传热学第二章

合集下载

中文版传热学-第二章

中文版传热学-第二章

19
In-Class Problems
在任意直角坐标系下,对于以下两种关于第三类边界条件的表 达形式,你认为哪个对?简述理由。
t x
tw
h(t f t w )
w
tf
t x h(t w t f )
w
2019/1/14
20
Quick Review:
1 重要概念:温度场、温度梯度、导热系数及其性质、 导温系数(热扩散率)定义及性质;
体的导热
2-4 通过肋片的导热
2-5 具有内热源的导热及多维导热
2019/1/14 22
§2-3 通过平壁,圆筒壁,球壳和其它变截面物体的导热
本节将针对一维、稳态、常物性、无内热源情况,考察平板和 圆柱内的导热。 直角坐标系:
c
t t t t ( ) ( ) ( ) Φ x x y y z z
2 导热微分方程式的理论基础及推导过程
3 导热微分方程式的一般形式、组成、及在推导给定条 件下的具体形式;
4 灵活运用导热微分方程,如温度的空间分布通过导热 方程与时间分布建立联系等 5 定解条件?边界条件?三类边界条件的数学表达式?
2019/1/14 21
第二章 导热基本定律及稳态导热
2-1 导热基本定律 2-2 导热微分方程式及定解条件 2-3 通过平壁、圆筒壁、球壳和其它变截面物
Φxdx
dy
Φ y dy Φ y
Φ z dz
t ( )dxdydz y y
y o x
t Φz ( )dxdydz z z
Φy
dx
Eout
2019/1/14
t t t Ein ( ) ( ) ( ) dxdydz x x y y z z

传热学(第二章)

传热学(第二章)

(2-32)
热阻
R=
1 1 1 ( 4πλ r r2 1
(2-33)
由球坐标系一般形式的导热微分方程
1 T 1 T 1 T T (λr2 + 2 2 (λ ) + 2 (λ sin θ ) + Φ = ρcp r2 r r) r sin θ r sin θ θ θ τ
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁,圆筒壁,球壳和其他变截面物体的导热 通过平壁,圆筒壁,
1 T 1 T T T (λr + 2 (λ ) + (λ ) + Φ = ρcp τ r r r) r z z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁.内,外半径为r1,r2,其内外表面均匀 恒定温度为t1,t2,球壁内的温度仅沿半径变化,等温面是同心球面. 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等. Φ = 4πr2λ dr dr Φ 2 = 4πλdt r
的热传导微分方程:
T(r,τ ) τ ρc 当 λ = const 时, 2T(r,τ ) + Φ = p T(r,τ ) λ λ τ [λT(r,τ )] + g(r,τ ) = ρcp

《传热学》第二章 稳态导热

《传热学》第二章  稳态导热

断面周长: 断面面积:
进行负内热源处理后等截面直肋导热微分方程组如下:
(假定肋端绝热)
定义: 令:
—— 过余温度
使导热微分方程齐次化:
并解出其通解为:
代入边界条件求出c1和c2,并代入通解,得出特解:
等截面直肋的温度分布:
肋端过余温度:
肋片散热量:
当考虑肋端散热时,计算肋片散热量时可采用假想肋高
n层圆筒壁的单位管长热流量:
二、第三类边界条件
常物性时导热微分方程组如下:
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知) 与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层圆筒壁的单位管长热流量:
三、临界热绝缘直径
有绝缘层时的管道总热阻:
当dx增大时: 增 大 减 小
代入肋片效率定义,得到:
肋片效率计算式:
m和l对肋片效率的影响分析:
a. m一定时,l越大,Φ越大,但ηf越低
采用长肋可以提高散热量,但却使肋片散热有效性降低
b. l一定时,m越大,ηf越低
可采用变截面肋片设法降低m
根据肋片效率计算散热量的方法(查线图法):
矩形及三角形直肋的肋片效率
环肋的肋片效率
h较小时
应用实例:细管,电线 电线的绝缘层外直径小于临界热绝缘直径时, 可起到散热作用
第四节 具有内热源的平壁导热
应用领域:混凝土墙壁凝固
研究对象:厚度为2δ的墙壁,内热源强度为qv, 两边为第三类边界,中间为绝热边界, 取墙壁的一半为研究对象建立导热微分方程 常物性时导热微分方程组如下:
积分两次,得:
《传热学》
第二章 稳态导热
导热微分方程:
稳态时满足:

《传热学》第二章热传导

《传热学》第二章热传导

第二章热传导一、名词解释1.温度场:某一瞬间物体内各点温度分布的总称。

一般来说,它是空间坐标和时间坐标的函数。

2.等温面(线):由物体内温度相同的点所连成的面(或线)。

3.温度梯度:在等温面法线方向上最大温度变化率。

4.热导率:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。

热导率是材料固有的热物理性质,表示物质导热能力的大小。

5.导温系数:材料传播温度变化能力大小的指标。

6.稳态导热:物体中各点温度不随时间而改变的导热过程。

7.非稳态导热:物体中各点温度随时间而改变的导热过程。

8.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

9.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。

10.肋效率:肋片实际散热量与肋片最大可能散热量之比。

11.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

12.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。

二、填空题1.导热基本定律是_____定律,可表述为。

(傅立叶,)2.非稳态导热时,物体内的_____场和热流量随_____而变化。

(温度,时间)3.导温系数的表达式为_____,单位是_____,其物理意义为_____。

(a=λ/cρ,m2/s,材料传播温度变化能力的指标)4.肋效率的定义为_______。

(肋片实际散热量与肋片最大可能散热量之比。

)5.按照导热机理,水的气、液、固三种状态中_______态下的导热系数最小。

(气)6.一般,材料的导热系数与_____和_____有关。

(种类,温度)7.保温材料是指_____的材料.(λ≤0.12 W/(m·K)(平均温度不高于350℃时))8.已知材料的导热系数与温度的关系为λ=λ0(1+bt),当材料两侧壁温分别为t1、t2时,其平均导热系数可取下的导热系数。

传热学 第2章 稳态导热

传热学 第2章 稳态导热

t t t t c Φ x x y y z z
3、常物性且稳态:
2t 2t 2t Φ a 2 2 2 0 x y z c
如果边界面上的热流密度保持为常数,则 q | w 常数 当边界上的热流密度为零时,称为绝热边界条件
t t qw 0 0 n w n w
18
(3)第三类边界条件 给出了物体在边界上与和它直接接触的流体之 间的换热状况。 根据能量守恒,有:
返回
2.1.1 各类物体的导热机理
气体:气体分子不规则热运动时相互碰撞的结果,高温的气体分子运 动的动能更大 固体:自由电子和晶格振动 对于导电固体,自由电子的运动在导热中起着重要的作用,电的良导 体也是热的良导体 对于非导电固体,导热是通过晶格结构的振动,即原子、分子在其平 衡位置附近的振动来实现的
返回
2.2.2 定解条件
导热微分方程式是能量守恒定律在导热过程中的应用,是一切导热 过程的共性,是通用表达式。 完整数学描述:导热微分方程 + 定解条件 定解条件包括初始条件和边界条件两大类,稳态问题无初始条件 初始条件:初始时刻的状态表示为: =0,t =f (x,y,z)
边界条件: 给出了物体在边界上与外界环境之间在换热上的联系或相互作用
2、推导基本方法:傅里叶定律 + 能量守恒定律 在导热体中取一微元体
进入微元体的总能量+微元体内热源产生的能量-离开微元体的总能量= 微元体内储存能的增加
11
Ein Eg Eout Es
d 时间段内:
Ein Φx Φy Φz d Eiout Φxdx Φy dy Φz dz d

传热学第2章

传热学第2章

根据第一类边界条件时的结果:
dt tw1 tw2 1
(此时壁温tw1和tw2为未知)
dr
ln r1 r
r2
与以上两个边界条件共三式变形后
相加,可消去tw1和tw2,得:
单层圆筒壁的单位管长热流量:
ql
tf1 tf2 1 1 ln r2 1
tf1 tf 2
1 1 ln d 2 1
h1 2r1 2 r1 h2 2r2 h1d1 2 d1 h2d 2
x h2 t x t f 2
根据第一类边界条件时的结果: (此时壁温tw1和tw2为未知)
q dt tw1 tw2 dx
与以上两个边界条件共三式变形后 相加,可消去tw1和tw2,得:
单层平壁的热流密度:
q
tf1 tf2
1 1
k tf1 tf2
h1 h2
多层平壁的热流密度:
接触热阻的定义:
Rc
tc
接触热阻的影响因素: 粗糙度
挤压压力 硬度匹配情形 空隙中介质的性质
减小接触热阻的措施: 表面尽量平整 增加挤压压力
两表面一软一硬 涂导热姆
第七节 二维稳态导热
应用领域:房间墙角,地下埋管,矩形保温层,短肋片
二维稳态导热微分方程:
2t x2
2t y 2
0
解析法
二维稳态导热问题的研究手段:
几种导热过程的形状因子
第二章重点:
1.各种稳态导热问题的数学模型 和求解方法
2.临界热绝缘直径问题
3.肋片性能分析
请同学们思考一个问题:
肋高越大,肋的散热面积越大,因而采用 增加肋高的方法可以增加肋的散热量。这 种方法在实际换热器设计中是否可行?若 可行,是否会有某些局限性?

传热学第二章

传热学第二章

习题平板2-1 用平底锅烧开水,与水相接触的锅底温度为111℃,热流密度为424002/m W 。

使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。

假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,试计算水垢与金属锅底接触面的温度。

水垢的导热系数取为1W/(m.K)。

解:由题意得424001003.0111=-=w t q =w/m 2所以t=238.2℃2-2 一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0. 07)./(K m W 及0.1)./(K m W 。

冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。

为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。

解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-3有一厚为20mm 的平板墙,导热系数为1.3)./(K m W 。

为使每平方米墙的热损失不超过1500W,在外表面上覆盖了一层导热系数为0.12)./(K m W 的保温材料。

已知复合壁两侧的温度分别为750℃及55℃,试确定此时保温层的厚度。

解:依据题意,有150012.03.1020.0557502221121≤+-=+-=δλδλδt t q ,解得:m 05375.02≥δ 2-4 一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

传热学-第2章-导热的理论基础

传热学-第2章-导热的理论基础
温度是标量,因而温度场是标量场
4
2.1 基本概念和导热基本定律
2.1.1 温度场
从不同的角度对温度场进行分类: 按温度场是否随时间变化,可分为:
稳定(Steady-state)温度场:物体内各点温度不随时间 变化——稳态导热
t f (x, y, z)
稳态温度场、定常温度场
5
2.1 基本概念和导热基本定律
提出的, 傅里叶是导热理论的奠基人,他通过实验, 分析和总结了物体内的导热规律,建立了傅立叶导热 定律。
19
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
Fourier定律的表述: 在任意时刻,各向同性连续介质内任意位置处的热
流密度在数值上与该点的温度梯度成正比,但方向相反
q gradt t n
❖ 实验表明,除了甘油和0~120℃范围内的水以外,其他 液体的导热系数值随温度升高而减小
❖ 压力变化对液体导热系数的影响很小,通常可以忽略
43
2.2 物质的导热特性
液体中液态金属和电解液是一类特殊的液体 ——依靠原子的运动和自由电子的迁移来传递热量,导热
系数要比一般非金属液体大10~1000倍
44
q gradt t n
n
❖ 热流密度是一个矢量 与温度梯度位于等温线同一的法线上 方向相反,永远指向温度降低的方向
❖ 在直角坐标系下,热流密度矢量可表示为
q qxi qyj qzk 22
2.1 基本概念和导热基本定律
2.1.3 导热的基本定律
温度梯度和热流密度矢量、等温线和热流线间的关系
湿量等 ❖ 有些材料,如木材、结构体、胶合板等还与方向有关
(各向异性材料)有关
30
2.2 物质的导热特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档