高中物理选修精选公式

合集下载

高中物理公式大全版

高中物理公式大全版

高中物理公式大全一、力学1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关)2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g )3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++=合,两个分力垂直时:2221F F F +=合注意:(1) 力的合成和分解都均遵从平行四边行定则。

分解时喜欢正交分解。

(2) 两个力的合力范围:? F 1-F 2 ? ? F? F 1 +F 2(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。

解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法5、摩擦力的公式:(1 ) 滑动摩擦力: f = ?N (动的时候用,或时最大的静摩擦力)说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。

②?为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围: 0? f 静? f m (f m 为最大静摩擦力)说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。

②摩擦力可以作正功,也可以作负功,还可以不作功。

③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、万有引力:(1)公式:F=G221r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2(2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度))a 、万有引力=向心力 F 万=F 向 即 '422222mg ma r Tm r m r v m r Mm G =====πω由此可得:①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。

高中物理公式大全(整理版)

高中物理公式大全(整理版)

高中物理公式大全一、力学1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关)2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g )3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++=合,两个分力垂直时:2221F F F +=合注意:(1) 力的合成和分解都均遵从平行四边行定则。

分解时喜欢正交分解。

(2) 两个力的合力范围:F 1-F 2F F 1 +F 2(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。

解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法5、摩擦力的公式:(1 ) 滑动摩擦力: f = N (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。

②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围: 0 f 静 f m (f m 为最大静摩擦力)说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。

②摩擦力可以作正功,也可以作负功,还可以不作功。

③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、万有引力: (1)公式:F=G221r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = ×10-11 N ·m 2 / kg 2(2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F万=F向即'422222mg ma r Tm r m r v m r Mm G =====πω由此可得:①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。

高中物理公式大全(整理版)

高中物理公式大全(整理版)

高中物理公式大全一、力学1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关)2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g )3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++=合,两个分力垂直时: 2221F F F +=合注意:(1) 力的合成和分解都均遵从平行四边行定则。

分解时喜欢正交分解。

(2) 两个力的合力范围: F 1-F 2F F 1 +F 2(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。

解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f =N (动的时候用,或时最大的静摩擦力)说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。

②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围: 0 f 静 f m (f m 为最大静摩擦力)说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。

②摩擦力可以作正功,也可以作负功,还可以不作功。

③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、万有引力: (1)公式:F=G221rm m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11N ·m 2/ kg 2(2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度))a 、万有引力=向心力 F 万=F 向 即 '422222mg ma r Tm r m r v m r Mm G =====πω 由此可得:①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。

高中选修物理公式大全总结

高中选修物理公式大全总结

高中选修物理公式大全总结高中选修物理公式大全总结如下:1. 运动学公式a. 匀速直线运动:- 速度公式:v = s / t(米/秒)- 加速度公式:a = v / t(米/秒^2)- 匀变速直线运动:- 速度公式:v = v0 + at(米/秒)- 加速度公式:a = ma + b v/t(米/秒^2)b. 非匀速直线运动:- 加速度公式:a = v - u / t(米/秒^2)- 位移公式:s = v0 x v0 / 2a(米)- 速度公式:v = x / t(米/秒)- 加速度公式:a = v - u / t(米/秒^2)2. 静摩擦力公式- 基本概念:f = ma(牛顿)- 静摩擦力的影响因素:压力和接触面的面积- 公式推导:当物体受到静摩擦力时,其速度一定小于等于位移的速度,即将物体看作一个质点。

因此,可以借用质点公式s = v0 x v0 / 2a(米)来推导静摩擦力公式。

3. 动摩擦力公式- 基本概念:f = ma(牛顿)- 动摩擦力的影响因素:压力和接触面的粗糙程度- 公式推导:当物体受到动摩擦力时,其速度一定大于位移的速度,即将物体看作一个弹性体。

因此,可以将物体看作一个弹性块,通过公式s = v0 x v0 / 2a(米)和f = ma(牛顿)来推导动摩擦力公式。

4. 碰撞公式- 基本概念:P = F / c(平方米)- 动量守恒定律:在碰撞过程中,物体的总动量保持不变。

- 冲量守恒定律:在碰撞过程中,系统的总冲量保持不变。

- 弹性碰撞:当两个物体发生碰撞时,其动量守恒和能量守恒。

以上是高中选修物理公式大全的总结,希望对大家有帮助。

高中物理选修公式大全总结

高中物理选修公式大全总结

高中物理选修公式大全总结高中物理选修公式大全是一个广泛的话题,因为物理选修模块的不同选择可能会用到不同的公式。

以下是一些常见的高中物理选修模块的公式总结:1. 选修 3-5 模块- 静电场中的电势公式:U = Uo - rt,其中 Uo 为电势零点处的电势,t 为时间,r 为电荷之间的距离。

- 电场强度公式:E = q/(4πkd),其中q为电荷密度,k为静电荷密度,d为电荷之间的距离。

- 电势能公式:E = -Ru,其中 R 为导体电阻值,u 为电势。

- 电荷分布公式:∑Q = 0,其中∑为所有电荷的合,Q 为电荷总量。

2. 选修 3-4 模块- 波动方程公式:▽2f = 2f/x2 + 2f/y2 + 2f/z2,其中 f 为波函数。

- 振动方程公式:f = -μ2f/t2,其中 f 为振幅,μ为弹簧弹性系数。

- 干涉公式:I = I0(1 + kv/λ),其中I0为参考方向的干涉强度,kv为垂直于参考方向的干涉强度,λ为光程差。

3. 选修 3-3 模块- 热力学温度公式:T = t(1 - s/c),其中t为温度,s为热力学熵,c为物质的热膨胀系数。

- 热传导公式:q = -kA(T1 - T2),其中 q 为热传导功率,k 为热传导系数,A 为接触面积,T1 和 T2 为两个物体的温度。

- 分子扩散公式:Pv = nRT,其中 P 为压强,v 为分子扩散速率,n 为分子总数,R 为气体常数,T 为温度。

4. 选修 3-1 模块- 牛顿第二定律公式:F = ma,其中 F 为作用在物体上的力,m 为物体质量,a 为物体加速度。

- 万有引力公式:F = Gm1m2/r2,其中F为万有引力,G为引力常数,m1和m2为两个物体的质量,r为两个物体之间的距离。

- 波动方程公式:▽2h = -4πGnλ,其中 h 为光程差,G 为万有引力常数,n 为光的频率。

以上仅仅是一些常见的选修 3 模块的公式总结,实际上物理选修模块的公式非常丰富,需要根据具体选择模块进行总结。

高中物理主要公式

高中物理主要公式

高中物理主要公式必修11、速度公式:tx v ∆∆= 2、加速度:定义式:t v a ∆∆=决定式:m F a 合= 3、匀变速直线的规律:⑴、速度公式:at v v +=0 ⑵、位移公式:2021at t v x += ⑶、速度与位移公式:ax v v 2202=-⑷ 、两个重要推论:相邻相等时间间隔T 内的位移之差2aT x =∆ 202t v v v v =+= 4、自由落体运动规律:gt v = 221gt h = gh v 22= 5、竖直上抛运动规律:gt v v -=0 2021gt t v h -= gh v v 2202-=- 6、胡克定律:kx F = 7、滑动摩擦力:N F f μ=8、牛顿第二定律:ma F 合=解题步骤:1. 选取研究对象;2. 受力分析关键;3. 建立直角坐标系:一般沿着加速度方向和垂直于加速度方向建立直角坐标系;4. 列方程求解:方程变为:0 ==y x F ma F ;或者:ma F F y x == 09、平抛运动规律:⑴、位移公式:水平方向:t v x 0= 竖直方向:221gt y = 合位移大小:22y x s += 合位移方向:x y =αtan 其中α为:合位移与水平方向的夹角 ⑵、速度公式:水平速度:保持0v 不变竖直速度:gt v y = 合速度大小:220yv v v += 合速度方向:0tan v v y =θ其中θ为:合速度与水平方向的夹角10、圆周运动公式: ⑴、线速度:)(弧长与时间的比值ts v ∆∆=⑵、角速度:)(t 角度一定用弧度。

圆心角与时间的比值,∆∆=θω ⑶、线速度与角速度的关系:r v ω= ⑷、线速度与周期的关系:Tr v 2π=⑸、角速度与周期的关系:T πω2= ⑹、车速与角速度的关系:n 2πω=公式中转速n 的单位必需是:转/秒r/s ⑺、向心加速度:v r T r r v a 2222ωπω=⎪⎭⎫ ⎝⎛=== ⑻、向心力:v m r T m r m r v m ma F 2222ωπω=⎪⎭⎫ ⎝⎛==== 向心力方程实际上是牛顿第二定律在圆周上的应用的解题步骤:①、选取研究对象;②、受力分析关键;③、建立直角坐标系:一般沿着半径方向和垂直于半径方向即切线方向建立直角坐标系;④、列向心力方程求解: 半径方向的合力即为向心力v m r T m r m r v m ma F 2222ωπω=⎪⎭⎫ ⎝⎛==== 对于切线方向:匀速圆周运动切线方向合力一定等于零,非匀速圆周运动切线方向合力不一定等于零;11、万有引力与航天:⑴、开普勒第三定律: )(23量无关的常数,与环绕天体质是与中心天体质量有关k k Ta = ⑵、万有引力定律:221r m m G F = ⑶、万有引力定律在天体上应用的两个方面:A 、质量为M 的天体,其实体半径为R,在其表面有一个质量为m 的物体,若忽略天体M 的自转,则天体M 对物体m 的万有引力等于物体的重力,方程为:mg RMm G=2 由此方程可得出两个重要的推论: 一是:天体M 表面的重力加速度的求法:2R GM g =; 另一个是:2gR GM =通常称为“黄金代换公式”另外,如果物体m 是在天体M 的附近某高度h 处,则方程为:()h mg h R MmG =+2,其中h g 是物体m 在距离星球表面高h 处的重力加速度;B 、质量为m 的星球绕中心天体M 做匀速圆周运动,则中心天体M 对星球m 的万有引力等于其做匀速圆周运动的向心力,设m 到中心天体M 的距离为r,则方程为:r T m r m r v m ma r Mm G 22222⎪⎭⎫ ⎝⎛====πω 由此方程可得出星球m 做匀速圆周运动的向心加度、线速度、角速度、周期的表达式,这些公式不需要记忆,但定性关系需要记住,即:轨道半径r 越大,向心度、线速度、角速度都越小,而周期越长;⑷、第一宇宙速度: 由R v m R Mm G 22=得:RGM v = 再由黄金代换公式得另一表达式为:gR v = 12、功和能量部分:⑴、功的计算公式:αcos Fl W =,条件:恒力做功 ⑵、功率:tW P =一般用来计算平均功率 Fv P = 条件:F 与v 在一条直线上,若v 是瞬时速度,则求出的瞬时功率,若v 是平均速度,则求出的就是平均功率;一般常用来计算瞬时功率;⑶、重力势能:mgh E P = ⑷、动能表达式:221mv E k = ⑸、动能定理的表达式: 21222121mv mv W 合-=即:21223212121mv mv W W W -=+++ ⑹、机械能表达式:P k E E E +=⑺、机械能守恒定律的两种表达式:一是:初态的机械能等于末态的机械能:注意:需要选零高度,最好选过程的最低点;方程为:21E E =,也就是:2211P k P k E E E E +=+,若只有重力势能,则可写成:2221212121mgh mv mgh mv +=+ 二是:列增加机械能等于减小的机械能:不需要选择零高度方程为:减增E E ∆=∆选修3-113、静电场部分: ⑴、库仑定律:221r q q k F =⑵、电场强度定义式:qF E = 变形式:电场力qE F = ⑶、点电荷电场强度的决定式:2r Q k E = ⑸、匀强电场中电场强度与电势差的关系式:d U E =⑺、电势能:ϕq E P =, 电势:qE P =ϕ ⑻、电势差:B A AB U ϕϕ-=⑼、电场力做的功:AB AB qU W = ⑽、电场力做功与电势能变化的关系:PB PA AB E E W -=,即:电场力做多少正功,电势能就减少多少,电场力做多少负功,电势能就增加多少; ⑾、电容的定义式:U Q C =平行板电容器的决定式:kd S C r πε4= 14、恒定电流部分: ⑴、电流的定义式:tq I = ⑵、电流的微观表达式:nqSv I = ⑶、电动势的定义式:q W E 非=⑷、电功:UIt W = ,电功率:UI P =⑸焦耳定律:电热:Rt I Q 2= ,热功率:R I P 2= ⑹、电阻定律:SL R ρ= ⑺、一段电路的欧姆定律:R U I =条件:纯电阻电路 ⑻、闭合电路的欧姆定律:外内U U E += 即:Ir +=外U E 若外电路为纯电阻电路,则:rR E I +=⑼、闭合电路的功率:电源的总功率:EI P 总= 电源的内功率:r 2I P =内 电源的输出功率:I P U =出 三者关系:外内PP P 总+=15、磁场部分: ⑴、磁感应强度的定义式:ILF B =条件:I ⊥B ⑵、磁通量:⊥=BS φ⑶、安培力:BIL F = 条件:I ⊥B⑷、洛伦兹力:qvB F = 条件:v ⊥B⑸、带电粒子垂直进入匀强磁场,仅受洛伦兹力做匀速圆周运动,方程为: rv m qvB 2= 由此推出两个重要推论: 轨道半径:qBmv r = 周期:qBm T π2= 选修3-216、电磁感应部分: ⑴、法拉第电磁感应定律:tn E ∆∆=φ ⑵、导线切割磁感线时的感应电动势:BLv E =注意条件 ⑶、自感电动势:tI L E ∆∆= ⑷、交变电流的产生:t E e m sin ω=,ωNBS E m =,注意:从中性面计时; ⑸、变压器:电压比:2121n n U U = 电流比:1221n n I I = ⑹、霍尔电压:dIB kU H = 选修3-3 17、分子动理论部分: ⑴、油膜法测分子直径:S V d =⑵、一个分子的质量:Amol N M m =⑶、一个分子所占有的体积:Amol N V V = 18、气体部分:⑴、玻意尔定律:等温变化:2211V P V P = ⑵、查理定律:等容变化:2211T P T P = ⑶、盖吕萨克定律:等压变化:2211T V T V = ⑷、一定质量的理想气体状态方程:222111T V P T V P = ⑸、理想气体的热力学温度T 与分子的平均动能k E 的关系:k E a T = ⑹、相对湿度:sP P B 1= ⑺、热力学第一定律:W Q U +=∆。

物理选修公式总结

物理选修公式总结

物理选修公式总结物理是一门研究自然现象和物质运动规律的科学。

在物理学的学习过程中,我们常常需要掌握一系列的公式来解决各种问题。

下面将对一些常见的物理选修公式进行总结和拓展。

1. 动力学公式:- 牛顿第二定律:F = ma,描述了物体的力学行为,其中F是物体所受的力,m是物体的质量,a是物体的加速度。

- 动能定理:K = 1/2mv^2,描述了物体的动能,其中K是物体的动能,m是物体的质量,v是物体的速度。

- 动量定理:p = mv,描述了物体的动量,其中p是物体的动量,m 是物体的质量,v是物体的速度。

2. 力学公式:- 弹力公式:F = kx,描述了弹簧的力学性质,其中F是弹簧的弹力,k是弹簧的弹性系数,x是弹簧的伸缩长度。

- 万有引力定律:F = G * (m1 * m2) / r^2,描述了两个物体之间的引力,其中F是引力的大小,G是万有引力常数,m1和m2是两个物体的质量,r是两个物体之间的距离。

- 摩擦力公式:F = μN,描述了物体之间的摩擦力,其中F是摩擦力的大小,μ是摩擦系数,N是物体的法向压力。

3. 热力学公式:- 热力学第一定律:Q = ΔU + W,描述了系统的能量变化,其中Q 是系统的吸热量,ΔU是系统的内能变化,W是系统对外做功。

- 热力学第二定律:ΔS > 0,描述了熵的增加趋势,其中ΔS是系统的熵变化。

- 热力学状态方程:PV = nRT,描述了气体的状态,其中P是气体的压强,V是气体的体积,n是气体的物质量,R是气体常数,T是气体的温度。

这些公式是物理学中的基础公式,通过熟练掌握和灵活应用,我们可以解决各种物理问题。

同时,这些公式也为我们提供了理解各种自然现象和物质运动规律的工具。

在学习物理过程中,我们还需要理解这些公式的背后原理,以及如何将它们应用到具体的问题中。

只有通过不断练习和思考,我们才能真正掌握这些公式,并能够在实际问题中灵活运用。

高中物理公式整理大全

高中物理公式整理大全

高中物理公式整理大全以下是高中物理公式整理大全:1.动力学公式。

(1)牛顿第一定律:当物体未受力或受力平衡时,物体的速度保持不变。

(2)牛顿第二定律:物体受到的力与物体的质量成正比,加速度与受力成正比,即。

F=ma。

(3)牛顿第三定律:若两个物体相互作用,则它们之间的作用力大小相等、方向相反,且作用在两个物体的不同部位。

2.动量和能量公式。

(1) 动量p=mv,其中m为物体的质量,v为物体的速度。

(2)冲量J=FΔt,其中F为作用力,Δt为作用时间。

(3)动量定理:一个物体在作用力F的作用下,其速度会发生变化,根据牛顿第二定律和动量定义,可以得到动量定理的表达式:J=Δp=mv2-mv1。

(4)机械能定理:当只有重力作用于物体时,物体的总机械能守恒。

即。

E = U + K = const.其中E为总机械能,U为重力势能,K为动能。

3.电学公式。

(1)库伦定律:两个电荷之间的电力与电荷的大小成正比,与它们之间的距离的平方成反比,即。

F=k(q1q2)/r^2。

其中k为常数,称为库伦常数。

(2)电势能公式:两个电荷之间在距离r处的电势能为:U=k(q1q2)/r。

(3)电场强度公式:电场强度E是受力电荷q的电力F与电荷的大小成正比,与距离的平方成反比,即。

E = F/q = kq/r^2。

(4)电势差公式:电势差是电场对电荷移动的做功和电荷的大小之积之比,可表示为。

ΔV=W/q。

其中W为电场对电荷的做功。

4.热力学公式。

(1)热力学第一定律,即能量守恒定律,表示为。

ΔU=Q-W。

其中ΔU为系统内部能量的变化量,Q为系统所吸收的热量,W为系统所获得的功。

(2)热力学第二定律,即熵增原理,表示为。

ΔS=Q/T。

其中ΔS为系统的熵变,Q为系统吸收的热量,T为系统的温度。

(以上公式中,Q表示吸热量或释放热量,W表示获得功或做功,Δ表示变化量,k表示常数,r表示距离,E表示电场强度,V表示电势差,U表示电势能,F表示力,m表示质量,v表示速度,J表示冲量,a表示加速度)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理公式定理定律概念大全选修3-3第七章 分子动理论一、分子动理论的基本内容: 分子理论是认识微观世界的基本理论,主要内容有三点。

1、物质是由大量分子组成的。

我们说物质是由大量分子组成的,原因是分子太小了。

一般把分子看成球形,分子直径的数量级是1010-米。

1摩尔的任何物质含有的微粒数都是×1023个,这个常数叫做阿伏加德罗常数。

记作:阿伏加德罗常数是连接宏观世界和微观世界的桥梁。

已知宏观的摩尔质量M 和摩尔体积V ,通过常数N 可以算出每个分子的质量和体积。

每个分子的质量m M N =每个分子的体积v VN=根据上述内容我们不难理解一般物体中的分子数目都是大得惊人的,由此可知物质是由大量分子组成的。

2、分子永不停息地做无规则运动。

①布朗运动间接地说明了分子永不停息地做无规则运动。

布朗运动的产生原因:被液体分子或气体分子包围着的悬浮微粒(直径约为103-mm ,称为“布朗微粒”),任何时刻受到来自各个方向的液体或气体分子的撞击作用不平衡,颗粒朝向撞击作用较强的方向运动,使微粒发生了无规则运动。

应注意布朗运动并不是分子的运动,而是分子运动的一种表现。

影响布朗运动明显程度的因素:固体颗粒越小,撞击它的液体分子数越少,这种不平衡越明显;固体颗粒越小,质量也小,运动状态易于改变,因此固体颗粒越小,布朗运动越显着。

液体温度越高,布朗运动越激烈。

②热运动:分子的无规则运动与温度有关,因此分子的无规则运动又叫做热运动。

3、分子间存在着相互作用的引力和斥力。

①分子间同时存在着引力和斥力,实际表现出来的分子力是分子引力和斥力的合力。

②分子间相互作用的引力和斥力的大小都跟分子间的距离有关。

当分子间的距离rr ==-01010m 时,分子间的引力和斥力相等,分子间不显示作用力;当分子间距离从r 0增大时,分子间的引力和斥力都减小,但斥力小得快,分子间作用力表现为引力;当分子间距离从r 0减小时,斥力、引力都增在大,但斥力增大得快,分子间作用力表现为斥力。

③分子力相互作用的距离很短,一般说来,当分子间距离超过它们直径10倍以上,即r>-109m时,分子力已非常微弱,通常认为这时分子间已无相互作用。

二、内能:1、分子的动能:由于组成任何物体的分子都是在不停地做无规则运动,因此,构成物体的每一个分子在任何时刻都具有动能。

由于分子热运动的无规则性及分子间的频繁碰撞,任何一个分子的动能都是不断变化的。

即使一个物体在稳定的状态下,构成物体的每个分子动能的大小也是不相等的。

组成物体所有分子动能的平均值,叫做分子热运动的平均动能。

平均动能的大小决定了物体所处的状态,分子平均动能大小的宏观标志是物体的温度。

物体的温度越高,分子平均动能越大;反之,物体的温度越低,分子平均动能越小。

①分子无规则热运动的动能叫做分子的动能。

一切分子都具有动能。

②温度是物体分子平均动能的标志。

做无规则运动的每个分子都具有动能。

但由于分子运动的无规则性,每个分子的动能都不相同,讨论每个分子的动能是无意义的。

在研究热运动中,有意义的是讨论所有分子动能的平均值,即分子的平均动能。

理论和实践均已证明,温度和分子的平均动能有确定的函数关系,因此温度是物体分子平均动能的标志。

2、分子的势能:由于分子间存在着相互作用力,且分子间又有间隙,分子间的距离可变,这跟物体与地球间的关系相当。

物体与地球间存在着相互作用力—重力,物体与地球间有间隙—高度,且距离可变。

地球上的重物有势能—由相互作用的物体间相对位置决定的能,那么,分子间也存在着分子势能—由分子间相对位置决定的势能叫分子势能。

因为分子间的相互作用力比较复杂—既存在相互作用的引力又有相互作用的斥力,所以分子势能的规律也是复杂的。

当分子间的距离为r0(=10-10m)时,分子处于平衡态势能最低。

因为分子间的距离r大于r0时分子间的合作用表现为引力,分子间的距离r小于r0时分子间的合作用表现为斥力,所以,当分子间距离r大于r0时,分子间距离越大分子势能越大,当分子间距离r小于r0时,分子间距离越小分子势能越大。

综上所述,分子势能的大小与分子间的距离是密切相关的。

宏观上看物体分子势能的变化可由物体的体积及物体所处的态(固态、液态、气态)决定。

①分子间存在着由相对位置决定的势能叫分子势能。

②分子间势能与分子间的距离的关系可用右图来表示。

当分子间的距离大到10r0时,分子间的作用力可认为零,定义比位置势能为零。

分子间距离从10r0逐渐小,引力做正功,分子势能减小,到r0时,分子间势能减小到最小。

当分子间距离从r0继续减小时,斥力做负功,即要克服斥力做功,分子间势能增加。

③分子势能与体积有关。

3、物体的内能:定义:构成物体所有分子动能与势能的总和,叫物体的内能。

显然,物体内能的多少与各分子动能的大小有关,与分子的势能大小有关,与分子的总量有关。

宏观上看,物体内能的多少由物体的温度、物体的体积(及所处的态)和物体所包含的分子数决定,即由三个参量决定。

比较两个物体所含内能多少时,目前我们只能讨论相同物质构成的物体。

在比较相同物质构成的物体内能时,一定要抓住两者三个参量中的相同因素。

如:1kg的15℃的水与1kg的25℃的水相比,因为分子数相同,分子势能相同,前者分子平均动能小,所以后者的内能多。

1kg的15℃的水与2kg的15℃的水相比,因为分子势能相同,分子的平均动相同,而后者所含分子数多,所以后者的内能多。

1kg的0℃的冰与1kg的0℃的水相比,因为分子数相同,分子的平均动相同,前者分子势能比后者小,所以后者的内能多。

以上比较中它们只有一个参量不同,若有两个或两个以上参量不同时,问题就要复杂的多了。

如:1kg的15℃的水与2kg的25℃的水相比,因为,两者分子势能相同,而分子的平均动能和分子数后者都大于前者,后者所含的内能多是可以确定的。

1kg的0℃的冰与2kg的0℃的水相比,因为,两者分子动能相同,而分子的势能和分子数后者都大于前者,后者所含的内能多也是可以确定的。

1kg的0℃的冰与1kg的25℃的水相比,因为,两者分子数相同,而分子的平均动能和分子势能后者都大于前者,所以,后者所含的内能多也是位移确定的。

当然,若1kg的0℃的冰与2kg的25℃的水相比,因为,物体所含的分子数、分子的平均动能和分子势能后者都大于前者,也是好比较的。

但是,在三个参量中有两个相对的不同,在我们不具有定量计算公式的情况下,则不好比较。

如:2kg的0℃的冰与1kg的15℃的水相比,因为,前者分子势能和分子的平均动能都小于后者,而分子数后者却大于前者,具体两者的内能哪个偏大则无法确定。

⒋几个需要说明的问题:⑴分子势能的大小跟其它势能一样也是相对的。

若选分子间的距离无限大时分子势能为零,那么,分子间的距离为r0时,分子势能不但最小且是负的最大值。

⑵物体分子动能、分子势能的大小与物体运动的动能和物体重力势能的大小无关。

这两者一个是微观的能量一个是宏观的能量,自身并没有必然的联系。

你把一块冰举得再高,且让它具有较大的速度,它的机械能可能很大,但它的内能并没有变。

⑶物体的内能发生变化时,可能仅是物体分子动能发生变化,也可能仅是物体分子势能发生变化,当然可能是分子的动能和势能都发生了变化。

三、热和功:⒈通过做功可以改变物体的内能。

⑴大家知道摩擦生热的道理,我们把两块冰放在一起互相摩擦对冰做功,过一会冰可以变成水,使原来两块冰的内能(分子势能)增加;给自行车的车胎充气时,人通过气筒压缩气体对气体做功,我们会发现气体的温度升高(使气筒变热),使原来的空气内能(主要是分子的动能)增加。

我们也可以举出一些例子说明通过做功不但使物体分子的动能增加还会使物体分子势能增加。

总之,外界对物体做功可以使物体的内能增加。

⑵四冲程内燃机工作时,“做功冲程”是高温、高压气体膨胀推动活塞运动对外做功,其特点是气体温度降低(气体分子平均动能减少),气体内能减少。

你知道电冰箱能够制冷的基本原理是什么吗?先通过压缩机把致冷剂压缩,在让被压缩的致冷剂在冰箱内的蒸发器中迅速蒸发膨胀对外做功,对外做功的同时致冷剂温度迅速下降。

这两个例子说明,物体对外做功(或称外界对物体做负功)时,物体的内能会减少。

综上所述,通过做功的方式可以改变物体的内能。

要能理解好这个结论,同学们还要多思考,多注意周围所见的能证明这个结论的实例。

⒉热传递可以改变物体的内能。

⑴用烧热了的电烙铁与焊锡接触,过一段时间焊锡就会熔化。

像这样把存在温差的两个物体放在一起,温度较高的物体过一段时间温度会下降,而温度较低的物体过一段时间温度会升高。

说明在这个过程中温度较高的物体把一部分内能传递给温度较低的物体(有时把这个过程叙述为温度较高的物体把一部分热量传递给温度较低的物体),结果使两个物体的温差逐渐减小。

这个吸热和放热的过程叫做热传递,能发生热传递的条件是两个物体必须存在温差。

⑵一个物体吸热内能增加;放热内能减小。

⒊关于物体内能的变化。

应该指出的是,做功和热传递的本质是完全不同的。

大家知道“功是能量转换多少的量度。

”那么,通过做功改变物体内能时,一定存在着内能与其它形式能之间的转化;热传递是内能在物体间转移,能量的形式并没有发生改变。

由上述分析可知:改变物体内能有两种方式,即做功和热传递。

做功和热传递在改变物体内能的问题上是完全等效的,并不能由物体内能变化的情况来判定是做功的结果还是热传递的表现。

物体内能发生变化也可能是既有做功又有热传递,从能的转化和守恒定律来分析自然可以得到这样的结论:外界对物体所做的功(W)与物体从外界吸收的热量(Q)之和等于物体内能的增量(ΔE)这就是热力学第一定律。

热力学第一定律的表达式为:ΔE=W+Q1、改变内能的两种方式:做功和热传递都可以改变物体的内能。

2、做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。

但二者本质上有差别。

做功是把其他形式的能转化为内能。

而热传递是把内能从一个物体转移到另一个物体上。

3、功、热量、内能改变量的关系——热力学第一定律。

①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。

②实质:是能量转化和守恒定律在热学中的体现。

=+③表达式:∆E W Q④为了区别不同情况,对∆E、W、Q做如下符号规定:∆E> 0 表示内能增加∆E< 0 表示内能减少Q > 0 表示系统吸热Q < 0 表示系统放热W > 0 表示外界对系统做功W < 0 表示系统对外界做功四、能的转化和守恒定律:1、物质有许多不同的运动形式,每一种运动形式都有一种对应的能。

2、各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。

3、能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。

相关文档
最新文档