B =( ) A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,212.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,413.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( )A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}1e 1x M x -=>,{}220N x x x =-<,则MN =( )A .()1,+∞B .()2,+∞C .()0,1D .()1,2二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.19.已知集合(){}2,M x y y x ==∣,(){},0N x y y ==,则M N =______.20.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______. 21.已知平面上两个点集()(){}22,|12,R,R M x y x y x y x y =+++∈∈,(){},|11,R,R N x y x a y x y =-+-≤∈∈,若MN ≠∅,则实数a的取值范围为___________..22.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________.24.已知函数()214f x x -A 为函数()f x 的定义域,集合B 为函数()f x 的值域,若定义{,A B x x A -=∈且}x B ∉,()()⊕=--A B A B B A ,则A B ⊕=___________.25.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.三、解答题26.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R . (1)当1a =时,求()U C A B ⋂;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.27.在①A B A ⋃=,②A B ⋂≠∅,③B A ⊆R这三个条件中任选一个,补充在下面问题(3)中,若问题中的实数m 存在,求m 的取值范围;若不存在,说明理由. 已知一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,关于x 的不等式()20ax am b x bm -++<的解集为B (其中m ∈R ).(1)求a ,b 的值; (2)求集合B ;(3)是否存在实数m ,使得_______.(注:如果选择多个条件分别解答,按第一个解答计分).28.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤(1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.29.已知集合702x A xx ⎧⎫-=≤⎨⎬+⎩⎭,{}123B x m x m =-≤≤-. (1)当6m =时,求集合A B ;(2)若{}58C x x =<≤,“()x A C ∈⋂”是“x B ∈”的充分条件,求实数m 的取值范围.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题 1.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 2.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 3.A 【解析】 【分析】A ={-1,1},若B A ⊆,则1a=±1,据此即可求解﹒{}2{|1}1,1A x x ===-,11|B x x a a ⎧⎫⎧⎫===⎨⎬⎨⎬⎩⎭⎩⎭, 若B A ⊆,则1a=1或-1,故a =1或-1. 故选:A . 4.D 【解析】 【分析】理解集合的含义,由并集的概念运算 【详解】{}15A x N x ∈≤≤,{}05B x x =<<,则A B ⋃={}05x x <≤故选:D 5.B 【解析】 【分析】分别化简集合A 与B ,再求A B ,最后求()RA B ⋃【详解】220x x --≤⇒()()120x x +-≤⇒12x -≤≤124x⎛⎫< ⎪⎝⎭222x-⇒<21x ⇒-<12x ⇒>- 即{}|12A x x =-≤≤,1|2B x x ⎧⎫=>-⎨⎬⎩⎭所以{}|1A B x x ⋃=≥- 所以(){}R|1AB x x =<-故选:B6.D 【解析】 【分析】 联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 7.D 【解析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D . 8.B 【解析】 【分析】先求出集合,A B ,再求A B 即可. 【详解】{}{}14,25A x x B x x =<<=<<,故A B ⋃=()1,5.故选:B. 9.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 10.D 【解析】 【分析】根据真子集的定义进行求解即可. 【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=, 故选:D 11.D 【解析】 【分析】解不等式求得集合A ,由此求得A B . 【详解】因为()30x x -<的解为03x <<, 所以{}03A x x =<<,所以{}1,2A B =. 故选:D 12.C 【解析】 【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可. 【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==.故选:C. 13.D 【解析】 【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果. 【详解】{}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<.故选:D. 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.D 【解析】 【分析】根据指数函数的性质解出集合M ,再由二次不等式的解法求出集合N ,最后求交集即可. 【详解】解:由1e 1x ->得10e e x ->,又函数e x y =在R 上单调递增,则10x ->,即{}1M x x =>, 又由220x x -<得02x <<,即{}02M x x =<<, 所以{}12M N x x ⋂=<<.故选:D.二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117.()3,0-【解析】 【分析】先求出{}3A x x =>-,进而求出交集. 【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n nf n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.19.(){}0,0【解析】 【分析】根据题意,得到两集合均为点集,联立20y x y ⎧=⎨=⎩求解,即可得出结果.【详解】因为集合(){}2,M x y y x ==∣表示直线2y x 上所有点的坐标,集合(){},0N x y y ==,表示直线0y =上所有点的坐标,联立20y x y ⎧=⎨=⎩,解得00x y =⎧⎨=⎩则(){}0,0MN =.故答案为:(){}0,0. 20.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 21.16,310⎡⎤-+⎣⎦【解析】 【分析】根据抛物线的定义可知集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,集合N 是以(),1a 为中心的正方形内部的点,数形结合先求出M N ⋂=∅时实数a 的取值范围,再求其补集即可求解.【详解】由()2212x y x y ++≥+可得()()221002x y x y ++≥-+-,点(),x y 到直线10x y ++=的距离大于等于点(),x y 到点()0,0的距离,所以点(),x y 的轨迹是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的部分,即集合M 是以原点()0,0为焦点,以直线10x y ++=为准线的抛物线上及其凹口内侧的点集,由1x y +≤可得:001x y x y ≥⎧⎪≥⎨⎪+≤⎩或001x y x y <⎧⎪>⎨⎪-+≤⎩或001x y x y >⎧⎪<⎨⎪-≤⎩或001x y x y <⎧⎪<⎨⎪--≤⎩,作出其表示的平面区域如图所示:将该图象向上平移一个单位可得11x y +-≤的图象如图:将其向左或右平移a 个单位可得11x a y -+-≤的表示的平面区域,作出()2212x y x y ++=+对应的抛物线如图:将1y =代入()2212x y x y ++=+2420x x --=,解得:26x = 所以26116a <=M N ⋂=∅,将2y =代入()2212x y x y ++=+2610x x --=,解得:310x =, 当310a >时,M N ⋂=∅, 综上所述:当16310a ≤16,310a ⎡⎤∈⎣⎦时,M N ≠∅,故答案为:16,310⎡⎤⎣⎦. 22.(,8]-∞【解析】【分析】根据集合交集的性质,结合子集的性质进行求解即可.【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞23.{}34x x ≤<【解析】【分析】 求出{}24A x x =<<与{}3B x x =≥,进而求出A B .【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤< 故答案为:{}34x x ≤<24.11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦【解析】【分析】根据()f x =.【详解】要使函数()f x =2140-≥x ,解得1122x -≤≤,所以11,22A ⎡⎤=-⎢⎥⎣⎦,函数()f x =[]0,1B =, {,A B x x A -=∈且}x B ∉102x x ⎧⎫=-≤<⎨⎬⎩⎭,{,B A x x B -=∈且}x A ∉112x x ⎧⎫=<≤⎨⎬⎩⎭. ()()⊕=--A B A B B A 102x x ⎧⎫=-≤<⎨⎬⎩⎭112x x ⎧⎫⋃<≤=⎨⎬⎩⎭11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 故答案为:11,0,122⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦. 25.A B ⋂##B A ⋂【解析】 【分析】根据集合的运算法则求解.【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂.故答案为:A B ⋂.三、解答题26.(1){}()10U C A B x x ⋂=-≤<(2)4a 或102a ≤≤【解析】【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x B ∈”是“x A ∈”的必要条件等价于A B ⊆.讨论A 是否为空集,即可求出实数a 的取值范围.(1)当1a =时,集合{}|05A x x =≤≤,{|0U C A x x =<或}5x >,{}()|10U C A B x x ⋂=-≤<.(2)若“x B ∈”是“x A ∈”的必要条件,则A B ⊆,①当A =∅时,123,4a a a ->+<-∴;②A ≠∅,则4a ≥-且11,234a a -≥-+≤,102a ∴≤≤. 综上所述,4a 或102a ≤≤. 27.(1)1、2;(2)当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =;(3)若选①:2m ≥;若选②:1m <或2m >;若选③:12m ≤≤.【解析】【分析】(1)由题可知x =1是方程2320ax x -+=的解,由此即可求出a ,从而求出b ;(2)根据a 、b 的值即可分类讨论求解不等式,从而得到B ;(3)若选①,则B ⊆A ,分类讨论m 的范围即可;若选②,则根据题意分类讨论即可;若选③,则先求出A R ,分类讨论即可.(1)由一元二次不等式2320ax x -+>的解集为{1A x x =<或}x b >,得0a >,且方程2320ax x -+=的两根为1、b , ∴0,31,21,a b ab a ⎧⎪>⎪⎪=+⎨⎪⎪=⨯⎪⎩ 解得1,2.a b =⎧⎨=⎩ (2)由(1)可知()20ax am b x bm -++<即为()2220x m x m -++<,即()()20x m x --<.m <2时,2m x <<;m =2时,不等式无解;m >2时,2x m <<.综上,当2m <时,(),2B m =;当2m =时,B =∅;当2m >时,()2,B m =.(3)由(1)知{1A x x =<或}2x >,若选①:A B A ⋃=,则B A ⊆,当2m <时,(),2B m =,不满足;当2m =时,B =∅,满足;当2m >时,()2,B m =,满足;∴选①,则实数m 的取值范围是2m ≥;若选②:A B ⋂≠∅,当2m <时,(),2B m =,则1m <;当2m =时,B =∅,不满足;当2m >时,()2,B m =,满足;∴选②,则实数m 的取值范围是1m <或2m >;若选③:B A ⊆R ,A R []1,2=,当2m <时,(),2B m =,则m ≥1,∴12m ≤<;当2m =时,B =∅,满足;当2m >时,()2,B m =,不满足.∴选③,则实数m 的取值范围是12m ≤≤.28.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】(1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤, 所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B ,因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤,所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞. 29.(1){|29}x x -<≤(2)56m ≤≤【解析】【分析】(1)先化简集合A ,由6m =解得集合B ,然后利用并集运算求解.(2)根据“()x A C ∈⋂”是“x B ∈”的充分条件,转化为A B ⊆求解.(1) 由702x x -≤+得:27x -<≤,即27{|}A x x =-<≤, 当6m =时,{|59}B x x =≤≤,所以{|29}A B x x ⋃=-<≤.(2) 因为{}58C x x =<≤,所以{}57A C x x ⋂=<≤,由“A C ”是“x B ∈”的充分条件,则()A C B ⋂⊆,则2312237556156m m m m m m m m -≥-≥⎧⎧⎪⎪-≥⇒≥⇒≤≤⎨⎨⎪⎪-≤≤⎩⎩, 实数m 的取值范围是56m ≤≤.30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合测试题
请认真审题,仔细作答,发挥出自己的真实水平!
一、单项选择题 :
1.
设集合,则() A .{75}x
x -<<-∣ B .{35}x x <<∣ C .{53}x
x -<<∣ D .{|75}x x -<< 【答案】
C
【解析】
考点:其他不等式的解法;交集及其运算.
分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.
解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S
T x x =-<<, 故选C
2.
已知集合,则集合等于()
A .{-1,1}
B .{-1,0,1}
C .{0,1}
D .{-1,0}
【答案】 A
3.若集合,且,则实数m 的可取值组成的集合是()
A .
B .
C .
D . {}()(){}
5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆1
1,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭
1
1,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭
【答案】
C
4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是()
A .6
B .7
C .8
D .9
【答案】
C
5.设P={x|x ≤8},
,则下列关系式中正确的是().
A .a P
B .a P
C .{a}P
D .{a}P
【答案】
D
6.
已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==
∈∈-∈,则B 中所含元素的个数为()
A .3
B .6
C . 8
D .10 【答案】 D
【解析】
考点:元素与集合关系的判断.
专题:计算题.
分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项
解答:解:由题意,x=5时,y=1,2,3,4,
x=4时,y=1,2,3,
x=3时,y=1,2,
⊆⊆⊆∉∈⊂
x=2时,y=1
综上知,B中的元素个数为10个
故选D
点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数
7.
已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()
A.A⊊B B.B⊊A C.A=B D.A∩B=
【答案】
B
【解析】
考点:集合的包含关系判断及应用.
专题:计算题.
分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}
在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B⊊A
故选B
点评:本题主要考查了集合之间关系的判断,属于基础试题
8.
不等式﹣x2﹣5x+6≤0的解集为()
【答案】
D
【解析】
考点:一元二次不等式的解法。

专题:计算题;分类讨论。

分析:根据不等式的基本性质在不等式两边都除以﹣1,不等号方向改变,因式分解后转化为x﹣1与x+6同号,即可求出原不等式的解集.
解答:解:原不等式可化为:x2+5x﹣6≥0,
因式分解得:(x ﹣1)(x+6)≥0,
即或,
解得:x ≥1或x ≤﹣6,
所以原不等式的解集为:{x|x ≤﹣6或x ≥1}.
故选D
点评:一元二次不等式的解法
9.
A a x a x x A ∉⎭
⎬⎫⎩⎨⎧<+-=1,0若已知集合,则实数a 取值X 围为( )
A .),1[)1,(+∞⋃--∞
B .[-1,1]
C .),1[]1,(+∞⋃--∞
D .(-1,1]
【答案】
B
10.
设集合则实数a 的取值X 围()
A .{}06a a ≤≤
B .
C .
D . 【答案】
C
【解析】
考点:本题考查含绝对值不等式的解法、空集的概念及交集的运算,考查学生的运算和推理能力. 解析:11111x a x a a x a -<⇔-<-<⇔-<<+,又{}15B x x =<<,,11A B a φ=∴+≤或15a -≥,即得0a ≤或6a ≥.
{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,{}|2,a a ≤≥或a 4{}|0,6a a ≤≥或a {}
|24a a ≤≤
二、填空题 :
11. 若集合(){}21320A x a x x =-+-=有且仅有两个子集,则a =_________。

【答案】 0或
12.
若{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3},则m=.
【答案】 1
【解析】
考点:集合关系中的参数取值问题。
专题:计算题。
分析:由题意可得 m 2
﹣3m ﹣1=﹣3,解得 m=1,或 m=2,经检验 m=1满足条件. 解答:解:∵{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3},∴m 2﹣3m ﹣1=﹣3,解得 m=1,或 m=2.
当m=2 时,2m=4,{3,4,m 2﹣3m ﹣1}∩{2m ,﹣3}={﹣3,4},故不满足条件,舍去. 当 m=1,{3,4,m 2﹣3m ﹣1}={3,4,﹣3},{2m ,﹣3}={2,﹣3},满足条件. 故答案为 1.
点评:本题主要考查集合关系中参数的取值X 围问题,注意检验 m 的值是否满足条件,这是解题的易错点,属于中档题.
13. 不等式2121x x --+≥的解集.
【答案】 [)2,4,3⎛⎤-∞-⋃+∞ ⎥⎝

14.
不等式的解集是.
【答案】
18-
01|1|2<--x
三、解答题 :
15.
已知M={x|﹣2<x<5},N={x|a+1≤x ≤2a ﹣1}.
(Ⅰ)是否存在实数a 使得M ∩N=M ,若不存在求说明理由,若存在,求出a ; (Ⅱ)是否存在实数a 使得M ∪N=M ,若不存在求说明理由,若存在,求出a .
【答案】
解:(Ⅰ)∵M ∩N=M
∴M ⊆N ,
∴,解得a ∈∅.
(Ⅱ)∵M ∪N=M
∴N ⊆M
①当N=∅时,即a+1>2a ﹣1,有a<2;
②当N ≠∅,则,解得2≤a<3,)
综合①②得a 的取值X 围为a<3.
【解析】
考点:集合关系中的参数取值问题。
专题:综合题。
分析:(Ⅰ)根据M ∩N=M ,可得M ⊆N ,从而可建立不等式组,解之即可;
(Ⅱ)根据M ∪N=M ,可得N ⊆M ,分类讨论:①当N=∅时,即a+1>2a ﹣1,有a<2;②当N ≠∅,则,解得2≤a<3,从而可得a 的取值X 围.
解答:解:(Ⅰ)∵M ∩N=M
∴M ⊆N ,
)2
3,21(
∴,解得a ∈∅.
(Ⅱ)∵M ∪N=M
∴N ⊆M
①当N=∅时,即a+1>2a ﹣1,有a<2;
②当N ≠∅,则,解得2≤a<3,)
综合①②得a 的取值X 围为a<3.
点评:本题以集合为载体,考查集合的运算,考查参数取值X 围的求解,将集合运算转化为集合之间的关系是解题的关键.
16.
已知{|24},{|}A x x B x x a =-≤≤=<.
(1)若A
B =∅,求a 的取值X 围; (2)若A
B A ≠,求a 的取值X 围; (3)若A
B ≠∅且A B A ≠,求a 的取值X 围. 【答案】
(1)若A
B =∅,则2a ≤-; (2)若A
B A ≠,4a ≤; (3)若A
B ≠∅且A B A ≠,则24a -<≤.。

相关文档
最新文档