中考《圆》章节知识点复习专题

合集下载

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习

中考考点突破之圆的专题复习考点精讲1.理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;2.探索并证明垂径定理;3.探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论;考点解读考点1:垂径定理及其运用①与圆有关的概念和性质:(1)圆:平面上到定点的距离等于定长的所有点组成的图形.如图所示的圆记做⊙O. (2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧. (4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.②垂径定理及其推论:(1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)延伸:根据圆的对称性,如图所示,在以下五条结论中:①弧AC=弧AD; ②弧B D=弧C B;③C E=D E; ④AB⊥CD; ⑤AB是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.考点2:圆周角定理及其运用①圆心角、弧、弦的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.②圆周角定理及其推论:(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a ,∠A =1/2∠O .图a 图b 图c( 2 )推论:① 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b ,∠A =∠C .② 直径所对的圆周角是直角.如图c ,∠C =90°.圆内接四边形的对角互补.如图a ,∠A +∠C =180°,∠ABC +∠ADC =180°.考点3:点与圆的位置关系①点与圆的位置关系:设点到圆心的距离为d .(1)d <r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d >r ⇔点在⊙O 外.考点4:切线性质及其证明①切线的判定:(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.②切线的性质:(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径考点5:正多边形与圆①正多边形的有关概念:边长(a )、中心(O )、中心角(∠AOB )、半径(R ))、边心距(r ),如图所示①. 222⎪⎭⎫ ⎝⎛-=a R r 边心距n ︒=360中心角②内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.考点6:与圆有关的计算①弧长和扇形面积的计算:扇形的弧长l =180n r π;扇形的面积S =2360n r π=12lr②圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)计算公式:2180n R l r ππ==, S 侧=12lR =πrl考点突破1.(2021秋•德城区校级期中)在平面直角坐标系中,⊙C 的圆心坐标为(1,0),半径为1,AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为( )A .(﹣a ﹣1,﹣b )B .(﹣a +1,﹣b )C .(﹣a +2,﹣b )D .(﹣a ﹣2,﹣b )2.(2021秋•普兰店区期末)如图,⊙O 的半径为5,C 是弦AB 的中点,OC =3,则AB 的长是()A.6 B.8 C.10 D.123.(2021秋•禹州市期中)如图拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,这些钢索中最长的一根的长度为25m,那么其正下方的路面AB的长度为()A.100m B.130m C.150m D.180m4.(2020秋•永城市期末)如图,点A,B,C,D均在以点O为圆心的圆O上,连接AB,AC 及顺次连接O,B,C,D得到四边形OBCD,若OD=BC,OB=CD,则∠A的度数为()A.20°B.25°C.30°D.35°5.(2021秋•郾城区期末)如图,在⊙O中,=,直径CD⊥AB于点N,P是上一点,则∠BPD的度数是()A.30°B.45°C.60°D.15°6.(2022•泗洪县一模)圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3:4:6,∠D 的度数为()A.60°B.80°C.100°D.120°7.(2016•中山市模拟)如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC 于点Q.若QP=QO,则的值为()A.B.C.D.8.(2021秋•舞阳县期末)⊙O的半径为R,点P到圆心O的距离为d,并且d≥R,则P点()A.在⊙O内或⊙O上B.在⊙O外C.在⊙O上D.在⊙O外或⊙O上9.(2021秋•丛台区校级期中)下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.同一平面内,过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在10.(2021秋•射阳县校级期末)下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等11.(2021秋•禹州市期末)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.12.(2021•五通桥区模拟)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC =4,CD的长为.13.(2021秋•甘州区校级期末)在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.14.(2021秋•西峡县期末)如图,ABCD是⊙O的内接四边形,AD=CD,点E在AD的延长线上,∠CDE=52°,则∠AOD=.15.(2021秋•郾城区期末)如图,在⊙O中,AB为直径,∠ACB的平分线交⊙O于D,AB=6,则BD=.16.(2021•内乡县二模)婆罗摩笈多(公元598﹣660),印多尔北部乌贾因地方人(现巴基斯坦信德地区),在数学、天文学方面有所成就.他编著了《婆罗摩修正体系》《肯达克迪迦》等著作,他还提出了几何界的“婆罗摩笈多定理”.该定理可概述如下:如图,圆O的两条弦AB和CD互相垂直,垂足为E,连接BC,AD,若过点E作BC的垂线EF,延长FE与AD相交于点G,则G为AD的中点.为了说明这个定理的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图,在圆O的内部,AB⊥CD,垂足为E,.求证:.17.(2021秋•长垣市期末)豫东北机场待建在即,国道515围机场绕道而行.如图是公路转弯处的一段圆弧,点O是这段圆弧的圆心.直径CD⊥AB于点F.BE平分∠ABC交CD 于点E,AB=3km,DF=450m.(1)求圆的半径;(2)请判断A、B、E三点是否在以点D为圆心DE为半径的圆上?并说明理由.18.(2022•眉山模拟)如图所示,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD,BC,求证:(1)=;(2)AE=CE.19.(2021秋•内乡县期末)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=3,CE=4,求AC的长.20.(2021•信阳模拟)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连接BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.。

初三《圆》知识点及定理

初三《圆》知识点及定理

高图教育数学教研组卢老师专用《圆》知识点及定理一、圆的概念集合形式的概念: 1 、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充) 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);四、圆与圆的位置关系外离(图 1)无交点d R r ;外切(图 2)有一个交点d R r ;相交(图 3)有两个交点R r d R r ;内切(图 4)有一个交点d R r ;内含(图 5)无交点d R r ;d dR r R r图 1图 23、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

dR r图3d rRdR图4r二、点与圆的位置关系1、点在圆内d r点 C 在圆内;2、点在圆上d r点 B 在圆上;A d3、点在圆外d r点 A 在圆外;r OBd三、直线与圆的位置关系C1、直线与圆相离d r无交点;2、直线与圆相切d r有一个交点;3、直线与圆相交d r有两个交点;rd d=r r d图 5五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论 1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:①AB是直径②AB CD③CE DE④ 弧BC弧BD⑤ 弧AC弧 AD中任意 2 个条件推出其他 3 个结论。

中考复习--圆专题(所有知识点和题型(大全),全)

中考复习--圆专题(所有知识点和题型(大全),全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有( )A。

1个B.2个C。

3个D。

4个2.下列命题是假命题的是( )A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形.3。

下列命题正确的是( )A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D。

一个圆只有一个外接三角形4.下列说法正确的是()A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等D.直径所对的圆周角等于90°5。

下面四个图中的角,为圆心角的是( )A.B.C.D.二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________图1 图22。

如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C。

58°D。

32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为A图3 图44。

如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5。

如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD=.A图5 图66. 如图6,A,B,C,是⊙O上的三个点,若∠AOC=110°,则∠ABC=°.7.圆的内接四边形ABCD中,∠A:∠B:∠C=2:3:7,则∠D的度数为。

8。

若⊙O的弦AB所对的劣弧是优弧的13,则∠AOB=。

9。

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。

中考圆知识点总结复习

中考圆知识点总结复习

初中圆复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;A四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

图4图5推论2:圆的两条平行弦所夹的弧相等。

中考复习--圆专题所有知识点和题型汇总,全

中考复习--圆专题所有知识点和题型汇总,全

"圆"题型分类资料一. 圆的有关概念:1.以下说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧,正确的命题有〔 〕A . 1个B .2个C .3个D .4个2.以下命题是假命题的是〔 〕A .直径是圆最长的弦B .长度相等的弧是等弧C .在同圆或等圆中,相等的圆心角所对的弧也相等D .如果三角形一边的中线等于这条边的一半,则这个三角形是直角三角形。

3.以下命题正确的选项是 〔 〕 A .三点确定一个圆 B .长度相等的两条弧是等弧C .一个三角形有且只有一个外接圆D .一个圆只有一个外接三角形4.以下说确的是( )A .相等的圆周角所对的弧相等B .圆周角等于圆心角的一半C .长度相等的弧所对的圆周角相等D .直径所对的圆周角等于90°5.下面四个图中的角,为圆心角的是( )A .B .C .D .二.和圆有关的角:1. 如图1,点O 是△ABC 的心,∠A =50︒,则∠BOC =_________图1 图22.如图2,假设AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 的度数为( )A .116°B .64°C . 58°D .32°3. 如图3,点O 为优弧AB 所在圆的圆心,∠AOC =108°,点D 在AB 的延长线上,BD =BC ,则∠D 的度数为图3 图44. 如图4,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,∠BAC =80°,则∠BDC =_________度.5. 如图5,在⊙O 中, BC 是直径,弦BA ,CD 的延长线相交于点P ,假设∠P =50°,则∠AOD =.图5 图66. 如图6,A ,B ,C ,是⊙O 上的三个点,假设∠AOC =110°,则∠ABC =°.7.圆的接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

超详细中考圆知识点总结复习(精华版)

超详细中考圆知识点总结复习(精华版)

AdrOBdCd d d R r R r R r 图1 图2 图3d d rR rR一,圆的概念中学圆复习集合形式的概念: 1 ,圆可以看作是到定点的距离等于定长的点的集合;2 ,圆的外部:可以看作是到定点的距离大于定长的点的集合;3 ,圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1,圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2,垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3 ,角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4 ,到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5 ,到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线;二,点与圆的位置关系1,点在圆内 d r 点C 在圆内;2,点在圆上 d r 点B 在圆上;3,点在圆外 d r 点A 在圆外;三,直线与圆的位置关系1,直线与圆相离 d r 无交点;2,直线与圆相切 d r 有一个交点;3,直线与圆相交 d r 有两个交点;r d d=r r d四,圆与圆的位置关系外离(图1)无交点 d R r ;外切(图2)有一个交点 d R r ;相交(图3)有两个交点内切(图4)有一个交点RdrRd Rr ;r ;内含(图5)无交点 d R r ;图4 图5五,垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧;推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4 个定理,简称 2 推3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论,即:① AB 是直径② AB CD ③CE DE ④ 弧BC 弧BD ⑤ 弧AC 弧AD 中任意2 个条件推出其他 3 个结论;A推论2:圆的两条平行弦所夹的弧相等;即:在⊙O 中,∵AB ∥CD C DO六,圆心角定理∴弧AC 弧BD OEA B C DB圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的E弧相等,弦心距相等;此定理也称 1 推3 定理,即上述四个结论中,只要知道其中的 1 个相等,就可以推出其它的 3 个结论, F 即:①AOB DOE ;②AB DE ;O③OC OF ;④弧BA 弧BD DACB七,圆周角定理C 1,圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半;即:∵AOB 和ACB 是弧AB 所对的圆心角和圆周角∴AOB 2 ACB B OA 2,圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆D周角所对的弧是等弧;即:在⊙O 中,∵ C , D 都是所对的圆周角∴ C DB OA 推论2:半圆或直径所对的圆周角是直角;圆周角是直C角所对的弧是半圆,所对的弦是直径;即:在⊙O 中,∵AB 是直径或∵ C 90∴ C 90 ∴AB 是直径 B AO推论3:如三角形一边上的中线等于这边的一半,那么这个三角形是CB AOCP直角三角形; 即:在△ ABC 中,∵ OC OA OB ∴△ ABC 是直角三角形或C 90留意:此推论实是初二年级几何中矩形的推论: 在直角三角形中斜边上的中线等于斜边的一半的逆定理;八,圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角; 即:在⊙ O 中, ∵四边 ABCD 是内接四边形DC九,切线的性质与判定定理1,切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不行即:∵ MN OA 且 MN 过半径 OA 外端∴ MN 是⊙ O 的切线2,性质定理:切线垂直于过切点的半径(如上图)推论 1:过圆心垂直于切线的直线必过切点;推论 2:过切点垂直于切线的直线必过圆心;以上三个定理及推论也称二推肯定理:BAEOM A N即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最终一个;十,切线长定理B切线长定理: 从圆外一点引圆的两条切线,它们的切线长 相等,这点和圆心的连线平分两条切线的夹角;O即:∵ PA , PB 是的两条切线∴ PA PB ; PO 平分 BPAA十一,圆幂定理1,相交弦定理 :圆内两弦相交,交点分得的两条线段的乘积相等;D即:在⊙ O 中,∵弦 AB ,CD 相交于点 P ,BO ∴ PA PB PC PD PC A推论:假如弦与直径垂直相交,那么弦的一半是它分直径 C所成的两条线段的比例中项;即:在⊙ O 中,∵直径 AB CD ,BO EA∴ CE 2AE BED2,切割线定理 :从圆外一点引圆的切线和割线, 切线长是这点到割线与圆交点的两条线段长的比例中项;∴ CBAD 180 B D 180 DAE C即:在⊙O 中,∵PA 是切线,PB 是割线A∴PA2PC PB ED 3,割线定理:从圆外一点引圆的两条割线,这一点到每条P O割线与圆的交点的两条线段长的积相等(如右图);C B 即:在⊙ O 中,∵ PB ,PE 是割线∴PC PB PD PE十二,两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦;A 如图:O1O2垂直平分AB ;O1 O2 即:∵⊙O1,⊙O2相交于 A , B 两点B ∴O1O2垂直平分AB十三,圆的公切线A B 两圆公切线长的运算公式:CO1 (1))公切线长:Rt O O C 中,AB 2CO 2O O 2CO 2;O21 2 1 1 2 2(2))外公切线长:CO2是半径之差;内公切线长:CO2是半径之和十四,圆内正多边形的运算(1))正三角形在⊙O 中△ABC 是正三角形,有关运算在Rt BOD 中进行:OD : BD : OB 1: 3 : 2;CB COB D AO OA E D BA(2))正四边形同理,四边形的有关运算在Rt OAE 中进行,(3))正六边形同理,六边形的有关运算在Rt OAB 中进行,OE : AE : OAAB : OB : OA1:1: 2 :1: 3 : 2.A十五,扇形,圆柱和圆锥的相关运算公式O S lB1,扇形:(1)弧长公式:l (2)扇形面积公式:n R;180n R2 1S lR360 2n :圆心角R :扇形多对应的圆的半径l :扇形弧长S :扇形面积2,圆柱:(1))圆柱侧面绽开图ADD1S S 2 S= 2 rh 2 r 2表侧底母线长(2))圆柱的体积:V r 2 h 底面圆周长B C1CB13,圆锥侧面绽开图(1))S S S = Rr r 2O表侧底1 2(2))圆锥的体积:V r h R3十六,内切圆及有关运算;CA r B(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等;(2)△ABC中,∠C=90°,AC=b,BC=a,AB=c,就内切圆的半径r= a b c;2(3)S = 1r (a b c),其中a,b,c 是边长,r 是内切圆的半径;△ABC2 A D(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦;O 如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D; CB练习题1. 如⊙O 的半径为4cm,点 A 到圆心O 的距离为3cm,那么点 A 与⊙O 的位置关系是( )A .点A 在圆内B .点A 在圆上c.点 A 在圆外 D .不能确定2. 已知⊙O 的半径为5, 弦AB 的弦心距为3, 就AB 的长是3. 如图,MN 是半径为 1 的⊙O 的直径,点 A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,就求PA+PB 的最小值_A B B_M_P_O_oN_AE CD 图2_4 如图2,已知BD 是⊙ O 的直径,⊙ O 的弦AC ⊥BD 于点E,如∠ AOD=60°,就∠ DBC 的度数为5. 与直线L 相切于已知点的圆的圆心的轨迹是.6. 已知直角三角形的两直角边长分别为 5 和12,就它的外接圆半径R= ,内切圆半径r= .7. ⊙O 的半径为6,⊙O 的一条弦AB 为6 3 ,以 3 为半径的同心圆与直线AB 的位置关系是.8. PA,PB 是⊙O 的切线,切点是 A ,B,∠APB=50°,过A 作⊙O 直径AC,连接CB,就∠PBC= .9. 如图4,AB 是⊙O 的直径,弦AC,BD 相交于P,就CD ∶AB 等于A .sinBPC B.cosBPC C.tanBPC D.cotBPC图4 图510. 如图5,点P 为弦AB 上一点,连结OP,过PC 作PC⊥OP ,PC 交⊙O 于C,如AP=4,PB=2,就PC 的长是A . 2 B.2 C.2 2 D. 311.圆的最大的弦长为12 cm,假如直线与圆相交,且直线与圆心的距离为d,那么A .d<6 cm B.6 cm<d<12 cmC.d≥6 cm D.d>12 cm12. 如图6,在以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,P 为切点,设AB=12 ,就两圆构成圆环面积为.图6 图713. 如图7,PE 是⊙O 的切线,E 为切点,PAB,PCD 是割线,AB=35,CD =50,AC∶DB =1∶2,就PA= .14. 如图8,AB 是⊙O 的直径,点 D 在AB 的延长线上,且BD =OB,点 C 在⊙O 上,∠CAB =30 °,求证:DC 是⊙O 的切线.图815. 如图,AB 既是⊙ C 的切线也是⊙ D 的切线,⊙ C 与⊙ D 相外切,⊙C 的半径r=2 ,⊙D 的半径R=6 ,求四边形ABCD 的面积;D CBA16. 如图10,BC 是⊙O 的直径, A 是弦BD 延长线上一点,切线DE 平分AC 于E,求证:(1) AC 是⊙ O 的切线.(2) 如AD ∶DB =3∶2,AC=15,求⊙ O 的直径.(12 分)图1017. 如图11,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC 是⊙O 的切线;(2) 如OE∶EA=1∶2,PA=6,求⊙O 的半径;(3)求sinPCA 的值.(12 分)图1118. 如图,⊙O 的两条割线AB,AC 分别交圆O 于D,B,E,C,弦DF//AC 交BC 于C.(1)求证:AC FG BC CG ;(2)如CF =AE.求证:△ ABC 为等腰三角形.BD G FO·AE C19. 如图,AB 是⊙O 的直径,弦CD ⊥AB 与点E,点P 在⊙O 上,∠1=∠C,(1)求证:CB ∥PD;(2)如BC=3 ,sinP= 3,求⊙ O 的直径;520. 如图,△ABC 内接于⊙O,AB 是⊙O 的直径,PA 是过 A 点的直线,∠PAC=∠B.(l)求证:PA 是⊙O 的切线;P C(2)假如弦CD 交AB 于E,CD 的延长线交PA 于F,AC=8,CE :ED =6:5,AE:EB=2:3,求AB 的长和∠ ECB 的正切值.A E . BODF21. 如图,在Rt△ABC 中,∠B=90°,∠A 的平分线交BC 于点 D ,E 为AB 上的一点,DE=DC ,以 D 为圆心,DB 长为半径作⊙ D , A求证:(l)AC 是⊙D 的切线;E(2)AB+EB=AC.22. 如图,AB 是⊙O 的直径,以OA 为直径的⊙(l)求证:AD =DC ;BD CO1;与⊙O 的弦AC 相交于 D ,DE⊥OC,垂足为E.(2)求证:DE 是⊙O1的切线;(3)假如OE=EC,请判定四边形O1OED 是什么四边形,并证明你的结论.CDEA BO1 O考点一:与圆相关概念的应用利用与圆相关的概念来解决一些问题是必考的内容,在复习中精确懂得与圆有关的概念,留意分清它们之间的区分和联系. 1. 运用圆与角(圆心角,圆周角),弦,弦心距,弧之间的关系进行解题【例1】已知:如下列图,在△ABO中,∠AOB=90°,∠B=25°,以O为圆心,OA长为半径的圆交AB于D,求弧AD的度数.【例2】如图,A,B,C 是⊙O上的三点,∠AOC=100°,就∠ABC的度数为().A. 30 °B. 45 °C. 50 °D.60°2. 利用圆的定义判定点与圆,直线与圆,圆与圆的位置关系【例3】已知⊙O的半径为3cm,A 为线段OM的中点,当OA满意:(1)当OA=1cm时,点M与⊙O的位置关系是.(2)当OA=1.5cm时,点M与⊙O的位置关系是.(3)当OA=3cm时,点M与⊙O的位置关系是.【例4】⊙O的半径为4,圆心O到直线l 的距离为3,就直线l 与⊙O的位置关系是().A. 相交B. 相切C. 相离D. 无法确定【例5】两圆的半径分别为3cm 和4cm,圆心距为2cm,那么两圆的位置关系是.3. 正多边形和圆的有关运算【例6】已知正六边形的周长为72cm,求正六边形的半径,边心距和面积.4. 运用弧长及扇形面积公式进行有关运算【例7】如图,矩形ABCD中,BC=2,DC=4,以AB 为直径的半圆O与DC相切于点E,就阴影部分的面积为(结果保留).5. 运用圆锥的侧面弧长和底面圆周长关系进行运算【例8 】已知圆锥的侧面展开图是一个半圆,就这个圆锥的母线长与底面半径长的比是.考点二:圆中运算与证明的常见类型1. 利用垂径定懂得题垂径定理及其推论中的三要素是:直径,平分,过圆心,它们在圆内经常构成圆周角,等分线段,直角三角形等,从而可以应用相关定理完成其论证或运算.【例1】在⊙O 中,弦CD与直径AB相交于点P,夹角为30°,且分直径为1∶5 两部分,AB=6,就弦CD 的长为.A. 2 B. 4 C. 4 D. 22. 利用“直径所对的圆周角是直角”解题“直径所对的圆周角是直角”是特别重要的定理,在解与圆有关的问题时,经常添加帮助线构成直径所对的圆周角,以便利用上面的定理.【例2】如图,在⊙O的内接△ABC中,CD是AB边上的高,求证:∠ACD=∠OCB.3. 利用圆内接四边形的对角关系解题圆内接四边形的对角互补,这是圆内接四边形的重要性质,也揭示了确定四点共圆的方法.【例3】如图,四边形ABCD为圆内接四边形, E 为DA延长线上一点,如∠C=45°,AB= 2 ,就点 B 到AE的距离为.4. 判定圆的切线的方法及应用判定圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)如圆心到一条直线的距离等于圆的半径,就该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=4 3 ,D是线段BC的中点.(1)试判定点 D 与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O 为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O 与BC相切于M,与AB,AD分别相交于E,F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D 为劣弧上一动点,P 在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.【课堂巩固练习】一. 挑选题:1. ⊙O的半径为R,点P 到圆心O的距离为d,并且d≥R,就P 点[]A. 在⊙ O内或圆周上B. 在⊙ O外C. 在圆周上D. 在⊙ O外或圆周上2. 由一已知点P 到圆上各点的最大距离为5,最小距离为1,就圆的半径为[]A ,2 或3B ,3C ,4D ,2 或43. 如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,就∠BDC的度数是[]A.110 °B.70 °C.55 °D.125 °4. 在⊙O中,弦AB垂直并且平分一条半径,就劣弧AB 的度数等于[]A.30 °B.120 °C.150 °D.60 °5. 直线a上有一点到圆心O的距离等于⊙O的半径,就直线a与⊙O的位置关系是[]A,相离B,相切C,相切或相交D,相交6,如图,PA切⊙O于A,PC交⊙O于点B,CA,如PA=5,PB=BC,就PC的长是[]OA,10 B,5 C,5 2 D,5 3P7.如图,某城市公园的雕塑是由 3 个直径为1m的圆两两相垒立在水平的地面 B C 上,就雕塑的最高点到地面的距离为[]A.2 3B.3 32 2C.2 2D.3 22 28,已知两圆的圆心距是9,两圆的半径是方程2x两圆有[]条切线;A,1 条 B ,2 条 C ,3 条 D ,4 条-17x+35=0 的两根,就9,假如等腰梯形有一个内切圆并且它的中位线等于20cm,就梯形的腰长为[]A,10cmB,12cmC,14cmD,16cm10,如图,⊙O1 和⊙O2 相交于A,B 两点,且 A O1,A O2 分别是两圆的切线, A 是切点,如⊙O1 的半径r=3 ,⊙O2 的半径R=4,就公共弦AB的长为[]A,2 B ,4.8 C ,3 D ,2.411,水平放置的排水管(圆柱体)截面半径是1cm,水面宽也是1cm,就截面有水部分(弓形)的面积是[]A, B , C , D ,或二. 填空题:12.6cm 长的一条弦所对的圆周角为90°,就此圆的直径为;13. 在⊙O 中,AB是直径,弦CD与AB相交于点E,如,就CE=DE(只需填一个适合的条件);14. 在圆内接四边形ABCD中,∠A∶∠B∶∠C=5∶2∶1,就∠D= ;15. 如三角形的外心在它的一条边上,那么这个三角形是;16. 如图,圆内接四边形ABCD的对角线AC,BD交于E 点,AB=120°,CD=70°就∠AEB= ;17. 已知两个圆的半径分别为8 cm 和3 cm,两个圆的圆心距为7 cm,就这两个2圆的外公切线长为;18. 如图,⊙O中,弦AB⊥弦CD于E,OF⊥AB于F,OG⊥CD于G,如AE=8cm,EB=4cm,就OG= cm ;19. 已知圆锥的母线长为 5 厘米,底面半径为 3 厘米,就它的侧面积为;四. 解答题20. 如图在△ABC中,∠C=90°,点O为AB 上一点,以O为圆心的半圆切AC于E,交AB于D,AC=12,BC=9,求AD的长;CEAD O B21. 如图在⊙ O中,C 为ACB的中点,CD为直径,弦AB交CD于点P,又PE⊥CB于E,如BC=10,且CE∶EB=3∶ 2,求AB的长.22. 已知:如图, A 是以EF 为直径的半圆上的一点,作A G⊥EF 交EF 于G,又 B 为AG上一点,EB的延长线交半圆于点K,求证:AE 2EB EK23. 已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB 边上的高,求证:AC·BC=AE·CD。

中考圆形知识点总结归纳

中考圆形知识点总结归纳

中考圆形知识点总结归纳一、圆的定义及性质1. 定义:圆是平面上到一个定点的距离等于定长的点的全体构成的集合。

2. 圆心和半径:圆心是到圆上任一点的距离相等的点;半径是圆心到圆上任一点的距离。

3. 直径:通过圆心并且有圆上两点的线段叫做直径,直径的长度等于两倍的半径。

4. 切线和切点:在圆上的一点处与圆相切的直线叫做切线,切线与圆相切的点叫做切点。

二、圆的周长和面积1. 周长:圆的周长等于直径乘以π(π≈3.14)。

2. 面积:圆的面积等于半径的平方乘以π。

三、角与弧1. 圆心角与弧长的关系:圆心角的度数等于对应圆周的弧长所对应的圆心角的两倍。

2. 弧长的计算:弧长等于圆周长乘以所含圆心角的度数除以360度。

3. 弧度制:1弧度等于半径长所对应的圆心角的弧长。

4. 弧长与扇形面积的计算:扇形面积等于扇形对应的圆心角的弧度除以2π乘以圆的面积。

四、相交圆的位置关系1. 相交圆的位置关系:两个圆相交于两个不同的点,一个点,或者不相交。

2. 内切和外切圆:两个圆内切的位置关系就是一个圆在另一个圆内部,一个圆与另一个圆外切的位置关系就是一个圆的周长与另一个圆的圆心的距离相等。

五、圆的应用1. 圆的模型:圆在自然界中有丰富的应用,例如铁路辙、车轮、橱柜的拉手等都是圆形的。

2. 饼图:根据数据用圆形图示数据的比例和百分比,通过饼图可以直观的看出不同部分所占的比例。

综上所述,圆形是数学中重要的基本图形之一,在日常生活和工作中都有着广泛的应用,掌握圆形的基本概念和性质对于学习和生活都是非常有帮助的。

希望大家能够认真学习圆形知识,掌握相关的计算方法,提高自己的数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆》
一、圆的概念
集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系
1、点在圆内⇒d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
三、直线与圆的位置关系
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
A
四、圆与圆的位置关系
外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD
图4
图5
B
D
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD
七、圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠
2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

B
B
A
B
A O
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,
∵四边形ABCD 是内接四边形
∴180C BAD ∠+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线
(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB =
PO 平分BPA ∠
P
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2
CE AE BE =⋅
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的
的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式:
(1)公切线长:12Rt O O C ∆
中,221AB CO ==
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

D
B
B
A
十四、圆内正多边形的计算 (
1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:
::1:3:2OD BD OB =;
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =:
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.
十五 三角形外接圆 内切圆
三角形一定有外接圆,其他的图形不一定有外接圆。

三角形的外接圆圆心是三边的垂直平分线的交点。

三角形外接圆圆心叫外心
锐角三角形外心在三角形内部。

直角三角形外心在三角形斜边中点上。

钝角三角形外心在三角形外。

有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心) 外接圆圆心到三角形各个顶点的线段长度相等
过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心
在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)
也可能在三角形上(如直角三角形)
过不在同一直线上的三点可作一个圆(且只有一个圆)
D
C
B
A
O
E
C
B
A
D
O
B
A
O
与三角形三边都相切的圆叫做三角形的内切圆
,圆心叫做三角形的内心,三角形叫做圆的外切三角形。

三角形的内心是三角形三条角平分线的交点。

三角形一定有内切圆,其他的图形不一定有内切圆,且内切圆圆心定在三角形内部。

在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。

内切圆的半径为r=2S÷C,当中S 表示三角形的面积,C 表示三角形的周长。

在直角三角形的内切圆中,有这样两个简便公式:1、两直角边相加的和减去斜边后除以2,得数是内切圆的半径。

2、两直角边乘积除以直角三角形周长,得数是内切圆的半径。

1、r=(a+b-c)/2(注:r 是Rt△内切圆的半径,a, b 是Rt△的2个
直角边,c 是斜边) 2、r=ab/ (a+b+c)
十六、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
; (2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)圆柱侧面展开图
2S S S =+侧表底=2
22rh r ππ+
(2)圆柱的体积:2
V r h π=
S l
B
O
母线长
底面圆周长
C 1
D 1D
C
(2)圆锥侧面展开图
(1)S S S =+侧表底=2
Rr r ππ+ (2)圆锥的体积:213
V r h π=
圆锥的侧面展开图的弧长等于圆锥的底面周长;圆锥的底面半径,母线长,高组成直角三角形,可利用勾股定理求解.
B1
R
r
C B
O。

相关文档
最新文档