概率统计综合复习题及答案
概率统计总复习(含答案)

概率统计总复习一填空选择题考点1 掌握事件的关系与运算,会写样本空间1.试验E 为抛一枚硬币,观察正面H ,反面T 出现的情况,则E 的样本空间S = .2.设,,A B C 为随机事件,则,,A B C 中至少有一个发生可表示为 ,,A B C 同时发生可表示为考点2古典概型的计算;1.同时抛掷3枚均匀的硬币,则恰好有2枚正面朝上的概率是2.袋中有5个球,其中3个新球,2个旧球,每次取一个,无放回地取两次,则两次取到的均为新球的概率为 .3.一袋中装有6个球,其中3个白球,3个红球,依次从中取出2个球(不放回),则两次取到的均为白球的概率为 15。
4.从1,2,3,4,5五个数中任意取两个数,则这两个数中含偶数的概率是 考点3 概率的计算A 概率的性质和事件的独立性综合计算1.已知(),()0.2,()0.96P A a P B P A B ==⋃=,若事件AB 相互独立,则 a =1/20 2 设()0.4,()0.3P A P B ==,,A B 独立,则()P AB = ()____P A B -=. 3.设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == , ()P AB = . B 条件概率相关计算1.设事件A 与B 独立,且()0.4P A =,(|)0.5P B A =,则()P AB = 2.设()0.3P AB =,(|)0.4P B A =,则()P A = .3.已知()0.5,()0.6,()0.4P A P B P B A ===,那么()P AB = __0.2_____,()P AB =_0.4____, ()P A B ⋃=_______0.7_____.C 正态分布概率相关计算1.设随机变量~(1,1)X N ,则{02}P X <<= .((1)0.8413Φ=)2.已知2~(1,)X N σ,{12}0.3P X <<=,则{0}P X <=____0.2_____.3 设随机变量(1,4)X N ,则(13)P X -<<= ;若()0.5,P X a >= 则a = .0.6826,14.随机变量),2(~2σN X ,(04)0.3,<<=P X 则(0)<=P X 。
概率论与数理统计复习题带答案

6.设随机变量 的概率分布率如下表
1
2
3
求X的分布函数和 。
解:
7.设随机变量 的概率密度函数为 ,求 (1)常数c; (2) 。
解:(1)
(2)
第三章
一、填空题
1.设连续型随机变量 的概率密度分别为 ,且 与 相互独立,则 的概率密度 ( )。
2.已知 ,且 与 相互独立,则 ( )
二、计算题
A. B. 41 C. 21 D. 20
8. 是互相独立的随机变量, ,则 =( D )。
A. 9 B. 15 C. 21 D. 27
三、计算题
1.设二维随机变量的联合概率分布为
XY
0
1
1
0
2
0
求:(1)X与Y的边缘分布,(2)E(X),D(Y)。
X
-1 1 2
Y
-2 0 1
2.已知 ,求Z的期望与方差,求X与Z的相关系数。
9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( );
10.若事件A与事件B互不相容,且P(A)=, P(B) = ,则P( )=( )
11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。
3.设(X,Y)服从分布
X Y
0
1
2
0
3/28
9/28
3/28
1
3/14
3/14
0
2
1/28
0
0
,试求cov(X,Y)及 。
4.设随机变量(X,Y)具有密度函数 ,其中区域G由曲线 围成,求cov(X,Y)及 。
《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题 1. 已知P(AB)?P(A),则A与B的关系是独立。
2.已知A,B互相对立,则A与B的关系是互相对立。
,B为随机事件,则P(AB)?。
P(A)?,P(B)?,P(A?B)?,4. 已知P(A)?,P(B)?,P(A?B)?,则P(A?B)?。
,B为随机事件,P(A)?,P(B)?,P(AB)?,则P(BA)?____。
36.已知P(BA)? ,P(A?B)?,则P(A)?2 / 7。
7.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为。
8. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___26____。
339. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110. 3人独立破译一密码,他们能单独译出的概率为,,,则此密码被译出的5343概率为______。
5后不放回,则第2次抽出的是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235Cp(1?p)7次成功的概率为______。
12. 已知3次独立重复试验中事件A至少成功一次的概率为1事件A成功的概率p?______。
319,则一次试验中27c35813.随机变量X能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量X 分布律为P(X?k)?,k?1,2,3,4,5,则P(X?3X?5 )?__。
15x??2,?0?X?(x)???2?x?0,是X的分布函数,则X分布律为__??pi?1x?0?0? ?__。
??2?0,x?0??16.随机变量X的分布函数为F(x)??sinx,0?x??,则2?1,x???2?P(X??3)?__3__。
217. 随机变量X~N(,1),P(X?3)?,P(X??)?__ 。
初中数学专题复习统计与概率综合测试(含答案)

统计与概率综合测试(时间:100分钟 总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如图,是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,指针落在()区域的可能性最大 A .1 B .2 C .3 D .42.下列事件为确定事件的有( )①在一标准大气压下,20℃的纯水结冰;②平时的百分制测验,•小明的成绩为105分;③抛一枚硬币落地后正面朝上;④边长为a 、b 的长方形面积为ab . A .1个 B .2个 C .3个 D .4个3.关于全班50名同学的生日,下列说法正确的是( )A .一定有两名同学生日相同;B .每一个月都至少有四名同学过生日C .至少有四名同学的生日相同;D .每名同学的生日均不相同 4.华北某市近几年连年干旱,市政府采取各种措施扩大水源,措施之一是投资增建水厂,如图,是该市目前水资源结构扇形统计图,•请根据图中圆心角的大小计算黄河水在总供水中所占的百分比约为( )A .64%B .60%C .54%D .74%5.2000年某区有15 000名学生参加高考,为了考查他们的数学考试情况,评卷人抽取了800名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的数学成绩是个体;B .15 000名学生是总体;C .800名学生是总体的一个样本;D .上述调查是普查 6.下列说法不正确的是( )A .频数与总数的比值叫做频率;B .频率与频数成正比;C .在频数分布直方图中,小长方形的面积是该组的频率;D .用样本来估计总体时,样本越大对总体的估计就越精确。
7.如果一组数据x 1,x 2,x 3,x 4,x 5的平均数是x ,则另一组数据x 1,x 2+1,x 3+2,x 4+3,x 5+4的平均数为( ) A .x B .x +2 C .x +52D .x +1 8.一组数据9.9,10.3,10,10.1,9.7的方差为( ) A .0 B .0.04 C .0.2 D .0.4 9.甲、乙两名同学在几次测验中,平均分都是86分,甲的方差是0.61,•乙的方差是0.72,则可知( )A .甲的成绩好B .乙的成绩好;C .甲的成绩稳定D .乙的成绩稳定 10.当五个数从小到大排列后,其中位数是4,如果这组数据唯一的众数是6,那么这5个数可能的最大和是( )A .21B .22C .23D .24二、填空题(本大题共8小题,每小题3分,共24分) 11.在一副扑克牌中任取一张,则P (抽到梅花)=______.12.甲、乙、丙三种糖果售价分别为每千克6元、7元、8元,若将甲种8千克,•乙种10千克,丙种2千克混合在一起,则售价应定为________元.13.对某班60名同学的一次数学测验成绩进行统计,如果频率分布直方图80.5~90.5分这一组的频率是0.35,那么这个班的学生这次数学测验成绩在80.5~90.5•分之间的人数是_________.14.你想对一批炮弹的质量进行检查,应选用________方法来调查最合理.15.一个班25名男生中,身高1.79米的1人,4人身高1.75米,9人身高1.70米,8•人身高1.65米,2人身高1.60米,1人身高1.56米,则这个班男生身高的众数为______,中位数为________.16.在相同的条件下,对30辆同一型号的汽车进行耗油1升走的路程的试验,根据测得的数据画出频率分布直方图如图,则本次实验中,耗油1•升所行走的路程在13.05~13.35千米范围内的汽车共______辆.17.已知一组数据x 1,x 2,x 3,x 4,x 5的方差是1,那么另一组数据2x 1-1,2x 2-1,2x 3-1,2x 4-1,2x 5-1的方差为________. 18.•随机掷一枚均匀的骰子,•连续掷两次,•则两次骰子的总数和为6•的概率是________. 三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写出文字说明、证明过程或演算步骤)19.你能从图中获取哪些信息?(1)小明家在哪方面的支出最多?占总支出的百分比是多少?(2)小明家在哪两个方面的支出相差不大,所占的百分比分别是多少?(3)若小明一家教育支出为2 800元,则生活费用是多少?20.设计一个均匀的正二十面体形状的骰子,将这个骰子掷出后,“5”朝上的概率为14,“3”朝上的概率是310,“1”朝上的概率为110,“2”朝上的概率是320,“4”朝上的可能性是320,“6”朝上的概率为120,问正二十面体形状的骰子上的数的分布情况.21(1)如果根据平分分来排名,则哪个班得分高一些?(2)如果地面、门窗、桌椅按3:3:4的比例算分,则哪个班得分高一些?22.将分别标有数字1,2,3的3张卡片洗匀后,背面朝上放在桌面上.(1)随机抽一张,求P(奇数).(2)随机抽取一张作为十位上的数字(不放回),再抽一张作为个位上的数字能组成哪些两位数?恰好是32的概率是多少?23.某农民2003年收获了44袋大米,先随意称了5袋大米的质量,每袋大米的质量(单位:千克)如下:35,35,34,39,37.(1)根据样本平均数估计这年该农民粮食的总产量约是多少?(2)若该农民2002年粮食的总产量为1 100千克,•近几年来该农民的粮食产量的增长率大致相同,请你预测一下2004年该农民可以收多少粮食?24.为了解中学生的体能情况,某校抽取了50名中学生进行了一分钟跳绳测试,•将所得数据整理后画出部分频率分布直方图,如图所示,已知图中从左到右前四个小组的频率分别为0.04、0.12、0.4、0.28,根据已知条件填空或画图.(1)第四小组频数为_________,第五小组频率为__________.(2)在这次测验中,跳绳次数的中位数落在第______小组中.(3)补全频率分布直方图.25.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据初赛情况分别选出了10•名同学参加决赛,•这些选手的决赛成绩(••满分100分)(1(2)请你从以下两个不同的角度对三个年级的决赛成绩进行分析:①以平均数和众数相结合分析哪个年级成绩好些.②以平均数和中位数相合分析哪个年级成绩好些.③如果在每个年级参加决赛的选手中选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.答案:一、选择题1.A 2.C 3.C 4.A 5.A 6.C 7.B 8.B 9.C 10.A 二、填空题11.135412.6.7 13.21 14.抽样调查15.1.70米,1.70米 16.12 17.4 18.5 36三、解答题19.解:(1)小明家在生活方面支出最多,占总支出的百分比是35%.(2)小明家在教育与储蓄方面支出相差不大,所占的百分比分别为28%和30%.(3)280028%×35%=3 500(元).20.解:20×14=5,20×310=6,20×110=6,20×320=3,20×320=3,20×120=1,分布情况为:5个5个点,6个3点,2个1点,3个2点,3个4点,1个6点.21.解:(1)三个班的平均分一样,都为90分.(2)一班:95×0.3+90×0.3+85×0.4=89.5.二班:95×0.3+80×0.3+95×0.4=90.5.三班:90×0.3+90×0.3+90×0.4=90.二班得分高一些.22.解:(1)P(奇数)=23.(2)可以组成12,13,21,23,31,32,P(32)=16.23.解:(1)35353439375++++×44=1 584(千克).(2)1 584×158411001100-+1 584≈2 281(千克).24.解:(1)14,0.16 (2)三.(3)略.25.解:(1)平均数85.5,众数80,78,中位数86.(2)①初二年级;②初一年级;③初三年级实力更强一些,因为初三年级前三名选手的平均分高.。
概率统计试题及答案

<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,.则=3.若事件A和事件B相互独立,,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6。
设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________ ________8。
设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11。
设,,则12.用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为 . 15。
已知,则=16。
设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20。
设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~ .21.设是独立同分布的随机变量序列,且, 那么依概率收敛于 .22。
设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A); (B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销",则其对立事件为(A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销"。
概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。
本文将提供一套概率统计的试题及答案,以供学习和复习之用。
一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。
答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。
答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。
答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。
答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。
答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。
一轮复习专题55 统计与概率综合练习
专题55统计与概率综合练习一、选择题:本题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某校高一、高二、高三年级学生人数分别是400、320、280。
采用分层抽样的方法抽取50人,参加学校举行的社会主义核心价值观知识竞赛,则样本中高三年级的人数是()。
A 、14B 、16C 、18D 、20【答案】A【解析】高三年级的人数是1450280320400280=⨯++(人),故选A 。
2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为15,乙组数据的平均数为8.16,则x 、y 的值分别为()。
A 、2、5B 、5、5C 、5、8D 、8、8【答案】C【解析】∵甲组数据的中位数为15,∴5=x ,乙组数据的平均数为8.16,∴8.165241810159=+++++y ,∴8=y ,故选C 。
3.万达中心购物广场在“双11”开展的“买三免一”促销活动异常火爆,对当日8时至22时的销售额进行统计,以组距为2小时的频率分布直方图如图所示。
已知12时至16时的销售额为90万元,则10时至12时的销售额为()。
A 、60万元B 、80万元C 、100万元D 、120万元【答案】A【解析】该商场“双11”8时至22时的总销售额为2002125.0100.090=⨯+万元,∴10时至12时的销售额为60)2150.0(200=⨯⨯万元,故选A 。
4.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()。
(注:结余=收入-支出)A 、收入最高值与收入最低值的比是13:B 、结余最高的月份是7月C 、1至2月份的收入的变化率与4至5月份的收入的变化率相同D 、前6个月的平均收入为40万元【答案】D【解析】收入最高值为90万元,收入最低值为30万元,其比是13:,A 对,结余最高为7月份,为602080=-,B 对,1至2月份的收入的变化率与4至5月份的收入的变化率相同,C 对,前6个月的平均收入为45)605030306040(61=+++++万元,D 错,故选D 。
《概率论与数理统计》复习题(含答案)
概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
概率统计综合练习及答案
北京科技大学远程教育学院《概率统计》综合练习(一)参考答案随机事件及其概率一、填空1、A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 中至少发生两个的事件 AC BC AB ,用文字叙述C AB C B A BC A 表示的事件 三个事件中恰好发生两个事件 。
2、A 是试验E 的一个事件,每次试验A 出现的概率为p=0.25,独立重复做试验E 四次, A 是否必定出现一次? 否3、A ⊆B ,P (A )=0.2,P (B )=0.6则 P (B -A ) = 0.4 ,P (A -B ) = 0 。
4、P (A )>0,P (B )>0,A 、B 相互独立与A 、B 互不相容能否同时成立? 否 。
5、事件A 、B 独立,则A 、B 独立 。
6、P (A ∪B ∪C )的计算公式为)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 。
7、每次试验A 出现的概率为p ,独立重复做n 次试验,在n 次试验中,A 出现次数k 的可能取值为 0,1,3,…,n ,A 出现k 次的概率为 kn k k n q p C - 。
二、 以A ,B ,C 分别表示某城市居民订阅日报、晚报和体育报。
试用A ,B ,C 表示 以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ,(2)C AB ,(3)C B A C B A C B A ,(4)C B A BC A C AB , (5)C B A ,(6)C B A ,(7)C B A C B A C B A C B A ,(8)ABC , (9)C B A三、 从0,1,2,…,9中任意选出4个不同的数字,试求它们能组成一个4位偶 数的概率。
概率统计试题及答案
概率论与数理统计复习试卷一、填空题(本题共10小题,每小题2分,共20分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为1234020104Xp ..a .b c+-,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率{}P X a ,Y b >>= .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设12n X ,X ,,X 是从正态总体),(~2σμN X 中抽取的样本,则概率()202221201037176i i P .X X.σσ=⎧⎫≤-≤=⎨⎬⎩⎭∑ .6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为7、设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧是θ的无偏估计。
8、设E (X )=-1,D (X )=4,则由切比雪夫不等式估计概率:P {-4<X<2}≥_______________.9、设随机变量X 服从二项分布()2.0,100B ,应用中心极限定理可以得到{}≈≥30X P (已知()9938.05.2=Φ)。
10、设样本,,,,21n X X X 取自正态总体()2,,0Nμσσ>X ______________。
二、单项选择题(本题共10小题,每小题2分,共20分)注意:在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写下面的表格内.............。
错选、多选或未选均无分。
1、如果 1)()(>+B P A P ,则 事件A 与B 必定( ))(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2、已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学练习一、选择题 1.已知1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-++-L ,则8a =( )A .180-B .45C .45-D .1802.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )A .24种B .18种C .48种D .36种3.已知一组数据X 1,X 2,X 3,…,X n 的方差是S 2,那么另一组数据2X 1-1,2X 2-1,2X 3-1,…,2X n -1 的方差是( )A .122-s B .2s 2 C .2s D .24s4.高三某6个班级从“照母山”等6个不同的景点中任意选取一个进行郊游活动,其中1班、2班不去同一景点且均不去“照母山”的不同的安排方式有多少种( ) A .2454C A B .2456C C .2454A A D .2456A5.已知复数()()1,z x yi x y R =-+∈,若1z ≤,则y x ≥的概率为( )A .1142π-B .3142π+C .112π-D .112π+ 6.若251()(1)x a x+-的展开式中常数项为1-,则a 的值为A .1B .8C .1或9D .1-或9-7.设随机变量X 的概率分布列为 则(|3|1)P X -==( ) (A )712 (B )512 (C )14 (D )168.已知()23012331nn n x a a x a x a x a x -=++++⋅⋅⋅+(n *∈N ),设()31nx -展开式的二项式系数和为n S ,123n n a a a a T =+++⋅⋅⋅+(n *∈N ),n S 与n T 的大小关系是( )A .n n S >TB .n n S <TC .n 为奇数时,n n S <T ,n 为偶数时,n n S >TD .n n S =T9.某校在一次期中考试结束后,把全校文、理科总分前10名学生的数学成绩(满分150分)抽出来进行对比分析,得到如图所示的茎叶图.若从数学成绩高于120分的学生中抽取3人,分别到三个班级进行数学学习方法交流,则满足理科人数多于文科人数的情况有( )种A .3081B .1512C .1848D .201410.向边长分别为5,613M ,则该点M 与三角形三个顶点距离都大于1的概率为( ) A .118π-B .112π-C .19π-D .14π- 11.设k 是一个正整数,1kx k ⎛⎫+ ⎪⎝⎭的展开式中第四项的系数为116,记函数y=x 2与y=kx的图像所围成的阴影部分为S ,任取x ∈[0,4],y ∈[0,16],则点(x,y)恰好落在阴影区域内的概率为( )(A )1796 (B )532 (C )16 (D )74812.2015年4月22日,亚非领导人会议在印尼雅加达举行,某五国领导人A 、B 、C 、D 、E 除B 与E 、D 与E 不单独会晤外,其他领导人两两之间都要单独会晤.现安排他们在两天的上午、下午单独会晤(每人每个半天最多进行一次会晤),那么安排他们单独会晤的不同方法共有A .48种B .36种C .24种D .8种二、填空题13.设n a (2n ≥,*n N ∈)是(3)n x -的展开式中x 的一次项系数,则23182318333a a a +++=L . 14.如图所示,在边长为1的正方形OABC 中任取一点M ,则点M 恰好取自阴影部分的概率是 .15.某校从参加高三年级期末考试的学生中随机抽取100名学生,将其数学成绩分成五段:[)[)[)[)50,70,70,90,90,110,110,130,[]130,150,它的频率分布直方图如图所示,则该批学生中成绩不低于90分的人数是_____.16.给出下列结论:①扇形的圆心角o为120,半径为2,则扇形的弧长43π是;②某小礼堂有25排座位,每排20个,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是系统抽样方法;③一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“两次都不中靶”互为对立事件; ④123123,,821,21,2121n n x x x x x x x x ++++L L 若数据的方差为,数据16的方差为;⑤0,tan sin 2x x x x π<<>>若则.其中正确结论的序号为 .(把你认为正确结论的序号都填上). 三、解答题17.设有关于x 的一元二次方程0222=++b ax x .(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[]3,0任取得一个数,b 是从区间[]2,0任取的一个数,求上述方程有实根的概率.18.在一个盒子中,放有大小相同的红、白、黄三个小球,从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为x ,y ,设O 为坐标原点,点P 的坐标为()2,x x y --,记2ξ=OP u u u r .(1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列和数学期望.19.(本题满分12分)为了解某校学生暑期参加体育锻炼的情况,对某班M名学生暑期参加体育锻炼的次数进行了统计,得到如下的频率分布表与直方图:组别锻炼次数频数(人)频率120.042110.223164150.305620.04[合计1.00(1)求频率分布表中M、d、e及频率分布直方图中f的值;(2)求参加锻炼次数的众数(直接写出答案,不要求计算过程);(3)若参加锻炼次数不少于18次为及格,估计这次体育锻炼的及格率。
20.(本小题满分12分)为了提高我市的教育教学水平,市教育局打算从红塔区某学校推荐的10名教师中任选3人去参加支教活动。
这10名教师中,语文教师3人,数学教师4人,英语教师3人.求:(1)选出的语文教师人数多于数学教师人数的概率;(2)选出的3人中,语文教师人数X的分布列和数学期望.21.已知)nxx二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n的值;(2)求展开式中3x项的系数(3)计算式子01231010101010102481024C C C C C-+-++L的值.22.(本小题满分12分)为了调查学生星期天晚上学习时间利用问题,某校从高二年级1000名学生(其中走读生450名,住宿生550名)中,采用分层抽样的方法抽取n 名学生进行问卷调查,根据问卷取得了这n 名同学每天晚上学习时间(单位:分钟)的数据,按照以下区间分为八组①[)30,0,②[)60,30,③[)90,60,④[)120,90,⑤[)150,120,⑥[)180,150,⑦[)210,180,⑧[)240,210,得到频率分布直方图如下,已知抽取的学生中星期天晚上学习时间少于60分钟的人数为5人: (1)求n 的值并补全下列频率分布直方图;(2)如果把“学生晚上学习时间达到两小时”作为是否充分利用时间的标准,对抽取的名学生,完成下列列联表: 利用时间充分 利用时间不充分 总计 走读生 住宿生 10总计据此资料,你是否认为学生“利用时间是否充分”与走读、住宿有关?(3)若在第①组、第②组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“学习时间少于60分钟”的学生人数为X ,求X 的分布列及期望;参考公式:()221221112211222112n n n n n n n n n k -=参考答案1.D【解析】试题分析:,因此其展开式的通项为D.考点:二项式定理的应用.2.A【解析】试题分析:由题意,第一类,大一的孪生姐妹在甲车上,甲车上剩下两个学生要来自不同的年级,然后从选择的两个年级中再分别选择一个学生,剩下的4人乘坐乙车.第二类,大一的孪生姐妹不在甲车上,则从剩下的三个年级中选择同一个年级的两名同学在甲车上,然后再从剩下的两个年级中分别选择一人,这时共有A.考点:排列组合.【易错点晴】本题主要考查的是排列组合,属于容易题.解题时一定要弄清楚是用分类加法计数原理还是用分步乘法计数原理,否则很容易出现错误.3.D【解析】为考点:方差4.D【解析】试题分析:1班、2剩余4各安排方式,故选D.考点:计数原理.5.A.【解析】1的圆及其内部,如下图所示,即可知所求概率为11114242πππ-=-,故选A . 考点:1.复数的性质;2.条件概率.6.C【解析】试题分析:2522511()(1)(2)(1)x a x ax a x x+-=++-,而根据二项式定理可知,51(1)x -展开式的通项公式为5151()(1)rrr r T C x-+=⋅⋅-,251()(1)x a x+-的展开式中常数项由三部分构成,分别是22,2,x ax a 与51(1)x-展开式中各项相乘得到,令3r =,则32345211()(1)10T C x x =⋅⋅-=-⋅,则2211010x x ⎛⎫⋅-⋅=- ⎪⎝⎭;令4r =,则4145511()(1)5T C x x=⋅⋅-=⋅,则12510ax ax ⎛⎫⋅⋅= ⎪⎝⎭;令5r =,则505651()(1)1T C x =⋅⋅-=-,则()221a a -=-g ,所以2(10)10()1a a -++-=-,即21090a a -+=,解得:1a =或9a =.考点:二项式定理. 7.B 【解析】试题分析:根据概率分布的定义得出:11111,3464m m +++=∴=,随机变量X 的概率分布列为3142512P X P P ∴-==+=()()() ,故选:B . 考点:离散型随机变量及其分布列. 8.C 【解析】试题分析:1x =0122n n n S a a a a =++++=L 0x =0(1)na =-所以1230(1)n n n n n T a a a a S a S =+++⋅⋅⋅+=-=--, 所以当n 为偶数时,1n n n T S S =-<,当n 为奇数时,1n n n T S S =+>,故选C. 考点:二项式定理. 9.C 【解析】试题分析:成绩高于120分的学生共有理科8人,文科9人,从中抽取3人,满足理科人数多于文科人数的有三理零文和二理一文,所以有32138893()1848C C C A +⋅⋅=种情况,故选C .考点:排列组合综合题. 10.A 【解析】试题分析:设13所对的角为θ,546521365cos 22=⨯⨯-+=θ以三角形的三个顶点分别为圆心做半径为1的圆,圆与三角形相交部分的面积等于212121ππ=⨯⨯=s ,三角形的面积是9536521=⨯⨯⨯=∆s ,所以概率等于181929ππ-=-=p .考点:几何概型11.C 【解析】试题分析:根据题意得 31116xk C k ⎛⎫= ⎪⎝⎭ 解得:k=4或 45k =(舍去),解方程组 24y x y x ⎧=⎨=⎩,解得:x=0或4∴阴影部分的面积为 ,()4223401324233x x dx xx -=-=⎰ ,所以点(x,y)恰好落在阴影区域内的概率为32134166=⨯.考点:1.二项式定理;2.几何概型. 12.A 【解析】试题分析:五国领导人单独会晤的有AB 、AC 、AD 、AE 、BC 、BD 、CD 、CE ,共八场,现在将八场会晤分别安排在两天的上午和下午进行,每个半天安排两场会晤同时进行.因为能同时会晤的共有(AB ,CD ),(AC ,BD ),(AD ,CE ),(AE ,BC )和(AB ,CE )、(AC ,BD ),(AD ,BC ),(AE 、CD )两种情况,故不同的安排方法共有44248.A ⨯=考点:排列与组合. 13.17 【解析】试题分析:∵n a (2n ≥,*n N ∈)是(3)n x -的展开式中x 的一次项系数,∴223n n n a C -=,∴23182318333a a a +++=L 231816232323(1)3(1)3(1)n n n n n n ⨯⨯⨯+++---L18181821321718=+++⨯⨯⨯L 111118(1)1722318=-+--=L , 故答案为:17考点:二项式系数的性质;数列的求和.14. 【解析】试题分析:,所以.则所求概率为.考点:1定积分;2几何概型概率. 15.65 【解析】试题分析:根据频率分布直方图,得该批学生中成绩低于90分的概率是()0.00250.0150200.35+⨯=,所以该批学生中成绩不低于90分的概率是1-0.35=0.65,所以该批学生中成绩不低于90考点:频率分布直方图 16.①②③⑤【解析】2确;②符合系统抽样的定义,所以正确;③一个人打靶时连续射击两次,所有基本事件为:两次都不中,中一次,中二次,而“至少有一次中靶”包括中一次和中二次,所以和“两次都不中靶”互为对立事件,所以正确;④的方差为故正确的有①②③⑤考点:1.弧长公式;2.系统抽样定义;3.对立事件概念;4.方差性质;5.三角函数线 17.(1(2【解析】试题分析:(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.(4)在几何概型中注意区域是线段,平面图形,立体图形.试题解析:(19构成事件的区域为如图阴影部分,其面积考点:1、古典概型求随机事件的概率;2、几何概型求随机的概率.【思路点睛】本题考查的是古典概型的概率计算公式和几何概型的概率计算公式,属于中档题.解题的关键是理解题目的实际意义,把实际问题转化为概率模型,把相关的知识点转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算;注意判断是古典概型还是几何概型,与面积有关的几何概型,其基本事件与两个连续的变量有关,先求试验全部结果构成的区域面积,再求所求的基本事件构成的区域面积,从而求解.18.(15;(2)详见解析.【解析】试题分析:(1)根据的取值,可得的范围,从而可得(2)根据0,1,2,5时的概率,从而可得其分布列,根据期望公式可求得其期望值.试题解析:解:(11,2,3,22(2)()5x x y ξ=-+-∴≤,且当1x =,3y =或3x =,1y =时,5ξ=. 因此,随机变量ξ的最大值为5.∵有放回地摸两球的所有情况共有339⨯=种,2(5)9P ξ==∴.(2)ξ的所有取值为0,1,2,5. 0ξ=∵时,只有2x =,2y =这一种情况;1ξ=时,有1x =,1y =,或2x =,1y =,或2x =,3y =,或3x =,3y =四种情况;2ξ=时,有1x =,2y =,或3x =,2y =两种情况.1(0)9P ξ==∴, 4(1)9P ξ==, 2(2)9P ξ==∴. 则随机变量ξ的分布列为:1422()012529999E ξ=⨯+⨯+⨯+⨯=.考点:1古典概型概率;2分布列,期望.【易错点晴】本题主要考查的是古典概型概率,属中档题.本题的易错点在于容易忽略有放回地先后摸出两球即,x y 的取值可以相同而出错.结题时应加以注意.19.(1)50,4,0.08,0.08;(2)12;(3)12% 【解析】 试题分析:(1)利用频数/样本容量=频率,求得M ;再求得d ,e ,f 的值;(2)根据众数是最高小矩形底边中点的横坐标求解;(3)及格率为第五组第六组的频率之和试题解析:(1)32.05016==c ,08.0432.0==f ,08.0504==e(2(3)(0.08+0.04)×100%=12% , ∴估计这次体育锻炼的及格率为12%考点:1.古典概型及其概率计算公式;2.频率分布直方图 20.(1(2【解析】 试题分析:(1)设“选出的3名教师中语文教师人数多于数学教师人数”为事件A ,“恰好选出1名语文教师和2名英语教师”为事件A 1“恰好选出2名语文教师“为事件A 2,”恰好取出3名语文教师”为事件A 3由于事件A 1,A 2,A 3彼此互斥,且A=A 1∪A 2∪A 3;分别计算出事件A 1,A 2,A 3的概率再由概率和公式计算出事件A 的概率;(2)的所有可能取值,显然k=0,1,2,3,然后分别计算出k 的每一个取值时 试题解析:(1)解:设“选出的3名教师中语文教师人数多于数学教师人数”为事件A ,“恰好选出1名语文教师和2名英语教师”为事件A 1“恰好选出2名语文教师“为事件A 2,”恰好取出3名语文教师”为事件A 3由于事件A 1,A 2,A 3彼此互斥,且A=A 1∪A 2∪A 3而(A 2)=P (X=2)(A3)=P (X=3)所以选出的3名教师中语文教师人数多于数学教师人数的概率为 P (A )=P (A 1)+P (A 2)+P (A 3)(2)解:由于从10名教师中任选3从10名教师中任取3人,其中恰有k那么从10人任选3人,其中恰有k 名语文教师的概率为P(X=k ).X 的数学期望考点:1、和事件的概率公式;2、分布列与数学期望.【易错点晴】本题考查和事件的概率公式、分布列与数学期望,属中档题.解题时一定要注意弄清事件与事件之间的关系,否则容易出错;再就是计算一定要准确无误. 21.(1(2)180;(3)1. 【解析】试题分析:本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,属于基础题.第一问,n的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得展开式中x3开式中,令x=1试题解析:(1)由第4项的二项式系数与第3项的二项式系数的比为8:3(2(3所以令x=1考点:二项式定理的应用;二项式系数的性质.【解析】试题分析:(1)根据频率分布直方图,并利用频率=频数/第④组的频率,并补全频率直方图即可;(2)由频率分布直方图,计算抽取的“走读生”以(3)首然后由古典概型分别计算其对应的概率,的分布列与数学期望即可.试题解析:(1)设第组的频率为,由图可知:∴学习时间少于60又因为频率分布直方图如图:(注:未标明高度1/250扣1分)(2)由频率分布直方图可知,在抽取的100人中,“走读生”有45人,利用时间不充分的有40人,(3)由(1)知:第①组1人,第②组4人,第⑧组5,总计10人,则X 的所有可能取值为0,1,2,311/1/1/11/11/所以.考点:1、频率分布直方图;2、离散型随机变量的分布列.。