四川大学概率统计往年期末试题

合集下载

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)

2020年大学基础课概率论与数理统计期末考试卷及答案(精品)一、单选题1、在一次假设检验中,下列说法正确的是______(A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误【答案】A2、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B3、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B4、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值 A )与a 无关,随λ的增大而增大 B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小【答案】C5、下列函数中,可作为某一随机变量的分布函数是A )21()1F x x =+B ) x x F arctan 121)(π+=C )=)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ) ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰【答案】B6、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。

大学概率统计-02-03期末.

大学概率统计-02-03期末.
(3)设Z表“100名考生中成绩超过600分的人数”, 则 Z~B(100, 0.0668)
np 6.68,由Poission定理,近似地有 Z ~ P(6.68)。
P(Z 2) 1 P(Z 0) P(Z 1)
1 (6.68)0 e6.68 (36.68)1 e6.68 1 7.68e6.68 0.9904.
x
1
1.5
2
(x) 0.8413 0.9332 0.9772
解:(1)
P( X

600)
1
P( X

600)

1


600 450 100
1 (1.5) 0.0668;
(2)设Y表“10名考生中成绩超过600分的人数”, 则Y~B(10, 0.0668);
P(Y 2) 1 P(Y 0) P(Y 1) 1 (0.9332)10 C110 (0.0668)1 (0.9332)9 0.1406;
3. (9分)设某高考成绩 X ~ N (450,1002 )。 (1)任取一名考生,求其高考成绩在600分以上的概 率; (2)任取10名考生,用二项分布计算至少有2名考生 高考成绩在600分以上的概率; (3)任取100个家庭,用Poisson定理计算至少有2名 考生高考成绩在600分以上的概率。 附:正态分布表
0!
1!
4.(16分)如图,二维随机变量(X ,Y)在G上服从均匀
分布,求:
y
(1)(X,Y)的联合密度;
1
(2)E(X )、E(Y )、D(X )、D(Y )、Cov(X ,Y ); G
(3)


XY

15-16A概率统计(III)

15-16A概率统计(III)

矩估计量为
.
二、解答题(共 7 小题,共 79 分)
1.(10 分)某商场销售一批照相机共 10 台,其中有 3 台次品,其余均为正品,某顾客去选购时,已
售出 2 台,该顾客从剩下的 8 台中任意选购 1 台,求
(1)顾客买到正品的概率;(2)若已知顾客买到的是正品,则已售出的 2 台都是次品的概率是多少?
.
6. 设 X1 , X2 ,, X6 是 来 自 正 态 总 体 X ~ N (0, 2 ) 的 简 单 随 机 样 本 , 统 计 量
T a X1 X 2 X 3 服从 t 分布,则常数 a
.
X
2 4
X
2 5
X
2 6
7. 设 X1, X2 ,, X n 是来自总体 X ~ U ( , 2) 的简单随机样本,X 为样本均值,则未知参数 的
1、已按要求将考试禁止携带的文具用品或与考试有关的物品放置在指定地点; 2、不带手机进入考场; 3、考试期间遵守以上两项规定,若有违规行为,同意按照有关条款接受处理。
考生签名:
注:考试时间 120 分钟。请将答案写在答题纸规定的方框内,否则记 0 分。
一、填空题(每题 3 分,共 21 分)
1. 已知 P( A) p, P(B) q, P( A B) p q ,则 P( A B)
附:标准正态分布、 t 分布、 2 分布上侧分位点值: u 0.025 1 .9 6 , u 0.05 1 .6 4 5
t0.025 ( 9 ) 2 .2 6 2 , t0.025 ( 8 ) 2 .3 0 6 , t0.05 ( 9 ) 1 .8 3 3 , t0.05 ( 8 ) 1 .8 6 ,

(2)求Y y 的条件下, X 的条件概率密度,并计算概率 P{ X 2 Y 4} ;

《线性代数、概率统计》期末考试试卷及详细答案

《线性代数、概率统计》期末考试试卷及详细答案
《线性代数、概率论》期末考试试卷答案
一、选择题�每小题后均有代号分别为 A, B, C, D 的被选项, 其中只有一项是正
确的, 将正确一项的代号填在横线上�每小题 2 分�共 40 分��
1�行列式 G 的某一行中所有元素都乘以同一个数 k 得行列式 H�则------------C-------------;
.
(A) �2 ;
(B) �2 ;
(C) �2-�2;
(D) �2+�2;
二、解答题(每小题 8 分�共 48 分)
1�解矩阵方程� X ����11
12����

�� � ��
1 2 1
� 1�� 0� 2 ��
解�
X

�� 1 �2
�� 1
�021���������11
1 2
����
�1

�� 1 �2 �� 1
(4 分) (8 分)
� �1 �1 0 �E � A � 0 � �1 �1 � (� �1)3
0 0 � �1
�3 分�
得 A 的特征值 �1=�2=�3=1。 以�=1�代入 (�E � A)X � 0 �得
�4 分�
�� ���
x2 x3
� �
0 0
�6 分�
4
�1� 其基础解系是 X � ��0�� �
� � ���
是齐次线性方程组
XA=0
的一个基础解系。
�� 3�� �� 2��
∴方程组 XA=B 的通解为
X=k�+�1=
k �� ���
4 5 6
� � ���

� � ���
3 4 5

概率统计(I)2015-2016-2(15级)期末试题及参考答案

概率统计(I)2015-2016-2(15级)期末试题及参考答案
P Y 1 1 P Y 1 1 P Y 0 P Y 1
0 1 1 C4 1 2 1 2 C 4 1 2 1 2 0 4 1 3
11 0.6875. 16
1 1, 2; 4, 25; 4. X , Y N 2 E X 1, E Y 2, D X 4, D Y 25, R X , Y
2 待检检验为:
H 0 : 0 0.27,
0 .
因总体方差已知,用 U 检验法,即检验统计量为
U X 0

n
. 因 0.05 ,查表得拒绝域为
W U : U U : U 0.95 U : U 1.645 .
2. FY y P Y y P 2 X 1 y
y 1 y 1 y 1 PX FX F . 2 2 2 1 1 3. X U 1,1 P X 0 Y B 4, 2 2
i
n
n
3
xi
i 1
n
e 3n ,
i 1
i 1
显然可见, L 关于 单调递增;又 xi , i 1, 2,, n , 从而 min x1 , x2 ,, xn ;故 的极大似然估计值为
ˆ min x ,极大似然估计量为 ˆ min X ; l i l i
1
fX x


f x, y dy
1 1 x , 1 x 1 x 1dy , 1 x 1 ; , 其它 0 其它 0,
fY y

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)

2021年大学必修课概率论与数理统计期末考试卷及答案(完整版)一、单选题 1、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对 【答案】C2、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 【答案】B 3、设()(P Poission λX分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ=A )1,B )2,C )3,D )0 【答案】A4、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B5、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C6、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A7、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A8、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C9、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B 10、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C 二、填空题1、一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________【答案】2/32、设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=【答案】7.43、用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 【答案】F(b,c)-F(a,c)4、设为来自正态总体的一个简单随机样本,其中参数和均未知,记,,则假设:的检验使用的统计量是 。

四川大学概率统计往年期末试题

四川大学概率统计往年期末试题

四川大学期末考试试题(2020-2020学年第二学期)一、单项选择题(每空2分,共10分)1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P ( )(A) (B) (C) (D)2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61)(625102π那么E(X)=( )(A)5 (B)3 (C)-3 (D)-53.设X 有散布函数),(x F 令53-=X Y ,那么Y 的散布函数为( )(A)⎪⎭⎫ ⎝⎛+3531y F (B))53(+y F (C) )353(-y F (D) ⎪⎭⎫ ⎝⎛+35y F 4.设整体n X X X ,,,21 是独立同散布的随机变量序列,均服从参数为1的指数散布,令∑==n i i X n X 1221,那么−→−P X 2( ) (A)1 (B)2 (C)3 (D)45.设整体3212,,),,(~X X X N X σμ是来自X 的样本,记 3211414121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估量量中,( )最有效(A)1Z (B)2Z (C)3Z (D)无法判定二、填空题(每空2分,共10分)1.一个袋子中有3个红球,2个白球,从中任取3个球,那么至少取得一个白球的概率是______;2.设),3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______;3.设)43;914,1,1(~),(-N Y X 的二维正态散布,记Y X Z 32-=,那么~Z_________散布;4.设)(~λP X ,已知1)]2)(1[(=--X XE ,那么=λ__________; 5.设整体)1,0(~N X ,321,,X X X 别离是来自X 的样本,2321)(31X X X W ++=,那么W~______散布. 三、解答题1.(10分)有甲乙两箱同类型的产品,其中甲箱有11件正品,1件次品,乙箱中有9件正品,1件次品。

四川大学概率统计习题册答案及解答前8章

四川大学概率统计习题册答案及解答前8章
2. 0.7283 , B = “该种动物活到 15 岁” ,由已知条件得所求 设 A = “该种动物活到 10 岁” 概率为 p = P B A = 3. 0.2333, 0.4651 因 AB = A − B ,所以
(
)
P (AB ) P (A)
=
P (B ) P (A)
=
0.67 = 0.7283 0.92
(
)=
P (AB ) P (A ∪ B )
=
P (A) P (B ) P (A) + P (B ) − P (AB )
0.2 × 0.6 = 0.2308 0.2 + 0.4 − 0.2 × 0.4
=
2. D 3. C
P (A) P (B ) P (A) + P (B ) − P (A) P (B )

P (A) − P (B ) ≤ P (A − B ) ≤ P (A) ≤ P (A ∪ B ) ≤ P (A) + P (B ) .
2. 证明:
P (A) ≥ P A (B ∪ C ) = P (AB ∪ AC ) = P (AB ) + P (AC ) − P (ABC ) ≥ P (AB ) + P (AC ) − P (BC ) ,
1 πa 2 ,设 A 表事 2
件“原点与该点的连线与 x 轴的夹角小于
π 1 1 2 2 ” ,则 m (A) = πa + a ,所以所求概 4 2 4
1 1 πa 2 + a 2 2+π 2 = 4 = 率为 P (A) = . 1 2π m (Ω) 2 πa 2 m (A)
2.
3 8
因事件 A 发生导致事件 B 发生,则 A ⊂ B 或 AB = A ;事件 B 与事件C 互斥,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川大学期末考试试题
(2008-2009学年第二学期)
一、单项选择题(每空2分,共10分)
1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P ( )
(A) (B) (C) (D) 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61
)(625102π则
E(X)=( )
(A)5 (B)3 (C)-3 (D)-5
3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( )
(A)⎪⎭⎫ ⎝⎛+3531y F (B))53(+y F (C) )353(-y F (D) ⎪⎭
⎫ ⎝⎛+35y F 4.设总体n X X X ,,,21 是独立同分布的随机变量序列,均服从参数为1的指数分
布,令∑==n i i X n X 122
1,则−→−P X 2( ) (A)1 (B)2 (C)3 (D)4
5.设总体3212
,,),,(~X X X N X σμ是来自X 的样本,记 32114
14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效
(A)1Z (B)2Z (C)3Z (D)无法判断
二、填空题(每空2分,共10分)
1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______;
2.设),
3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______;
3.设)4
3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则
~Z _________分布;
4.设)(~λP X ,已知1)]2)(1[(=--X X
E ,则=λ__________; 5.设总体
)1,0(~N X ,321,,X X X 分别是来自X 的样本,2321)(3
1X X X W ++=,则W~______分布. 三、解答题
1.(10分)有甲乙两箱同类型的产品,其中甲箱有11件正品,1件次品,乙箱中有9件正品,1件次品。

今从甲箱任取1件产品放入乙箱,然后再从乙箱中任取1件产品。

(1)求从乙箱中任取的这件产品是次品的概率;(2)已知从乙箱中取得的产品是次品,求从甲箱中取得的产品是次品的概率。

2.(9分)设)2,1(~U X ,记X e Y
2=,求Y 的密度函数)(y f Y 。

3.(10分)设)25,(~μN X ,(1)从总体X 中抽取容量为16的样本,求样本均值X 与μ之差的绝对值小于2的概率;(2)欲使样本均值X 与μ之差的绝对值小于2的概率不小于,样本容量n 至少应该取多少?
4.(16分)设二维随机变量),(Y X 有联合密度函数 ⎩⎨⎧∉∈=G
y x G y x Ax y x f ),(,0),(,),( 其中G 由x 轴,直线2,2
==x x y 围成。

(1)求A 的值;(2)求边缘密度
)(x f X ,)(y f Y ;(3)求条件密度)|(|y x f Y X ;(4)判断X 与Y 是否独立?
5.(12分)设一枚质地不均匀的硬币正面出现的概率为3
1,(1)将这枚硬币独立重复抛掷10次,求至少有2次正面出现的概率;(2)将这枚硬币独立地重复抛掷1800次,用中心极限定理计算正面出现次数至多640次的概率。

6.(12分)某医生测试了9例慢性中毒者的脉搏(单位:次/分),得到样本均值8889.68=x ,标准差8224.3=s . 设人的脉搏服从正态分布。

(1)求慢性中毒者平均脉搏的95%的置信区间(小数点后取2位);(2)设正常人的平均脉搏为72次/分,问中毒者与正常人的脉搏有无显著差异)05.0(=α

7.(11分)设总体X 有密度函数 ⎩⎨⎧<≥=--θ
θθθx x e x f x ,0),(),(
其中0>θ为未知参数,n x x x ,,,21 为来自X 的样本观察值.
(1)求θ的矩估计量θˆ;(2)用讨论法求θ的极大似然估计L
θˆ; (3)(此问3分)证明:L
θˆ是θ的有偏估计.。

相关文档
最新文档