测试范围:51相交线

合集下载

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)

第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。

测绘技术中的相交测量与相交计算技巧

测绘技术中的相交测量与相交计算技巧

测绘技术中的相交测量与相交计算技巧在测绘技术中,相交测量与相交计算是非常重要的一部分。

它们可应用于土地测量、建筑设计、道路规划等多个领域。

相交测量主要用于测定两个对象之间的交点位置,而相交计算则用于计算交点之间的距离、角度等相关参数。

本文将探讨相交测量与相交计算的一些技巧和应用。

1. 相交测量技巧相交测量是指通过观测两条或多条直线的交点来确定各直线之间的相对位置。

在实际应用中,我们常常会遇到需要精确测量两个交叉道路的交点位置的情况。

这时,我们可以选取两个已知固定点,通过测量它们与待测交点的距离和方位角,进而计算出待测点的坐标。

在进行相交测量时,有几点需要注意:a. 测量仪器的选择:选择具有高精度和稳定性的测量仪器,如全站仪或高精度电子经纬仪,可以提高测量结果的准确性。

b. 观测数据的处理:在进行相交测量时,要确保取得足够的测量角度和距离数据,以提高测量精度。

同时,应仔细处理观测数据,排除异常值和误差,以获得可靠的结果。

c. 地形和环境的考虑:在进行相交测量时,应考虑地形和环境因素对观测误差的影响。

如有大坡度地形或遮挡物时,应采用适当的测量方法和措施。

2. 相交计算技巧相交计算是指根据已知的相交点和其它相关参数,通过数学计算来确定交点之间的距离、角度、倾斜等相关参数。

相交计算常用于土木工程、建筑设计等领域,如确定道路上两条直线的交叉角度,计算建筑物的相交面积等。

在进行相交计算时,需要掌握一些技巧:a. 坐标转换:通常情况下,相交计算需要将测量点的坐标从某个坐标系转换到另一个坐标系。

因此,熟练掌握坐标转换公式和方法是十分重要的。

b. 角度计算:对于需要计算交角的情况,我们可以运用向量的知识来进行计算。

通过计算向量之间的夹角,可以准确求得交角的数值。

c. 倾斜计算:在计算两个相交面的倾斜角度时,可以利用三角函数公式进行计算。

根据已知的高度和底边长度,可以求得两个面的倾斜角。

3. 相交测量与相交计算的应用相交测量与相交计算在土地测量、建筑设计、道路规划等领域有广泛应用。

人教版七年级下册数学同步练习全套

人教版七年级下册数学同步练习全套

人教版七年级下册数学同步练习全套5.1.1 相交线一、选择题:(每小题3分,共15分)1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • ) A.150° B.180° C.210° D.120°(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:(每小题3分,共24分)6.如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.12121221OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(4) (5) (6) 7.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______. 8.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______. 9.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.10.对顶角的性质是______________________.11.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.(7) (8) (9)12.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.13.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、解答题:(共61分)14.(7分)如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.34D CBA 12OFED CB A OED CBAODC BA 12OE D CBA OE DCBAOF EDCBA 1215.(10分)如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.16.(10分)如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.17.(10分)如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.18.(12分)如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.34l 3l 2l 112OE DCBA ODCBAcba341219.(12分)若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交于一点呢?5.1.1 相交线一.填空题1.如图,两条直线AB,CD 相交于点O,图中小于180°的角有______个,其中互为邻补角的有___________,它们之间的数量关系是______________,互为对顶角的有______________,它们之间的数量关系是_______________.第1题图第2题图2.如图,O 是直线AB 上任意一点,∠AOC 与∠BOC 互为________角,它们之间的位置关系是__________,数量关系是_______________.3.如图,直线AB、CD、EF 都经过点O,且∠AOC=35°,∠EOB=99°,则∠FOD =_____ .4.如图,直线AB、CD 相交于点O,OE 平分∠AOD,∠DOF =90°,∠1=40°,则∠2=______,∠3=_______.第3题图第4题图第5题图5.如图,当剪子口∠AOB 增大15°时,∠COD 增大_____________________.二、选择题6.如图,直线AB、CD、EF 相交于点O,∠1的邻补角是 ( )A.∠BOC B.∠BOC 和∠AOF C.∠AOF D.∠BOE 和∠AOF(第6题图第7题图第8题图7.如图,直线a 与直线c 相交于点O,则∠1的度数是 ( )A.60° B.50° C.40° D.30°8.如图,直线AB、CD 相交于点O,射线OM 平分∠AOC.若∠BOD=76°,则∠BOM 等于( )A.38° B.104° C.142° D.144°9.如图,将长方形ABCD 沿EF 折叠,使点B 落在点G 处,点C 落在点H 处.若∠EFD =80°,则∠DFH 的度数为 ( )A.80° B.100° C.20° D.60°三、解答题10.如图,已知直线a,b 相交.(1)若∠1=40°,求∠2,∠3,∠4的度数;(2)若∠1+∠3=90°,求各角的度数;(3)若∠1∶∠2=2∶7,求各角的度数.11.如图,∠ABC 和∠CBD 互为邻补角,BE 平分∠ABC,BF 平分∠CBD.你能求∠EBF 的大小吗? 并说明理由.5.1.2 垂线一、选择题:(每小题4分,共24分)1.如图1所示,下列说法不正确的是 ( ) A.点B 到AC 的垂线段是线段AB; B.点C 到AB 的垂线段是线段AC C.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有 ( ) A.2条 B.3条 C.4条 D.5条3.下列说法正确的有 ( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是 ( )DCBADCBAO DCBAA.大于acmB.小于bcmC.大于acm 或小于bcmD.大于bcm 且小于acm 5.到直线L 的距离等于2cm 的点有( )A.0个B.1个;C.无数个D.无法确定6.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm 二、填空题:(每小题5分,共20分)6.如图3所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.7.过一点有且只有________直线与已知直线垂直.8.画一条线段或射线的垂线,就是画它们________的垂线.9.直线外一点到这条直线的_________,叫做点到直线的距离. 三、解答题(共56分)10.(12分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.11.(14分)如图所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.GOFEDCBA lA12.(16分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.13.(14分)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.5.1.2 垂 线 一、填空题1.当两条直线相交所成的四个角中有一个角是______时,就说这两条直线互相垂直,其中一条直线是另一条直线的_______,它们的交点叫做_______.垂直是相交的一种特殊情形.2.过一点___________直线与已知直线垂直.3.“神舟”六号发射塔与地平面的夹角为__________度,它与地面的位置关系为_________.4.连接直线外一点与直线上各点的所有线段中,__________最短,直线外一点到这条直线的垂线段的长度,叫做点到直线的________.如图,过点O 作四条与直线l 相交的直线,交点分别为点A 、B 、C 、D,其中OC ⊥l,则在OA 、OB 、OC 、OD 这四ODC BANBA条线段中,________最短,点O 到直线l 的距离是线段______的长.第4题图第5题图第6题图5.如图,OB⊥OA,直线CD 过点O,且∠AOC=25°,则∠BOC=______,∠BOD=_______.6.如图,AC⊥BC,CD⊥AB.(1)图中共有______个直角;(2)图中点C 到直线AB 的距离是线段______的长度,点B 到直线AC 的距离是线段_____的长度,点B 到直线CD 的距离是线段______的长度;(3)线段AD 的长表示___________的距离.7.如图,AB、CD 相交于点O,AC⊥CD 于点C.若∠BOD =38°,则∠A =__________.第7题图第8题图二、选择题8.如图,∠1+∠2等于 ( )A.60° B.90° C.110° D.180°9.①过直线上一点作该直线的垂线不止一条;②直线a 的垂线有无数条;③相交的直线不一定垂直,但垂直的直线必定相交;④过直线外一点作已知直线的垂线有且只有一条.上述说法中不正确的有 ( )A.1个 B.2个 C.3个 D.4个10.过一条线段外一点,画这条线段的垂线,垂足在 ( )A.这条线段上B.这条线段的端点C.这条线段的延长线上D.这条线段上或这条线段的延长线上11.跳远比赛时,小新从点A 跳落在沙坑内B 处(如图所示),这次小新的跳远成绩是3.4m,则小新从起跳点到落脚点之间的距离 ( )A.等于3.4m B.小于3.4m C.大于3.4m D.不能确定12.如图,点P 在∠AOC 的边OA 上.(1)过点P 画OA 的垂线PB,交OC 于点B;(2)画出点P 到OC 的垂线段PM ;(3)上述作图中,哪一条线段的长表示点P 到OB 的距离?(4)比较PM 与OP 的大小,并说明理由.13.如图所示,直线AB、CD 相交于点O,OM ⊥AB.(1)若∠1=∠2,判断ON 与OD 的位置关系,并说明理由;(2)若∠1=41∠BOC,求∠AOC 和∠MOD 的度数.14.如图,A 处是某学生的家,B 处是学校,l 是一条公路,学生要去学校,如何走最近? 该学生要去公路怎样走最近? 请在图中画出相应的路线,并简述理由.15.已知线段AB 的长为acm,点A 、B 到直线l 的距离分别为6cm,4cm .请画图说明在下列条件下符合条件的直线l 有几条. (1)a =3;(2)a =10;(3)a =15.5.1.3同位角、内错角、同旁内角 知识点:1、同位角:两条直线被第三条直线所截,在两条直线的 ,第三条直线的 。

大庆市七年级数学下册第一单元《相交线与平行线》测试题(包含答案解析)

大庆市七年级数学下册第一单元《相交线与平行线》测试题(包含答案解析)

一、选择题1.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相平行2.用反证法证明“若⊙O的半径为r,点P到圆心O的距离d<r,则点P在⊙O的内部”,第一步应假设()B.点P在⊙O的内部A.d rC.点P在⊙O上D.点P在⊙O上或⊙O外部3.下列命题中,假命题是()A.对顶角相等B.同角的余角相等C.面积相等的两个三角形全等D.平行于同一条直线的两直线平行4.下列哪个图形是由图1平移得到的()A.B.C.D .5.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.56.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠7.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒8.(2017•十堰)如图,AB ∥DE ,FG ⊥BC 于F ,∠CDE=40°,则∠FGB=( )A .40°B .50°C .60°D .70°9.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行>-,则a一定小于0D.若数a使得a a10.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A.50°B.60°C.65°D.75°11.如图,将△ABE向右平移50px得到△DCF,如果△ABE的周长是400px(1px=0.04cm),那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.26二、填空题13.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,则∠DOF的度数为__.14.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.15.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0、1、2、3、4和数轴上的﹣1、﹣2、﹣3、﹣4、﹣5分别对应.现把直尺向右平移5个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是______.16.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用.17.如图,已知AB∥DE,∠ABC=76°,∠CDE=150°,则∠BCD的度数为__°.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题.21.如图,直线AB,CD相交于点O,OA平分EOC(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.如图,MN ,EF 分别表示两面镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,此时12∠=∠;光线BC 经过镜面EF 反射后的反射光线为CD ,此时34∠=∠,且//AB CD .求证∶//MN EF .24.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).25.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46︒,公司要求A、B两地同时开工,并保证若干天后公路准确接通.(1)B地修公路的走向应该是;(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44︒,试求A到公路BC的距离?26.如图,直线AB和CD相交于点O.(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A、相等的角不一定是对顶角,此项是假命题;B、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内.故选:D.【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.3.C解析:C【分析】根据对顶角的性质对A进行判断;根据余角的性质对B进行判断;根据三角形全等的判断对C进行判断;根据平行线的传递性对D进行判断.【详解】解:A、对顶角相等,所以A选项为真命题;B、同角的余角相等,所以B选项为真命题;C、面积相等的两个三角形不一定全等,所以C选项为假命题;D、平行于同一条直线的两条直线平行,所以D选项为真命题.故选:C.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B .【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.5.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.6.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.7.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .8.B解析:B【解析】试题分析:由AB ∥DE ,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG ⊥BC ,∴∠FGB=90°﹣∠B=50°,故选B .考点:平行线的性质9.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.11.C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.12.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=1 2(AB+EH)×BE=12(8+5)×4=26.故选D.二、填空题13.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB=90°+50°=140°,∴∠AOD=140°,∵OF平分∠AOD,∴∠FOD=12∠AOD=70°,故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.14.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.15.2【分析】画出示意图找出平移后数轴上的数与刻度尺上的读数相同的数字即可【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2故答案为:2【点睛】本题主要考查平移的概念以及数轴根据题意画出示意图解析:2【分析】画出示意图,找出平移后数轴上的数与刻度尺上的读数相同的数字即可.【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2.故答案为:2.【点睛】本题主要考查平移的概念以及数轴,根据题意画出示意图是解题关键.16.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.17.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.18.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∠EOC=30°(角平分线定义),∵OA平分∠EOC,∴∠AOC=12∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.20.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小 解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)35BOD ∠=︒;(2)140∠=︒BOC【分析】(1)首先根据角平分线的性质得出∠AOC ,然后利用对顶角相等即可得出∠BOD ; (2)首先设4EOC x ∠=,则5EOD x ∠=,然后根据平角的性质构建方程,得出∠EOC ,再利用角平分线的性质得出∠AOC ,最后由平角得旋转即可得出∠BOC 即可.【详解】()170,EOC OA ∠=︒平分EOC ∠,1352AOC EOC ∴∠=∠=︒, 35BOD AOC ∴∠=∠=︒;()2设4EOC x ∠=,则5EOD x ∠=,,54180x x ∴+=︒,解得20x =︒,则80EOC ∠=︒,又OA 平分0E C ∠,40AOC ∴∠=︒,180********BOC AOC ∴∠=︒-∠=︒-︒=︒.【点睛】本题主要考查利用角平分线、对顶角以及平角的性质求解角的度数,熟练掌握,即可解题.22.(1)DE ∥BC ;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC ,故AD ∥EF ,由平行线的性质得∠DEF=∠ADE ,再由∠DEF=∠B ,可知∠B=∠ADE ,故可得出结论.(2)依据DE 平分∠ADC ,∠BDC=3∠B ,即可得到∠ADC 的度数,再根据平行线的性质,即可得出∠EFC 的度数.【详解】解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键. 23.证明见解析【分析】利用//AB CD 推出ABC BCD ∠=∠,利用1234180ABC BCD ∠+∠+∠=∠+∠+∠=︒,得到23∠∠=,即可得到结论.【详解】解:证明:∵//AB CD ,∴ABC BCD ∠=∠,又∵1234180ABC BCD ∠+∠+∠=∠+∠+∠=︒,∴1234∠+∠=∠+∠,又∵12∠=∠,34∠=∠,∴23∠∠=,∴//MN EF .【点睛】此题考查平行线的判定及性质,正确理解判定及性质定理并应用解决问题是解题的关键. 24.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 25.(1)B 地所修公路的走向是南偏西46︒;(2)12km【分析】(1)根据平行线的性质的性质可得到结论;(2)求得∠ABC=90°即可得到结论.【详解】(1)由两地南北方向平行,根据内错角相等,可知B 地所修公路的走向是南偏西46︒. 故答案为:南偏西46︒.(2)180180464490ABC ABG EBC ∠=︒-∠-∠=︒-︒-︒=︒,AB BC ∴⊥,A ∴地到公路BC 的距离是12AB =千米.【点睛】此题考查了方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.(1)∠2和∠4,∠3(2)∠2=140°,∠3=40°,∠4=140°【分析】(1)根据对顶角和邻补角的定义解答即可;(3)根据邻补角的定义列式求出∠2,再根据对顶角相等解答.【详解】(1)∠1的邻补角是∠2和∠4,对顶角是∠3;(2)∵∠1=40°,∴∠2=180°−∠1=180°−40°=140°,∴∠3=∠1=40°,∠4=∠2=140°.【点睛】本题考查了对顶角、邻补角,是基础题,熟记概念是解题的关键,要注意一个角的邻补角有两个.。

达标测试沪科版七年级数学下册第10章相交线、平行线与平移专题练习试题(含解析)

达标测试沪科版七年级数学下册第10章相交线、平行线与平移专题练习试题(含解析)

七年级数学下册第10章相交线、平行线与平移专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行线AB ,CD 被直线AE 所截.若∠1=70°,则∠2的度数为( )A .80°B .90°C .100°D .110°2、下列命题是假命题的是( )A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;3、如图,已知//AD BC ,32B =︒∠,DB 平分ADE ∠,则DEC ∠=( )A.32°B.60°C.58°D.64°4、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是()A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5、下列关于画图的语句正确的是().A.画直线8cmAB=OA=B.画射线8cmC.已知A、B、C三点,过这三点画一条直线D.过直线AB外一点画一直线与AB平行6、如图,能判定AB∥CD的条件是()A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠27、直线AB、BC、CD、EG如图所示.若∠1=∠2,则下列结论错误的是()A.AB∥CD B.∠EFB=∠3C.∠4=∠5D.∠3=∠58、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是()A.30°B.45°C.60°D.75°9、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为()A.139°B.141°C.131°D.129°10、用反证法证明命题“在同一平面内,若 ,a b c b ⊥⊥ ,则 a ∥c ”时,首先应假设( )A .a ∥bB .b ∥cC .a 与 c 相交D .a 与 b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.2、如图,直线 a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60°的点在直线a 上,表示135°的点在直线b 上,则∠1=______°.3、如图,已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE ,∠COF =36°,则∠BOD 的大小为 _____.4、如图,点E 是BA 延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D ;③∠2=∠4;④∠B +∠BCD =180°,能判定AB ∥CD 的有___.(填序号)5、如图,AD ⊥BD ,BC ⊥CD ,AB =a cm ,BC =b cm ,则BD 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知)∠ABC=∠1 (①)∴∠ABC=60°(等量代换)又∵∠2=120°(已知)∴(②)+∠2=180°(等式的性质)∴AB∥CD(③)又∵∠2+∠BCD=(④°)∴∠BCD=60°(等式的性质)∵∠D=60°(已知)∴∠BCD=∠D(⑤)∴BC∥DE(⑥)2、如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.3、如图,点A 、B 、C 在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB 到点D ,使BD =AB ;(2)过点C 画CE ⊥AB ,垂足为E ;(3)点C 到直线AB 的距离是 个单位长度;(4)通过测量 = ,并由此结论可猜想直线BC 与AF 的位置关系是 .4、完成下面的推理过程.已知:如图,AC DE ∥,CD 平分ACB ∠,EF 平分DEB ∠.试说明:CD EF ∥.证明:∵AC DE∥,∴ACB∠=∠().∵CD平分ACB∠,EF平分DEB∠,∴112∠=∠,122∠=∠.∴∠=∠.()∴CD EF∥().5、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴AB∥CD().∴EF∥().∴∠FDG=∠EFD().-参考答案-一、单选题1、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵AB//DC,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.2、D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【详解】解:A、同旁内角互补,两直线平行;是真命题,不合题意;B、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意,故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.3、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.4、B【分析】画出图形,根据平行线的判定分别判断即可得出.【详解】A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.故选:B.【点睛】本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.5、D【分析】直接利用直线、射线的定义分析得出答案.【详解】解:A、画直线AB=8cm,直线没有长度,故此选项错误;B、画射线OA=8cm,射线没有长度,故此选项错误;C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;D、过直线AB外一点画一直线与AB平行,正确.故选:D.【点睛】此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.6、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.7、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.8、D【分析】由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.【详解】解:∵AC平分∠BAD,∠BAD=90°,∴∠BAC=45°∵BD∥AC,∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,∵∠CBD=∠ABD+∠ABC=45°+60°=105°,∴∠1=75°,故选D.【点睛】本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.9、A【分析】如图,根据AE CF,得到∠CGB=41°,根据AB CD,即可得到∠C=139°..【详解】解:如图,∵AE CF,∴∠A=∠CGB=41°,∵AB CD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.10、C【分析】用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).【详解】解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,用反证法时应假设结论不成立,即假设a与c不平行(或a与c相交).故答案为:C.【点睛】此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.二、填空题1、①【分析】根据相交线与平行线中的一些概念、性质判断,得出结论.【详解】①等角的余角相等,故正确;②中,需要前提条件:过直线外一点,故错误;③中,相等的角不一定是对顶角,故错误;④中,仅当两直线平行时,同位角才相等,故错误;⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.故答案为:①.【点睛】本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.2、75【分析】先计算∠AOB的度数,后利用对顶角相等确定即可.【详解】如图,根据题意,得∠AOB=135°-60°=75°,∵∠AOB=∠1,∴∠1=75°,故答案为:75.【点睛】本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.3、18°度【分析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.【详解】解:∵∠COE是直角,∴∠COE=90°,∵∠COF=36°,∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,∵OF平分∠AOE,∴∠AOF=∠EOF=54°,∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,∴∠BOD=∠AOC=18°.故答案为:18°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.4、②③④【分析】根据平行线的判定方法分别判定得出答案.【详解】解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;④中,∠B+∠BCD=180°,∴AB//CD(同旁内角互补,两直线平行),故此选项符合题意;故答案为:②③④.【点睛】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5、b cm<BD<a cm【分析】根据垂线段最短,可得AB与BD的关系,BD与BC的关系,可得答案.【详解】解:由垂线段最短,得BD<AB=a cm,BD>BC=b cm,即b cm<BD<a cm,故答案为:b cm<BD<a cm.【点睛】本题考查了垂线短的性质,直线外的点到直线的距离:垂线段最短.三、解答题1、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【分析】先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D即可证明BC∥DE.【详解】解∵∠1=60°(已知)∠ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换),又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行),又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质),∵∠D=60°(已知),∴∠BCD=∠D(等量代换),∴BC∥DE(内错角相等,两直线平行),故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.2、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.3、(1)见解析;(2)见解析;(3)2;(4),FAC ACB ∠∠,平行【分析】(1)根据网格的特点和题意,延长AB 到D ,使3BD AB ==;(2)根据网格是正方形,垂线的定义,画出CE AB ⊥,垂足为E ,点E 在线段AB 的延长线上,(3)点C 到直线AB 的距离即CE 的长,网格的特点即可数出CE 的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得BC AF ∥,即可知测量的角度【详解】解:(1)(2)如图所示,(3)由网格可知CE 2=即点C 到直线AB 的距离是2个单位长度故答案为:2(4)通过测量FAC ACB ∠=∠,可知AF BC ∥故答案为:,FAC ACB ∠∠,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.4、DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.【分析】依据平行线的性质以及角平分线的定义,即可得到∠1=∠2,进而判定CD∥EF.【详解】证明:∵AC∥DE,∴∠ACB=∠DEB(两直线平行,同位角相等),∵CD平分∠ACB,EF平分∠DEB,∴112ACB∠=∠,122DEB∠=∠,∴∠1=∠2,(等量代换)∴CD∥EF(同位角相等,两直线平行).故答案为:DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.5、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),∴AB∥EF(同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),∴EF∥CD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.。

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

(人教版)北京市七年级数学下册第一单元《相交线与平行线》测试题(答案解析)

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .8B .9C .10D .11 3.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .1554.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.55.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46° 6.下面命题中是真命题的有( )①相等的角是对顶角 ②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个7.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 8.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个9.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定 12.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º二、填空题13.如图,直线AB 与CD 相交于点O ,EO ⊥CD 于点O ,OF 平分∠AOD ,且∠BOE =50°,则∠DOF 的度数为__.14.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥15.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 16.命题“相等的角是对顶角”是______(填“真命题”或“假命题”).17.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.18.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.如图,添加一个你认为合适的条件______使//AD BC .三、解答题21.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.22.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).23.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.(1)与BOF ∠互余的角是______;(2)求EOF ∠的度数.24.如图,已知直线l 1//l 2,l 3、和l 1、l 2分别交于点A 、B 、C 、D ,点P 在直线l 3或上且不与点A 、B 、C 、D 重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P 在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P 在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P 在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P 在线段DC 延长线上运动时,请直接写出∠1、∠2、∠3之间的关系.25.如图所示,直线MN 分别与直线,AC DG 是好点B 、F ,且12∠=∠,ABF ∠的平分线BE 交直线DG 于点E ,BFG ∠的平分线FC 交直线AC 于点C .(1)请判断直线AC 与DG 的位置关系,并说明理由(2)请判断直线BE 与CF 的位置关系,并说明理由(3)若35C ∠=︒,求BED ∠的度数26.在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a 格(当a 为正数时,表示向右平移.当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移.当b 为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(,)a b .例如,从A 到B 记为:1,()3A B →++.从C 到D 记为:(1,2)C D →+-,回答下列问题:(1)如图1,若点A 的运动路线为:A B C A →→→,请计算点A 运动过的总路程.(2)若点A 运动的路线依次为:(2,3)A M →++,(1,1)M N →+-,(2,2)N P →-+,(4,4)P Q →+-.请你依次在图2上标出点M 、N 、P 、Q 的位置.(3)在图2中,若点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,则m 与p 满足的数量关系是 .n 与q 满足的数量关系是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A.在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误;B.两直线相交,对顶角相等,故本选项错误;C.垂线段最短,故本选项正确;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误;故选:C.【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.3.C解析:C【分析】先求出∠BOC,再由邻补角关系求出∠COD的度数.∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 4.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.5.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=44°,又∵l 3⊥l 4,∴∠2=90°-44°=46°,故选:D .本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.7.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.8.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.9.D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.10.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题13.【分析】利用垂直定义可得∠COE=90°进而可得∠COB的度数再利用对顶角相等可得∠AOD再利用角平分线定义可得答案【详解】解:∵EO⊥CD于点O∴∠COE=90°∵∠BOE=50°∴∠COB=90解析:70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∴∠COE=90°,∵∠BOE=50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°, 故答案为:70°.【点睛】此题主要考查了垂直定义,关键是理清图中角之间的和差关系.14.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.15.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°,∴逆命题为:三个内角都是60°的三角形是等边三角形∴逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;16.假命题【分析】对顶角相等但相等的角不一定是对顶角从而可得出答案【详解】解:对顶角相等但相等的角不一定是对顶角从而可得命题相等的角是对顶角是假命题故答案为:假命题【点睛】此题考查了命题与定理的知识属于解析:假命题【分析】对顶角相等,但相等的角不一定是对顶角,从而可得出答案.【详解】解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假命题.【点睛】此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.17.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.18.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC沿斜边AC的方向平移到三角形DEF的位置,∴AB∥DE,∴∠ABC=∠DGC=90°,∴DE⊥BC,故①正确;△ABC平移距离应该是BE的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.19.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 20.∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)【分析】根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C 时,//AD BC ;第二种情况,内错角相等,两直线平行,即∠A=∠ABE 时,//AD BC ;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC ;故答案为∠ADF=∠C 或∠A=∠ABE 或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题21.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,∠的度数是12°.答:CBG【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.22.HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行【分析】∠=∠,再证明∠DEF=∠EFC,再连接EF,根据垂线定义和平行线的判定与性质可证得34根据平行线的性质即可证得结论.【详解】证明:连接EF⊥⊥,,FG AC HE AC∴∠=∠=.90FGC HEC︒∴∥HE(同位角相等,两直线平行).FG∴∠=∠(两直线平行,内错角相等).34∠=∠,又12∴∠+∠=∠+∠,1324∠=∠.即DEF EFCDE∴∥BC(内错角相等,两直线平行),故答案为:HE;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键.23.(1)∠BOD、∠AOC;(2)54°【分析】(1)根据垂直的定义得到∠FOD=90°,于是得到∠BOF+∠BOD=90°,根据对顶角的性质得到∠BOD=∠AOC,等量代换得到∠BOF+∠AOC=90°,即可得到结论.(2)根据已知条件得到∠BOF=90°﹣72°=18°,再由OE平分∠BOD,得出∠BOE=1∠BOD=36°,因此∠EOF=36°+18°=54°.2【详解】解:(1)∵OF⊥CD,∴∠FOD=90°,∴∠BOF+∠BOD=90°,∵∠BOD=∠AOC,∴∠BOF+∠AOC=90°,∴图中互余的角有∠BOF与∠BOD,∠BOF与∠AOC.故答案为:∠BOD、∠AOC;(2)∵直线AB和CD相交于点O,∴∠BOD=∠AOC=72°,∵OF⊥CD,∴∠BOF=90°﹣72°=18°,∵OE平分∠BOD,∴∠BOE=1∠BOD=36°,2∴∠EOF=36°+18°=54°.【点睛】本题考查了对顶角、垂线以及角平分线的定义;弄清各个角之间的关系是解题的关键.24.(1)证明见详解;(2)∠3=∠2﹣∠1;(3)∠3=360°﹣∠1﹣∠2,证明见详解;(4)∠3=360°﹣∠1﹣∠2.【分析】此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,即可得出∠1、∠2、∠3的数量关系.【详解】解:(1)如图(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPE+∠QPF,∴∠EPF=∠1+∠2.(2)∠3=∠2﹣∠1;证明:如图2,过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠EPF=∠QPF﹣∠QPE,∴∠EPF=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:如图(3),过P作PQ∥l1∥l2;∴∠EPQ+∠1=180°,∠FPQ+∠2=180°,∵∠EPF=∠EPQ+∠FPQ;∴∠EPQ +∠FPQ +∠1+∠2=360°,即∠EPF=360°﹣∠1﹣∠2;(4)点P在线段DC延长线上运动时,∠3=∠1﹣∠2.证明:如图(4),过P作PQ∥l1∥l2;∴∠1=∠QPE、∠2=∠QPF;∵∠QPE﹣∠QPF=∠EPF;∴∠3=∠1﹣∠2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.25.(1)AC∥DG,理由见解析;(2)BE∥CF,理由见解析;(3)145°【分析】(1)求出∠1=∠BFG,根据平行线的判定得出AC∥DG;(2)求出∠EBF=∠BFC ,根据平行线的判定得出即可;(3)根据平行线的性质得出∠C=∠CFG=∠BEF=35°,再求出答案即可.【详解】(1)AC ∥DG证明:∵∠1=∠2,∠2=∠BFG ,∴∠1=∠BFG ,∴AC ∥DG ,(2)BE ∥CF证明:∵AC ∥DG∴∠ABF=∠BFG ,∵∠ABF 的角平分线BE 交直线DG 于点E ,∠BFG 的角平分线FC 交直线AC 于点C , ∴∠EBF=12∠ABF ,∠CFB =12∠BFG , ∴∠EBF=∠CFB ,∴BE ∥CF ;(3)∵AC ∥DG ,BE ∥CF ,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°-∠BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.26.解:(1)A 运动过的总路程是14;(2)见解析;(3)5m p +=;0n q +=【分析】(1)按照先左右后上下的顺序列出算式,再计算即可;(2)根据题意画出图即可;(3)根据A 、Q 水平相距的单位,可得m 、p 的关系;根据A 、Q 水平相距的单位,可得n 、q 的关系.【详解】解:(1)∵点A 的运动路线为:A B C A →→→,则根据题意可得:1,()3A B →++,(2,1)B C →++,(3,4)C A →--,∴点A 运动过的总路程是:1321|3||4|14++++-+-=;(2)根据题意,点M 、N 、P 、Q 的位置如下图示:(3)∵点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,根据题意可得:5m p +=,0n q +=.故答案为5m p +=,0n q +=.【点睛】本题考查了坐标与图形变化-平移,横坐标,右移加,左移减;纵坐标,上移加,下移减.。

沪科版七年级数学教学工作计划

沪科版七年级数学教学工作计划

沪科版七年级数学教学工作计划沪科版七年级数学教学工作计划本学期教学内容是华师大版七年级上教材,内容与现实生活联系非常密切,知识的综合性也较强,教材为学生动手操作,归纳猜想提供了可能。

以下是整理了关于沪科版七年级数学教学工作计划,一起来看看吧!七年级数学教学计划1一、扎扎实实打好基础。

1、重视课本,系统复习。

初中数学基础包括基础知识和基本技能两方面。

现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。

尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和,做到举一反三。

2、充实基础,学会思考。

中考时基础分很多,所以在应用基础知识时做到熟练、正确、迅速。

上课要边听边悟,敢于质疑。

3、重视基础知识的理解和方法的学习。

基础知识既是初中所涉及的概念、公式、公理、定理等。

掌握知识间的联系,要做到理清知识结构,形成整体知识,并能综合运用。

例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也涉及到几何中的相似三角形,比例推导等。

还重视数学方法的考察。

如:配方法、判别式等方法。

二、综合运用知识,提高自身的各种能力。

初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。

1、提高综合运用数学知识解题的能力。

要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。

目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。

2、狠抓重点内容,适当练习热点题型。

几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。

方程思想、函数思想贯穿试卷始终。

另外,开放题、探索题、阅读理解题、设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。

首先,我们必须了解中考的有关的政策,避免走弯路,走错路。

研读了《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测(有答案解析)(3)

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟检测(有答案解析)(3)

一、选择题1.(0分)[ID :68947]如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论① C D ∠=∠,②FG CD ⊥,③EC FD ⊥,正确的是( )A .①②B .②③C .①③D .①②③ 2.(0分)[ID :68933]如图,将直角边长为a (a >1)的等腰直角三角形ABC 沿BC 向右平移1个单位长度,得到三角形DEF ,则图中阴影部分面积为( )A .a -12B .a -1C .a +1D .a 2-13.(0分)[ID :68925]对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°4.(0分)[ID :68924]如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 5.(0分)[ID :68923]如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A.65B.25C.115D.1556.(0分)[ID:68922]下列哪个图形是由图1平移得到的()A.B.C.D.7.(0分)[ID:68917]现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( ) A .1个 B .2个 C .3个 D .4个8.(0分)[ID :68914]如图,下列条件中,不能判断直线a ∥b 的是( )A .∠1=∠3B .∠2=∠3C .∠4=∠5D .∠2+∠4=180° 9.(0分)[ID :68911]光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°10.(0分)[ID :68904]如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.511.(0分)[ID :68889]下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个12.(0分)[ID :68884]下列命题是假命题的是( )A .等腰三角形底边上的高是它的对称轴B .有两个角相等的三角形是等腰三角形C .等腰三角形底边上的中线平分顶角D .等边三角形的每一个内角都等于60°13.(0分)[ID :68869]下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短14.(0分)[ID :68860]如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积 15.(0分)[ID :68859]如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º二、填空题16.(0分)[ID :69056]一副三角板按图1的形式摆放,把含45°角的三角板固定,含30°角的三角板绕直角顶点逆时针旋转,设旋转的角度为α(0180α︒<<︒).在旋转过程中,当两块三角板有两边平行时,α的度数为______.17.(0分)[ID :69055]如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.18.(0分)[ID :69050]下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.19.(0分)[ID :69049]高兴同学在学习了全等三角形的相关知识后发现:只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB 且与射线OA 交于点M ,另一把直尺压住射线OA 且与第一把直尺交于点P ,则OP 平分∠AOB .若∠BOP =32°,则∠AMP =_____°.20.(0分)[ID :69047]已知:如图,12354∠=∠=∠=︒,则∠4的度数是___________.21.(0分)[ID :69035]阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.22.(0分)[ID :69030]如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.23.(0分)[ID :69027]把命题“两直线平行,同位角相等”改写成“若…,则…”__. 24.(0分)[ID :68995]用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.25.(0分)[ID :68987]如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.26.(0分)[ID :68978]如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.27.(0分)[ID :68969]如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.三、解答题28.(0分)[ID :69141]己知:线段a 如图所示.求作:正方形ABCD,使得AB a.29.(0分)[ID:69095]如图,直线BC、DE相交于点O,OA、OF为射线,∠+∠=54.求AOE∠的度数.∠,BOF COD⊥,OF平分BOEOA OB30.(0分)[ID:69079]如图所示,在平面直角坐标系中,已知A(0,1)、B(2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC,作出△ABC向下平移3格后的△A1B1C1;(2)求△ABC的面积;(3)已知点Q为y轴上一点,若△ACQ的面积为8,求点Q的坐标.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.C4.D5.C6.B7.B8.B9.B10.C11.C12.A13.C14.D15.C二、填空题16.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD∥OB时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=17.【分析】根据求出利用AO平分求得即可得到∠DOB=【详解】∵∴∵AO平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键18.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平19.64【分析】由长方形直尺可得MP//OB再根据作图过程可知OP平分∠AOB进而可得∠AMP的度数【详解】解:∵OP平分∠AOB∴∠MOB=2∠BOP=64°由长方形直尺可知:MP//OB∴∠AMP=20.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如21.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可22.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会23.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同24.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于6025.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A到出口B 所走的路线(图中虚线)长为5026.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF=76°由等式性质得到∠DCF=30°27.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】由平行线的性质和垂直的定义,逐个判断得结论.【详解】∵∠1=∠3,∠2=∠4,又∵∠1+∠2+∠3+∠4=180°,∴∠1+∠2=∠3+∠4=∠1+∠4=90°,∴∠EFD=∠1+∠2=90°,∴EC ⊥FD ,故③正确;∵AB ∥CD ,∴∠1=∠C ,∴∠FGD=∠4+∠C=∠4+∠1=90°,∴FG ⊥CD ,故②正确;∵∠1不一定等于∠2,∴∠C≠∠D ,故①不正确.故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质及垂直的定义,由相等的角和平角的定义得到互余的角是解决本题的关键.2.A解析:A【分析】直接根据平移的性质得到DE=AB=a ,EF=BC=a ,EC=a-1,结合三角形面积公式即可求解.【详解】解:根据平移的性质得,DE=AB=a ,EF=BC=a ,EC=a-1,∴阴影部分的面积为:111(1)(1)222a a a a a ⨯--⨯-=- 故选:A .【点睛】本题考查了平移的性质,比较简单,注意熟练掌握平移性质的内容.3.C解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 4.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.5.C解析:C【分析】先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 6.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B.【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.7.B解析:B【分析】根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形;③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B.【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.8.B解析:B【分析】根据平行线的判定定理逐项判断即可.【详解】A、当∠1=∠3时,a∥b,内错角相等,两直线平行,故正确;B、∠2与∠3不是同位角,也不是内错角,无法判断,故错误;C、当∠4=∠5时,a∥b,同位角相等,两直线平行,故正确;D、当∠2+∠4=180°时,a∥b,同旁内角互补,两直线平行,故正确.故选:B.【点睛】本题考查了平行线的判定,熟记判定定理是解题的关键.9.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B .【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.10.C解析:C【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.11.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.13.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.14.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.15.C解析:C【分析】由AO⊥CO和∠1=20º求得∠BOC=70º,再由邻补角的定义求得∠2的度数.【详解】∵AO⊥CO和∠1=20º,∴∠BOC=90 º-20 º=70º,又∵∠2+∠BOC=180 º(邻补角互补),∴∠2=110º.故选:C.【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题16.30°或45°或120°或135°或165°【分析】分五种情况进行讨论分别依据平行线的性质进行计算即可得到∠α的度数【详解】解:①当CD∥OB时∠α=∠D=30°②当OC∥AB时∠OEB=∠COD=解析:30°或45°或120°或135°或165°【分析】分五种情况进行讨论,分别依据平行线的性质进行计算即可得到∠α的度数.【详解】解:①当CD∥OB时,∠α=∠D=30°②当OC∥AB时,∠OEB=∠COD=90°,此时∠α=90°-∠B=90°-45°=45°③当DC∥OA时,∠DOA=∠D=30°,此时∠α=∠AOB+∠AOD=90°+30°=120°④当OD∥AB时,∠AOD=∠A=45°,此时∠α=∠A+∠AOD=90°+45°=135°⑤当CD∥AB时,延长BO交CD于点E,则∠CEO=∠B=45°∴∠DEO=180°-∠CEO=135°∴∠DOE=180°-∠DEO-∠D=15°此时∠α=180°-∠DOE=180°-15°=165°综上,在旋转过程中,当两块三角板有两边平行时,α的度数为30°或45°或120°或135°或165°【点睛】本题主要考查了平行线的性质的运用.在旋转过程中,注意分情况讨论是解题关键. 17.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.18.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 19.64【分析】由长方形直尺可得MP//OB 再根据作图过程可知OP 平分∠AOB 进而可得∠AMP 的度数【详解】解:∵OP 平分∠AOB ∴∠MOB =2∠BOP =64°由长方形直尺可知:MP//OB ∴∠AMP =解析:64【分析】由长方形直尺可得MP //OB ,再根据作图过程可知OP 平分∠AOB ,进而可得∠AMP 的度数.【详解】解:∵OP 平分∠AOB ,∴∠MOB =2∠BOP =64°,由长方形直尺可知:MP //OB ,∴∠AMP =∠MOB =64°,故答案为:64.【点睛】此题主要考查了基本作图,关键是掌握角平分线的作法.20.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l 1∥l 2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l 1∥l 2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键. 21.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.22.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.23.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同 解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”, 故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握 命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.24.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60 解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°. 故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.25.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,又∵长AB=50米,宽BC=25米,∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.26.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.27.30°【分析】先利用补角的定义求出∠EOC=60°再根据角平分线的性质计算【详解】解:∵∠EOD=120°∴∠EOC=60°(邻补角定义)∵OA平分∠EOC∴∠AOC=∠EOC=30°(角平分线定义解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA 平分∠EOC ,∴∠AOC=12∠EOC=30°(角平分线定义), ∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.三、解答题28.见解析【分析】先画线段AB=a ,再以AB 为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.29.126º【分析】设BOF ∠=x ,根据角平分线的定义表示出∠BOE ,再根据对顶角相等求出COD ∠,然后列出方程求出x ,从而得到∠BOE 的度数,再根据垂线的定义求出AOB ∠,最后根据AOE ∠=AOB BOE ∠+∠代入数据进行计算即可得解.【详解】设BOF ∠=x ,∵OF 平分∠BOE ,∴∠BOE =2BOF ∠=2x ,∴COD ∠=∠BOE =2x (对顶角相等),∵BOF COD ∠+∠=54,∴2x x +=54,解得x =18,∴∠BOE =218⨯=36,∵OA OB ⊥,∴AOB ∠=90,∴AOE ∠=AOB BOE ∠+∠=9036+=126.【点睛】本题考查了垂线的定义,对顶角相等的性质,角平分线的定义,是基础题,设出未知数并根据已知条件列出方程求出∠BOE 是解题的关键.30.(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测试范围:5.1 相交线
基础巩固
(满分:100分,时间:45分钟)
一、细心选一选(每小题3分,共24分)
1.如图,两只手的食指和拇指在同一个平面内,它们所构成的一对角可看成是( ) A .对顶角 B .同位角 C .内错角 D .同旁内角 2.如图,直线1l ,2l ,3l 相交于一点,则下列答案中,全对的一组是( ) A .∠1=0
90,∠2=0
30,∠3=∠4=0
60 B .∠1=∠3=0
90,∠2=∠4=0
30 C .∠1=∠3=0
90,∠2=∠4=0
60 D .∠1=∠3=0
90,∠2=0
60,∠4=0
30 3.如图,有三条公路,其中AC ⊥AB ,小明和小亮分别以A 地、B 地为起点,同时沿着AC 、BC 出发骑车到C 地,若它们同时到达,则下列判断正确的是( )
A .两人的速度一样快
B .小明骑车的速度快
C .小亮骑车的速度快
D .由于不知道公路的长度,故无法判断
4.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是( ) A .过两点只有一条直线 B .过一点只能作一条垂线
C .经过一点有且只有一条直线垂直于已知直线
D .垂线段最短
5.下列说法不正确的有( )
①若∠1与∠2是邻补角,则∠1+∠2=0
180,反之也成立;②若相等的两个角有公共顶点,并且一边互为反向延长线,则这两个角是对顶角;③同一个角的两个邻补角是对顶角;④邻补角的角平分线互相垂直.
A .1个
B .2个
C .3个
D .4个 6.如图,下列说法错误的是( )
A .∠
B 和∠2是同位角 B .∠1和∠B 是同位角
C .∠C 和∠2是内错角
D .∠BAD 和∠B 是同旁内角
第1题图
第2题图
1 2 4
3
300
601
l 2
l 3
l A
B
C
第3题图
第4题图
M
O N l
7.若A 、B 、C 是直线l 上的三点,P 是直线l 外一点,且PA=5cm ,PB=4cm ,PC=3cm ,则点P 到直线l 的距离( )
A .等于3cm
B .大于3cm 而小于4cm
C .不大于3cm
D .小于3cm
8.如图,∠PQR=0
138,SQ ⊥QR ,QT ⊥PQ ,则∠SQT 等于( ) A .042 B .0
64 C .0
48 D .024
一、精心填一填(每小题4分,共32分)
9.钟表的时针和分针在昼夜不停地转动,请举出一个分针与时针互相垂直的时刻: .
10.若一个角的对顶角等于它的邻补角的4倍,则这个角是 度.
11.如图,直线AB 与CD 相交于点O ,已知∠AOC+∠BOD=0
90,则∠BOC= .
12.如图,直线AB 与CD 相交于点O ,EO ⊥CD ,垂足为O ,则图中∠AOE 和∠BOD 的关系是 .
13.如图,点A 和点B 分别是棱长为20cm 的正方体盒子相邻的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走的最短路程是 cm .
14.如图,三条直线两两相交,∠1=2∠3,∠4=0
31,则∠2= .
15.如图,∠1和∠2是 ,∠2和∠3是 ,∠1和∠3是 ,∠4和 是内错角.
16.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=0
40时,∠
第6题图
1 2 A
E
D
B C
第8题图
Q
R
S
T
P
第11题图 A B
C O
D
· · 第13题图
A
B
第12题图
O
A
B
C
D
E
BOD 的度数是 .
三、耐心做一做(共44分)
17.如图,直线AB 、CD 相交于点O ,且∠AOC=0
28,作∠DOE=∠DOB ,OF 平分∠AOE ,求∠EOF 的度数.
18.如图,直线AB 、CD 相交于点O ,OM ⊥AB ,若∠1=∠2,试说明ON ⊥CD .
19.某城市有座古塔,现需测量这座古塔外墙底部的底角,如图所示,即测量∠ABC 的大小,请运用所学过的知识分别设计出两种不同的测量方法,并说明理由.
20.如图,∠1和∠B ,∠2和∠3,∠3和∠4分别是哪两条线段被哪一条线段所截,得到的什么角?
21.如图,直线AB 、CD 相交于点O ,OP 是∠BOC 的平分线,∠AOE=∠DOF=0
90. (1)图中除直角外,还有其他相等的角吗?请写出两对; (2)如果∠AOD=0
40,试求∠BOF ,∠COP 的度数.
能力提高
1.一辆汽车在平直的公路AB 上由A 向B 行驶,M 、N 是分别位于AB 两侧的村庄. (1)设汽车行驶到公路AB 上点P 的位置时,距离村庄M 最近;行驶到点Q 的位置时,距离村庄N 最近,请在图中的公路AB 上分别画出P 、Q 的位置(保留画图痕迹).
(2)当汽车从A 出发向B 行驶时,在公路AB 的哪一段路上距离M 、N 两村越来越近?
1
2 3
4
a b
c
第14题图
第15题图
1
2 3 4
第21题图
O
E
A
D
C P B
F
第19题图
A B
C
A
B
D C
E
F 1 2
3 4
第20题图
O A B
D
E
F
C
第17题图
N
D
B A
C
M 1
2
第18题图
O
在哪一段路上,距离村庄N 原来越近,而离村庄M 越来越远?(分别用文字表述你的结论,不必证明).
2.如图,已知AC ⊥BC ,AC=9,BC=12,AB=15.
(1)试说出点A 到直线BC 的距离,点B 到直线AC 的距离; (2)点C 到直线AB 的距离是多少?你是怎样求得的?
第1题图
M
N
A
B
第2题图
B
A
C。

相关文档
最新文档