数学-高二-河北省石家庄市第二中学高二10月月考数学(理)试题
天域全国名校协作体2024-2025学年高三上学期10月联考数学试题(含答案)

绝密★考试结束前2024-2025学年第一学期天域全国名校协作体联考高三年级数学学科 试题命题审题:石家庄市第二中学 厦门市双十中学 长沙市雅礼中学主办学校;石家庄市第二中学 厦门市双十中学 长沙市雅礼中学考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,则( )A .B .C .D .2.已知向量.,若,则实数( )A .B .C .11D .43.已知函数的最小正周期为,则的对称轴可以是( )A .B .C .D .4.已知函数,其图象无限接近直线但又不与该直线相交,则的解集为()A .B .C .D .5.已知等差数列的前n 项和为,“”是“”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知抛物线的焦点为F ,过焦点F 的直线l 与抛物线C 交于异于原点O 的A ,B 两点,若12i z =+1z=12i 55-12i 55+12i55--12i 55-+()1,2a = (),3b x =()a ab ⊥+ x =4-11-π()cos 2(0)12f x x ωω⎛⎫=+> ⎪⎝⎭π()f x 5π24x =5π12x =π6x =π3x =||1()22x f x a ⎛⎫=-+ ⎪⎝⎭1y =1()2f x >(,2)(2,)-∞-+∞ ()2,2-(,1)(1,)-∞-+∞ ()1,1-{}n a n S 20250a =()40494049,n n S S n n *-=<∈N 2:8C y x =在直线上存在点,使得四边形是平行四边形,则( )A .3B .4C .5D .67.某游乐场一段滑水道的示意图如下所示,A 点、B 点分别为这段滑道的起点和终点,它们在竖直方向的高度差为40.两点之间为滑水弯道,相应的曲线可近似看作某三次函数图像的一部分(该三次函数在A ,B 两点处取得极值),考虑安全性与趣味性,在滑道最陡处,滑板与水平面成的夹角,则A ,B 两点在水平方向的距离约为()A .B .C .D .8.研究数据表明,某校高中生的数学成绩与物理成绩、物理成绩与化学成绩均有正相关关系.现从该校抽取某班50位同学的数学、物理、化学三科成绩作为样本,设数学、物理、化学成绩分别为变量x ,y ,z 若x ,y的样本相关系数为,y ,z 的样本相关系数为,则x 、z 的样本相关系数的最大值为( )附:相关系数A.B .C .D .1二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.则()A .估计该年级学生成绩的众数为75B .C .估计该年级学生成绩的75百分位数约为85D .估计该年级成绩在80分及以上的学生成绩的平均数为87.5010.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P ,使得6x =()()6,0P t t >OAPB t =45︒30m 40m 60m 120m121345r =4865636564650.05a =:44C x x y y =-1F 2(0,F 124PF PF -=C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则11.已知,,…,,为1,2,…,5,6的任意排列,设,.则( )A .任意交换的顺序,不影响X 的取值B .满足及的排列有20个C .的概率为D .的概率为非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12.已知,,则______.13.已知正三棱柱的体积与以的外接圆为底面的圆柱的体积相等,则正三棱柱与圆柱的侧面积的比值为______.14.定义在上的函数满足:①;②;③,则______,______.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,角A ,B ,C 的对边分别为a ,b ,c ,的面积为S ,且(1)求角A ;(2)若为锐角三角形,且,求a 的取值范围.16.(15分)已知函数,(1)当时,求在上的最大值;(2)求的零点个数.2y x =2y x =±45QA QB ⋅=1x 2x 5x 6x {}{}{}123456min max ,,,max ,,X x x x x x x ={}{}{}123456max min ,,,min ,,Y x x x x x x =123,,x x x 123x x x <<456x x x <<4X =15X Y >9101sin()2αβ+=tan 5tan αβ=sin()αβ-=111ABC A B C -ABC △[]0,1()f x ()()11f x f x +-=1()32x f f x ⎛⎫=⎪⎝⎭()()12120)1(f x f x x x ≤≤<≤()1f =12025f ⎛⎫= ⎪⎝⎭ABC △ABC △()22a b c +=+ABC △4b c +=ln ()ln 1xf x a x x=-+a ∈R 1a =()f x 1,e e ⎡⎤⎢⎥⎣⎦()f x17.(15分)如图,四棱锥中,,,,,平面平面,且平面,平面平面.(1)求四棱锥的体积;(2)设Q 为上一点,若,求二面角的大小.18.(17分)已知椭圆的右焦点为F ,点在C 上,且轴,过点M 且与椭圆C 有且只有一个公共点的直线与x 轴交于点P .(1)求椭圆C 的方程;(2)点R 是椭圆C 上异于M 的一点,且三角形的面积为24,求直线的方程;(3)过点P 的直线交椭圆C 于D ,E 两点(D 在E 的左侧),若N 为线段的中点,直线交直线于点Q ,T 为线段的中点,求线段的最大值.19.(17分)黎曼函数与数论中的素数分布定理和黎曼猜想密切相关.是这样定义的:记为复数s 的实部,当时,有,故对的研究具有重要意义.(1)已知对任意正整数n ,都存在唯一的整数和,使得,其中为奇数,为自然数,求;(2)试判断是否存在正整数k ,使得,并证明你的结论;(3)求证:.绝密★考试结束前2024-2025学年第一学期天域全国名校协作体联考高三年级数学学科参考答案1.B 2.B 3.B 4.A 5.C 6.B 7.C 8.BP ABCD -4AB PA ==2CD CB ==PD =60ABC ∠=︒PAB PCD l =l ∥ABCD PAD ⊥ABCD P ABCD -PC QA QB =Q AB C --22221(0):x y C a b a b +=>>81,3M ⎛⎫ ⎪⎝⎭MF x ⊥MPR MR FP NE MF DF TQ ζ()s ζ()s ζ()Re s ()11()kk s n s n nψ*==∑∈N ()Re 1s >()lim ()k k s s ζψ→+∞=()k s ψ()s ζn a n b 2n bn n a =⨯n a n b 101()n n n a b =∑+()12024k ψ=332k ψ⎛⎫<⎪⎝⎭【答案】【解析】设,,,,,设与夹角为,与夹角为,则与夹角余弦值最大值为,此时x 与z 样本相关系数最大.由,,从而故选:B 9.ACD10.CD11.ABD11.【详解】对于A ,注意到当被确定后,的取值也被固定,因此满足条件的条件组数即满足条件的的组数,即从1,2,…,5,6中任选3个数的数目,即.注意到任意交换的顺序,不影响X ,Y 的取值,任意交换的顺序,不影响X ,Y 的取值,A 正确,B 正确;因此不妨设及.注意到,整体交换和也不影响X ,Y 的取值,因此不妨设,即,将满足以上条件的排列列举如下:X Y X Y 12345634135246521243564313624552125346531452365212634553146235521342564215623442总情况数共10种,除第一种外均满足.因此,12.13.214.1,(第一空2分,第二空3分)14.【解析】()12,,,n X x x x =⋅⋅⋅ ()12,,,n Y y y y =⋅⋅⋅ ()12,,,n Z z z z =⋅⋅⋅12(),,,n X x x x x x x '=--⋅⋅⋅-12(),,,n Y y y y y y y '=--⋅⋅⋅-12(,,n Z z z z z z z '=--⋅⋅⋅-X ' Y ' αY ' Z 'βX ' Z 'cos()αβ-12cos 13α=4cos 5β=1245363cos()cos cos sin sin 13513565αβαβαβ-=+=⨯+⨯=123,,x x x 456,,x x x 123,,x x x 36C 20=123,,x x x 456,,x x x 123x x x <<456x x x <<123,,x x x 456,,x x x 14x x <4Y x ={}36min ,X x x =123,,x x x 456,,x x x 123,,x x x 456,,x x x X Y >19()11010P X Y >=-=3(4)10P X ==131128在①中,令,得,在②中,令,得,在①中,令,得,所以;在①中,令,得,令,则有,所以是奇函数,C 选项正确;在②中,令,得,由③知,在上非严格单调递增,又因为,所以均有.注意到,因此,于是15.【解析】(1),则,,或(舍)(2)由正弦定理得,即,且,,所以12x =1122f ⎛⎫= ⎪⎝⎭0x =()00f =0x =()()011f f +=()11f =12x t =+1111111222222f t f t f t f t ⎛⎫⎛⎫⎛⎫⎛⎫++-=⇒+-=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()1122g x f x ⎛⎫=+- ⎪⎝⎭()()g x g x =--1122f x ⎛⎫+- ⎪⎝⎭1x =111(1)322f f ⎛⎫== ⎪⎝⎭()f x []0,1111322f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭11,32x ⎡⎤∀∈⎢⎥⎣⎦1()2f x =6372911,2025202532⎡⎤=∈⎢⎥⎣⎦63120252f ⎛⎫= ⎪⎝⎭22211313113132025320252202523202522025f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯==⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭666131112202522128f ⎛⎫⎛⎫⎛⎫=⋅⋅⋅==⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22a b c +=+2221sin 22bc A b c a bc =+-+22212b c a A bc +-=+cos 1A A =+π2sin 16A ⎛⎫-= ⎪⎝⎭ππ66A ∴-=5π6π3A ∴=sin sin sin a b c A B C ==sin sin sin a b c A B C+=+π3A =4b c +=因为为锐角三角形,,,所以,所以,即.可得,即a 的取值范围为.16.【解析】(1),,令,则单调递减,且从而,,单调递增;,,单调递减.(2)令,则由,令,则从而在上单调递减,在上单调递减.若,当时,,若,当时,;若,当时,,当时,.从而当时,与有一个交点时,与有两个交点故时,有一个零点;时有两个零点.17.【解析】(1)因为平面,平面,平面平面,所以.同理,.所以.因为,,,所以.所以底面的面积.在中,,,,所以,所以()sin 2πsin sin sin 6b c A a B CB +=====+⎛⎫+ ⎪⎝⎭ABC △π02B <<2ππ032C B <=-<ππ62B <<ππ2π,633B ⎛⎫+∈ ⎪⎝⎭πsin 6B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦a ⎡∈⎢⎣a ⎡∈⎢⎣()ln ln 1x f x x x =-+()21ln x xf x x --'=()1lng x x x =--()g x ()10g =11ex <<()0g x >()f x e 1x >>()0g x <()f x ()()11f x f ≤=()ln ln 10x f x a x x =-+=ln 0x ≠11ln a x x =+()11ln h x x x =+()22110ln h x x x x'=--<()h x ()0,1(1,)+∞0x >0x →()h x →+∞1x <1x →()h x →-∞1x >1x →()h x →+∞x →+∞()0h x →0a ≤()h x y a =0a >()h x y a =(],0a ∈-∞()f x ,()0a ∈+∞()f x l ∥ABCD l ⊂PAB PAB ABCD AB =l AB ∥l CD ∥AB CD ∥4AB =2BC CD ==60ABC ∠=︒2AD =ABCD 1(24)2S =⨯+=PAD △4PA =2AD =PD =222PA AD PD =+PD AD⊥由平面平面,平面平面,,平面,所以平面.因为,所以.所以四棱锥的体积.(2)因为,,,所以,所以,,两两垂直,以D 为原点,建立如图所示的空间直角坐标系.则,,,,.所以,设,所以,因为所以高解得.所以.因此,,设为平面的法向量,则,取,则,即.因为平面所以平面的法向量为PAD ⊥ABCD PAD ABCD AD =PD AD ⊥PD ⊂PAD PD ⊥ABCD 4PA =2AD =PD =P ABCD -11633V S AD ==⋅=⨯=2AD =BD =4AB =BD AD ⊥DB AD DP ()0,0,0D ()2,0,0A ()0,B ()C -(0,0,P (1,CP =(,,)CQ CP λλ==(),)Q λλ--QA QB=222222(3311211)()()(312)λλλλλλ-+-+=-+++12λ=12Q ⎛-⎝12QB ⎛= ⎝ 52AQ ⎛=- ⎝ (),,m x y z = PAQ 050x x ⎧+-=⎪⎨-+=⎪⎩1y =x =2z =)21,m =PD ⊥ABCD ABCD ()0,0,1n =设二面角为,则即二面角的大小为18.【解析】(1)由题意得,,从而,,椭圆C 方程为(2)设,与椭圆联立,得,由椭圆与直线只有一个交点,令,即①又过,则②联立①②可得即点P 为.设原点由,故,从而R 到l 的距离为O 到l 距离的2倍,即R 在l 关于O 对称的直线上,又R 在椭圆上,从而M ,R 关于O 对称故直线方程为(3)设,,,则,即①,又由可得②结合①②可得,,,,,,Q AB C --θcos m n m n θ⋅===Q AB C --45︒283b a =1c =29a =28b =∴22198x y +=:l x my n =+22198x y +=()22289168720m y mny n +++-=0∆=22890m n -+=:l x my n =+81,3⎛⎫⎪⎝⎭83l m n =+39m n =-⎧⎨=⎩()9,0()0,0O 1891223OPM S =⨯⨯=△2RPM OPM S S =△△MR 83y x =()11,D x y ()22,E x y DP PE λ=12129101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩212199x x y y λλλ=+-⎧⎨=-⎩()()22112222289728972x y x y λλλ⎧+=⎪⎨+=⎪⎩1212121289721111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-254x λλ-+=()9,0P ()1,0F ()5,0N ()22,E x y则直线的方程为,轴,直线与交于Q ,则,故,故轴,从而.19.【解析】(1)由,,,,,',,,,知(2)证明:设,为奇数,为自然数,设,设,,则.否则,当时,,与r 的定义矛盾,故,则,其中为奇数,时为偶数,从而分子为奇数,分母为偶数,分式不可能为2024,故不存在这样的k .(3)证明:对任意正整数n ,当时,,又,故,NE ()22055y y x x -=--MF x ⊥NE MF 1Q x =221245Q y y y yx λ==-=-DQ y ⊥()11222TQ DF a c =≤+=0112=⨯0332=⨯0552=⨯0772=⨯0992=⨯1212=⨯1632=⨯11052=⨯2412=⨯3812=⨯101()44n n n a b =∑+=2n bn n a =⨯n a n b {}max n r b =1,2,,n k=⋅⋅⋅{}max ,n j n b r n k ==≤2j bj j a =⨯1j a =3j a ≥122j j b b j a j +<⨯=2j bj =111111111123232j b j k k +++⋅⋅⋅++⋅⋅⋅+=+++⋅⋅⋅++⋅⋅⋅+12122jj nb nc c c c a a a ++⋅⋅⋅++⋅⋅⋅+=⋅⋅⋅j c i j ≠i c 2n ≥()()321121231022n n n n n n n ⎛⎫-++=--> ⎪⎝⎭()121112n n n <⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭()()()()112222111111222n n n n n n n ⎛⎫⎛⎫⎛⎫++=+++>=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1212112n n n <==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭则2<331222*********k k k k n n n n ψ===⎛⎫=∑=+∑<+∑=+-< ⎪⎝⎭。
河北省石家庄市第二中学教育集团2023-2024学年高二上学期期中数学试题

河北省石家庄市第二中学教育集团2023-2024学年高二上
学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
对于C 项,由已知122PF PF PF =>根据双曲线的定义可知,12PF PF -
18.(1)26
3 (2)证明见解析
【分析】(1)利用平面几何的知识证得1OO BD ^,从而利用线面垂直的判定定理与性质定理即可得证;
(2)依题意,建立空间直角坐标系,由二面角1B CC D --的正弦值求得1AA ,即四棱台的高,从而利用台体的体积公式即可得解.
【详解】(1)连接11,B D BD 分别与11,A C AC 交于1,O O ,
易得1,O O 为11B D 与BD 的中点,又11BB DD =,所以1OO BD ^,因为在正方形ABCD 中,AC BD ^,
又1AC OO O =I ,,,AC OO Ì平面11ACC A ,所以BD ^平面11ACC A ,又1AA Ì平面11ACC A ,则1BD AA ^,
又1AC AA ^
,,,BD AC O BD AC Ç=Ì平面ABCD ,所以1AA ^平面ABCD .
(2)由(1)知1AA ^平面ABCD ,AB AD ^,故1,,AA AB AD 两两垂直,以点A 为原点,建立空间直角坐标系,如图,。
河北省石家庄市第二中学函数的概念与基本初等函数多选题试题含答案

河北省石家庄市第二中学函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.若实数2a ≥,则下列不等式中一定成立的是( )A .21(1)(2)a a a a +++>+B .1log (1)log (2)a a a a ++>+C .1log (1)a a a a ++< D .12log (2)1a a a a +++<+ 【答案】ABD 【分析】对于选项A :原式等价于()()ln 1ln 212a a a a ++>++,对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+,对于选项D :变形为()()ln 2ln 121a a a a ++<++,构造函数()ln xf x x =,通过求导判断其在(),x e ∈+∞上的单调性即可判断;对于选项B :利用换底公式:1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+, 等价于()()2ln 1ln ln 2a a a +>⋅+,利用基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭,再结合放缩法即可判断; 【详解】 令()ln x f x x =,则()21ln x f x x -'=0<在()3,x ∈+∞上恒成立,所以函数()ln xf x x=在(),x e ∈+∞上单调递减, 对于选项A :因为2a ≥,所以21(1)(2)a a a a +++>+()()()()2ln 11ln 2a a a a ⇔++>++,即原不等式等价于()()ln 1ln 212a a a a ++>++,因为12a a +<+,所以()()ln 1ln 212a a a a ++>++,从而可得21(1)(2)a a a a +++>+,故选项A 正确; 对于选项C :1log (1)a a a a ++<()ln 11ln a a a a ++⇔<()ln 1ln 1a a a a+⇔<+, 由于函数()ln x f x x =在(),e +∞上单调递减,所以()()43f f <,即ln 4ln 343<,因为ln 42ln 2ln 2442==,所以ln 2ln 323<,取2a =,则()ln 1ln 1a a a a+>+,故选项C 错误;对于选项D :12log (2)1a a a a +++<+()()ln 22ln 11a a a a ++⇔<++()()ln 2ln 121a a a a ++⇔<++,与选项A 相同,故选项D 正确.对于选项B :1log (1)log (2)a a a a ++>+()()()ln 1ln 2ln ln 1a a a a ++⇔>+,因为2a ≥, 所以等价于()()2ln 1ln ln 2a a a +>⋅+,因为()()2ln ln 2ln ln 22a a a a ++⎡⎤⋅+<⎢⎥⎣⎦,因为()()()()222222ln 2ln 21ln ln 2ln 1222a a a a a a a ⎡⎤⎡⎤+++++⎡⎤⎢⎥⎢⎥=<=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以不等式1log (1)log (2)a a a a ++>+成立,故选项B 正确; 故选:ABD 【点睛】本题考查利用对数的换底公式、构造函数法、利用导数判断函数的单调性、结合基本不等式和放缩法比较大小;考查逻辑推理能力、知识的综合运用能力、转化与化归能力和运算求解能力;属于综合型强、难度大型试题.2.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确;因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.3.已知函数ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数(())y f f x a =+有6个不同零点,则实数a 的可能取值是( ) A .0 B .12-C .1-D .13-【答案】BD 【分析】分别代入各个选项中a 的值,选解出(())0f f x a +=中的()f x ,然后再根据数形结合可得出答案. 【详解】画出函数,0,()1,0lnx x f x x x ⎧>=⎨+⎩的图象:函数(())y f f x a =+有零点,即方程(())0f f x a +=有根的问题. 对于A :当0a =时,(())0f f x =,故()1f x =-,()1f x =,故0x =,2x =-,1=x e,x e =, 故方程(())0f f x a +=有4个不等实根; 对于B :当12a =-时,1(())2f f x =, 故1()2f x =-,()f x e =()f x e =,当1()2f x =-时,由图象可知,有1个根, 当()f x e =2个根, 当()f x e=时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 对于C :当1a =-时,(())1f f x =, 故()0f x =,()f x e =,1()f x e=, 当()0f x =时,由图象可知,有2个根, 当()f x e =时,由图象可知,有2个根, 当1()f x e=时,由图象可知,有3个根, 故方程(())0f f x a +=有7个不等实根; 对于D :当13a =-时,1(())3f f x =, 故2()3f x =-,3()f x e =3()f x e , 当2()3f x =-时,由图象可知,有1个根,当()f x =2个根,当()f x =时,由图象可知,有3个根,故方程(())0f f x a +=有6个不等实根; 故选:BD . 【点睛】关键点睛:本题的关键一是将问题转化为方程问题,二是先解出()f x 的值,三是根据数形结合得到每一个新的方程的根.4.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos cos 0x x x x ==-=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确. 由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ 51≥=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.5.已知函数()22x f x x =+-的零点为a ,函数2()log 2g x x x =+-的零点为b ,则( ) A .2a b += B .22log 2ab +=C .223a b +>D .01ab <<【答案】ABD 【分析】在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,图像的交点即为函数的零点,反函数的性质知A ,B 关于点()1,1对称,进而可判断A ,B ,D 正确. 由函数()f x 在R 上单调递增,且102f ⎛⎫<⎪⎝⎭,(1)0f >,可得零点a 的范围,可得C 不正确. 【详解】由()0f x =,()0g x =得22x x =-,2log 2x x =-,函数2xy =与2log y x =互为反函数,在同一坐标系中分别作出函数2xy =,2log y x =,2y x =-的图象,如图所示,则(),2aA a ,()2,log B b b .由反函数的性质知A ,B 关于点()1,1对称,则2a b +=,22log 2ab +=.因为0a >,0b >,且ab ,所以2012a b ab +⎛⎫<<= ⎪⎝⎭,故A ,B ,D 正确. 因为()22x f x x =+-在R 上单调递增,且132022f ⎛⎫=< ⎪⎝⎭,(1)10f =>, 所以112a <<. 因为222221(2)2(1)212a b a a a a ⎛⎫+=+-=-+<<⎪⎝⎭,所以2252,2a b ⎛⎫+∈ ⎪⎝⎭,故C 不正确. 故选:ABD 【点睛】方法点睛:通过画函数图象把零点问题转化为函数图象的交点问题,本题考查了运算能力和逻辑推理能力,属于难题.6.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误. 对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.7.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确.故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.8.已知当0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,以下结论正确的是( )A .()f x 在区间[]6,4--上是增函数;B .()()220212f f -+-=;C .函数()y f x =周期函数,且最小正周期为2;D .若方程()1f x kx =+恰有3个实根,则142k <<-4k =; 【答案】BD 【分析】利用函数的性质,依次对选项加以判断,ABC 考查函数的周期性及函数的单调性,重点理解函数周期性的应用,是解题的关键,D 选项考查方程的根的个数,需要转化为两个函数的交点个数,在同一图像中分别研究两个函数,临界条件是直线与函数()f x 相切,结合图像将问题简单化. 【详解】对于A ,0x ≤时(2)y f x =+,即()f x 在区间[]6,4--上的单调性与()f x 在区间[]0,2上单调性一致, 所以()f x 在[]6,5--上是增函数,在[]5,4--上是减函数,故A 错误; 对于B ,当0x ≤时,()2()f x f x +=,()()22=22242=0f f -=-⨯+⨯,()()()()20211=1+2=1=2+42f f f f -=---=,故B 正确;对于C ,当0x ≤时,()2()f x f x +=, 当0x >时,()f x 不是周期函数,故C 错误; 对于D ,由0x >时,2()24f x x x =-+;0x ≤时(2)y f x =+,可求得当20x -<<时,2()24f x x x =--;直线1y kx =+恒过点(0,1),方程()1f x kx =+恰有3个实根,即函数()f x 和函数1y kx =+的图像有三个交点,当0k >时,直线1y kx =+与函数()f x (0x >)相切于点00(,)x y ,则020001244124k k x kxx x⎧>⎪⎪=-+⎨⎪+=-+⎪⎩,解得04222=2k x ⎧=-⎪⎨⎪⎩,要函数()f x 和函数1y kx =+的图像有三个交点, 则k 的取值范围为:14222k <<-; 当0k <时,当0x >时,直线1y kx =+与函数()f x 有两个交点, 设直线1y kx =+与函数()f x (0x ≤)相切于点00(,)x y '',则020*******k x kx x x =-'-⎧⎨'+=-'-'⎩,解得02242=2k x ⎧=-⎪⎨'-⎪⎩综上,方程()1f x kx =+有3个实根, 则14222k <<-或224k =-,故D 正确.故选:BD. 【点睛】本题考查函数的性质,单调性,及函数零点个数的判断,主要考查学生的逻辑推理能力,数形结合能力,属于较难题.二、导数及其应用多选题9.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.10.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭. 【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>, 可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根,等价于y k =和ln xy x=只有一个交点, 2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >,知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误;对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立,即ln 1+≥x m x在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x -'=,令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.。
河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.42.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=14.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A .8B .9C .10D .128.已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A .B .C .D .9.若直线l :y =ax ﹣1与抛物线C :y 2=(a ﹣1)x 恰好有一个公共点,则实数a 的值构成的集合为( )A .{﹣1,0}B .{﹣1, }C .{0, }D .{1,,0}10.直线kx ﹣y ﹣2k +2=0恒过定点A ,若点A 是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A .x +4y ﹣10=0B .2x ﹣y ﹣2=0C .4x +y ﹣10=0D .4x ﹣y ﹣6=011.如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .12.已知椭圆C 1:+=1(a >b >0)与双曲线C 2:﹣=1(m >0,n >0)有共同的焦点F 1,F 2,且在第一象限的交点为P ,满足2•=2(其中O 为原点)设C 1,C 2的离心率分别为e 1,e 2当3e 1+e 2取得最小值时,e 1的值为( )A .B .C .D .二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 .14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 .16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 .三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.4【分析】根据题意,将双曲线的方程变形可得标准方程,分析可得其a的值,由双曲线实轴的定义计算可得答案.【解答】解:根据题意,双曲线方程为:2x2﹣y2=8,则其标准方程为:﹣=1,其中a==2,则其实轴长2a=4;故选:C.【点评】本题考查双曲线的几何性质,注意要现将其方程变形为标准方程.2.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定【分析】先计算向量与向量的数量积,根据数量积为0得到两向量垂直,从而判断出两平面的位置关系.【解答】解: =﹣2+8﹣6=0∴⊥∴平面α与平面β垂直故选:B.【点评】本题主要考查了向量数量积以及向量垂直的充要条件,同时考查了两平面的位置关系,属于基础题.3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=1【分析】由条件根据椭圆的标准方程和简单性质可得a2﹣b2=9,0+=1,求得a2和b2的值,可得椭圆的方程.【解答】解:由题意可得a2﹣b2=9,0+=1,∴a2=18,b2=9,故椭圆的方程为+=1,故选:D.【点评】本题主要考查椭圆的标准方程和简单性质,属于基础题.4.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.【分析】求出双曲线的渐近线方程,顶点坐标,利用点到直线的距离求解即可.【解答】解:双曲线﹣y2=1的顶点坐标(,0),其渐近线方程为x±y=0,所以所求的距离为=.故选:C.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.【分析】求出,点A到平面α的距离:d=,由此能求出结果.【解答】解:∵平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,∴=(1,1,﹣2),点A到平面α的距离:d===.故选:C.【点评】本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.【分析】如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.【解答】解:如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.|FQ|==.故选:A.【点评】本题考查了抛物线的标准方程及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A.8B.9C.10D.12【分析】先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.【解答】解:设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a,∴m2+n2+2nm=4a2,∴m2+n2=4a2﹣2nm由勾股定理可知m2+n2=4c2,求得mn=18,则△F1PF2的面积为9.故选:B.【点评】本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.8.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.B.C.D.【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.9.若直线l:y=ax﹣1与抛物线C:y2=(a﹣1)x恰好有一个公共点,则实数a的值构成的集合为( )A.{﹣1,0}B.{﹣1, }C.{0, }D.{1,,0}【分析】讨论若a=1,当a=﹣1时,将直线方程代入曲线方程,运用判别式为0,解方程即可得到所求值.【解答】解:若a=1,则曲线C为y=0,直线l:y=x﹣1,即有直线与曲线的交点为(1,0),满足题意;若a=0,则曲线C为y2=﹣x,直线l:y=﹣1,即有直线与曲线的交点为(﹣1,﹣1),满足题意;若a≠1,a≠0时,则抛物线y2=(a﹣1)x的对称轴为x轴,由y=ax﹣1与抛物线y2=(a﹣1)x相切,可得:a2x2﹣(3a﹣1)x+1=0,由判别式为0,可得(3a﹣1)2﹣4a2=0,解得a=(a=1舍去),综上可得,a=0,1或.故选:D.【点评】本题考查直线与曲线的交点的个数问题,注意讨论直线与曲线相切或与对称轴平行,考查运算能力,属于中档题和易错题.10.直线kx﹣y﹣2k+2=0恒过定点A,若点A是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A.x+4y﹣10=0B.2x﹣y﹣2=0C.4x+y﹣10=0D.4x﹣y﹣6=0【分析】求出定点A(2,2),设A是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),利用点差法能求出以A(2,2)为中点的双曲线的弦所在的直线方程.【解答】解:直线kx﹣y﹣2k+2=0恒过定点A(2,2),双曲线﹣=1方程可化为:4x2﹣y2=8,设A(2,2)是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=4.∵P1,P2在双曲线上,∴,∴4(x1+x2)(x1﹣x2)﹣(y1﹣y2)(y1+y2)=0,∴4×4(x1﹣x2)=4(y1﹣y2),∴k==4,∴以A(2,2)为中点的双曲线的弦所在的直线方程为:y﹣2=4(x﹣2),整理得4x﹣y﹣6=0.故选:D.【点评】本题考查直线方程的求法,是中档题,解题时要认真审题,注意点差法和根的判别式的合理运用.11.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1: +y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.12.已知椭圆C1:+=1(a>b>0)与双曲线C2:﹣=1(m>0,n>0)有共同的焦点F1,F2,且在第一象限的交点为P,满足2•=2(其中O为原点)设C1,C2的离心率分别为e1,e2当3e1+e2取得最小值时,e1的值为( )A.B.C.D.【分析】由2•=2,故||=2||cos∠POF2,即x P=,由焦半径公式可得:PF1=a+=x P+m⇒e1e2=2,3e1+e2取,当且仅当3e1=e2时取等号,即.【解答】解:∵2•=2,故||=2||cos∠POF2,即x P=由焦半径公式可得:PF1=a+=x P+m⇒2c2=am⇒e1e2=23e1+e2取,当且仅当3e1=e2时取等号,即故选:A.【点评】本题考查了双曲线离心率,属于中档题.二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 ﹣=1 .【分析】在椭圆C1中,由题设条件能够得到a,b,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为4的双曲线,由此可求出曲线C2的标准方程.【解答】解:在椭圆C1中,椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,a=13,c=5,b=12,椭圆C1的焦点为F1(﹣5,0),F2(5,0),椭圆方程为:.曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,a=2,则c=5,则b=.故C2的标准方程为:,故答案为:.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质.14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .【分析】设正方体ABCD﹣A1B1C1D1中棱长为2,建立空间直角坐标系,利用向量法能求出直线D1B与平面MBC所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,如图建立空间直角坐标系,则D1(0,0,2),B(2,2,0),M(2,0,1),C(0,2,0),=(﹣2,﹣2,2),=(0,﹣2,1),=(﹣2,0,0),设平面MBC的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线D1B与平面MBC所成角为θ,则sinθ===.故直线D1B与平面MBC所成角的正弦值为.故答案为:.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 +1 .【分析】由题意画出图形,利用椭圆定义可得|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理求得a,则答案可求.【解答】解:如图,由题意可知,|MF2|=c=1,则|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理可得(2a﹣1)2+12=4,解得:a=.∴椭圆的长轴长为.故答案为:.【点评】本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 2 .【分析】设内切圆的圆心为I,由直线AF2和直线BF2垂直,运用内角平分线定可得ABF2为等腰直角三角形,运用勾股定理和三角形的等积法,可得半径r,即可得到所求距离.【解答】解:设内切圆的圆心为I,由直线AF2和直线BF2垂直,可得I在x轴上, ====1,可得三角形ABF2为等腰直角三角形,设|AF2|=m,则设|BF2|=m,|AB|=m,即有内切圆的半径r满足r•(4m﹣4)=m2,又m=2m﹣4,解得r=2,m=4+2,即有|IF2|=r=2,故答案为:2.【点评】本题考查双曲线的定义、方程和性质,注意定义法和内角平分线定理的运用,考查三角形的等积法和勾股定理的应用,考查运算能力,属于中档题.三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.【分析】(Ⅰ)由已知, =,2b=4,由此能求出椭圆的标准方程.(Ⅱ)椭圆的右焦点为(1,0),直线AB方程为:y=2(x﹣1),由,得3x2﹣5x=0,由此能求出A(0,﹣2),B(),进而能求出|AB|.【解答】解:(Ⅰ)由已知, =,2b=4,∴b=2∵b2=a2﹣c2=5c2﹣c2=4c2=4,∴c2=1,a2=5,∴椭圆的标准方程为: +=1.……………………(4分)(Ⅱ)椭圆的右焦点为(1,0),∴直线AB方程为:y=2(x﹣1)…………………………设A(x1,y1),B(x2,y2),由,得3x2﹣5x=0,解得x1=0,x2=,…………………………(7分)设AB中点坐标为(x0,y0),则=,,所以AB的中点为(),…………………………(9分)∵A(0,﹣2),B(),∴|AB|==.…………………………(10分)【点评】本题考查椭圆方程的求法,考查弦长的求法,考查椭圆、直线方程、中点坐标公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.【分析】(1)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(2)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角CEMN的余弦值,进一步求得正弦值.【解答】(1)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(2)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则=(1,2,﹣1),=(0,2,1),设平面MEN的一个法向量为=(x,y,z),由,得,取z=2,得=(4,﹣1,2).由图可得平面CME的一个法向量为=(1,0,0).∴cos<,>==.∴二面角CEMN的余弦值为,则正弦值为.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.【分析】(1)联立直线与抛物线方程,化为关于y的一元二次方程,由根与系数关系求出A,B两点的横纵坐标的和与积,直接运用数量积的坐标运算求解;(2)直接代入三角形面积公式求解即可【解答】解:(1)设,由题意可知:k≠0,∴,联立y2=﹣x得:ky2+y﹣k=0显然:△>0,∴,∴=(﹣y12)(﹣y22)+y1y2=(﹣1)2+1=0,(2)∵S△OAB=×1×|y1﹣y2|===,解得:k=±,∴直线l的方程为:2x+3y+2=0或2x﹣3y+2=0.【点评】本题考查了直线和圆锥曲线的关系,考查了平面向量数量积的坐标运算,训练了三角形面积的求法,是中档题.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.【分析】(Ⅰ)由题意通过离心率推出c2=3a2,得到,然后求解双曲线的渐近线方程.(Ⅱ)当a=1时,双曲线C的方程为x2﹣.设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),联立直线与双曲线方程,利用韦达定理,结合已知条件求解m即可.【解答】(本小题满分12分)解:(Ⅰ)由题意,得,∴c2=3a2∴b2=c2﹣a2=2a2,即∴所求双曲线C的渐进线方程………………(Ⅱ)由(1)得当a=1时,双曲线C的方程为x2﹣.……6分设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,得x2﹣2mx﹣m2﹣2=0(判别式△>0),∴x0==m,y0=x0+m=2m,…………(10分)∵点M(x0,y0),在圆x2+y2=5上,∴m2+4m2=5,∴m=±1.……(12分)(本题学生用“点差法”也给分)【点评】本题考查圆锥曲线的综合应用,直线与双曲线的位置关系的应用,考查转化思想以及计算能力.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.【分析】(Ⅰ)依题意F(1,0),设直线AB方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2﹣4my﹣4=0.由此能够求出直线AB的斜率.(Ⅱ)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由此能求出四边形OACB的面积最小值.【解答】(本小题满分13分)(Ⅰ)解:依题意F(1,0),设直线AB方程为x=my+1.…(1分)将直线AB的方程与抛物线的方程联立,消去x得y2﹣4my﹣4=0.…(3分)设A(x1,y1),B(x2,y2),所以y1+y2=4m,y1y2=﹣4.①…(4分)因为,所以y1=﹣2y2.②…联立①和②,消去y1,y2,得.…(6分)所以直线AB的斜率是.…(7分)(Ⅱ)解:由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.…(9分)因为…(10分)=,…(12分)所以m=0时,四边形OACB的面积最小,最小值是4.…(13分)【点评】本题考查直线斜率的求法,考查四边形面积的最小值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,由此能求出动点M的轨迹方程.(Ⅱ)设直线l的方程为y=k(x﹣2)+1,由,得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,利用根的判别式、韦达定理、向量的数量积,结合已知条件能求出存在直线l满足条件,其方程为x﹣2y=0.【解答】解:(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,…………………………(2分)整理得动点M的轨迹方程为: =1.…………………………(4分)(Ⅱ)假设存在符合题意的直线l,由题意知直线斜率存在,设直线l的方程为y=k(x﹣2)+1,由,消去y得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,由△=64(2k2﹣k)k2﹣32(4k2+3)(2k2﹣2k﹣1)>0,得6k+3>0,解得k>﹣,设A(x1,y1),B(x2,y2),则,x1x2=,…………………………(8分)由,得(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=,则(x1﹣2)(x2﹣2)(k2+1)=,即[x1x2﹣2(x1+x2)+4](k2+1)=,所以[﹣+4](k2+1)=,整理得=,解得k=,…………………………(10分)又k>﹣,所以k=,故存在直线l满足条件,其方程为y=,即x﹣2y=0.…………………………(12分)【点评】本题考查动点的轨迹方程的求法,考查满足条件的直线方程是否存在的判断与求法,考查根的判别式、韦达定理、向量的数量积等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.。
2019-2020学年河北省石家庄市第二中学高一上学期10月月考数学试题(解析版)

2019-2020学年河北省石家庄市第二中学高一上学期10月月考数学试题一、单选题1.设集合{}31,A n n k k ==-∈Z ,{}13B x x =-≤,则A B =( )A.{}1,2-B.{}2,1,1,2,4--C.{}1,4D.∅【答案】A【解析】解出集合B ,再根据交集的定义得出A B .【详解】解不等式13x -≤,即313x -≤-≤,解得24x -≤≤,则{}24B x x =-≤≤, 因此,{}1,2A B =-,故选:A.【点睛】本题考查集合的交集运算,同时也考查了绝对值不等式的解法,考查计算能力,属于基础题.2.下列四个函数中,在(0,)+∞上为增函数的是( ) A .()3f x x =- B .2()3f x x x =- C .()f x x =- D .1()1f x x =-+ 【答案】D【解析】根据常见函数的性质判断函数的单调性即可. 【详解】对于A :函数在R 递减,不符合题意; 对于B :函数的对称轴是x 32=,在(0,32)递减,不合题意;对于C :函数在(0,+∞)递减,不合题意;对于D :函数在(-1,+∞)递增,所以在(0,+∞)满足递增,符合题意; 故选:D . 【点睛】3.函数()g x x=的定义域为( )A.()(]2,00,1-UB.[)(]2,00,1-⋃ C.()(]1,00,1-U D.[)(]1,00,2-U【答案】B【解析】根据求函数定义域的基本原则列不等式组求出实数x 的取值范围,即可得出函数()y g x =的定义域. 【详解】由题意得220x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,因此,函数()y g x =的定义域为[)(]2,00,1-⋃,故选:B. 【点睛】本题考查具体函数定义域的求解,解题时要熟悉几条求函数定义域的基本原则,根据条件列出不等式求出自变量的取值范围,考查计算能力,属于基础题.4.已知集合A ={x|-3x<0},B ={1,a},且A∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1)D .(-∞,1)∪(3,+∞) 【答案】B【解析】试题分析:∵有4个子集,∴有2个元素,∴,∴且,即实数的取值范围是,故选B .【考点】本题主要考查集合的关系.5.若函数()125-=-f x x ,且()216f a -=,则a 等于( ) A.114B.74C.43D.73【答案】A【解析】利用换元法求出函数()y f x =的解析式,然后由()216f a -=求出a 的值.设1t x =-,则1x t =+,()()21523f t t t ∴=+-=-, 则()()212213456f a a a -=--=-=,解得114a =,故选:A. 【点睛】本题考查函数解析式的应用,利用换元法求出函数的解析式是解题的关键,考查运算求解能力,属于基础题.6.若函数()221f x x mx =-+在[)3,4上是单调函数,则实数m 的取值范围为( )A.3m ≤B.5m ≥C.3m ≤或4m ≥D.3m ≥【答案】C【解析】得出函数()y f x =的对称轴方程,对该函数的对称轴与区间[)3,4分三种位置进行讨论,分析函数()y f x =在区间[)3,4上的单调性,可得出实数m 的取值范围. 【详解】二次函数()221f x x mx =-+的图象开口向上,对称轴为直线x m =.①当3m ≤时,函数()221f x x mx =-+在区间[)3,4上单调递增,合乎题意;②当34m <<时,函数()221f x x mx =-+在区间[)3,m 上单调递减,在区间(),4m 上单调递增,此时,函数()y f x =在区间[)3,4上不单调,不合乎题意; ③当4m ≥时,函数()221f x x mx =-+在区间[)3,4上单调递减,合乎题意.综上所述,实数m 的取值范围是3m ≤或4m ≥,故选:C. 【点睛】本题考查二次函数的单调性与参数,解题时要分析二次函数图象的开口方向和对称轴,再者就是要讨论对称轴与定义域的位置关系,考查分类讨论思想的应用,属于中等题. 7.已知函数()()22435f x ax a x =+-+在区间(),3-∞上是减函数,则a 的取值范围是( ) A.30,4⎛⎫ ⎪⎝⎭B.3,4⎛⎤-∞ ⎥⎝⎦C.30,4⎡⎫⎪⎢⎣⎭D.30,4⎡⎤⎢⎥⎣⎦【答案】D【解析】分0a =、0a >、0a <三种情况,在0a ≠的前提下,讨论二次函数()y f x =图象的对称轴与定义域的位置关系,分析函数的单调性,可求出实数a 的取值范围.当0a =时,()125f x x =-+,此时,函数()y f x =在区间(),3-∞上是减函数,合乎题意;当0a >时,二次函数()y f x =的图象开口向上,对称轴为直线3ax a-=,若函数()y f x =在区间(),3-∞上是减函数,则33aa -≥,解得304a <≤; 当0a <时,二次函数()y f x =的图象开口向下,对称轴为直线30ax a-=<. 则函数()y f x =在区间3,a a -⎛⎫-∞ ⎪⎝⎭上单调递增,在3,3a a -⎛⎫⎪⎝⎭单调递减, 此时,函数()y f x =在区间(),3-∞上不单调,不合乎题意. 综上所述,实数a 的取值范围是30,4⎡⎤⎢⎥⎣⎦,故选:D.【点睛】本题考查二次函数的单调性与参数,解题时要分析二次函数图象的开口方向和对称轴,再者就是要讨论对称轴与定义域的位置关系,考查分类讨论思想的应用,属于中等题.8.函数()5f x =的单调减区间是( )A.[]1,2B.[]1,0-C.[]0,2D.[)1,+∞【答案】A【解析】先求出函数()y f x =的定义域,分离出内层函数22u x x =-和外层函数5y =,并分析内层函数和外层函数的单调性,利用同增异减法得出函数()y f x =的单调减区间.【详解】由220x x -≥,即220x x -≤,解得02x ≤≤,内层函数为22u x x =-,外层函数为5y =,内层函数22u x x =-的增区间为[]0,1,减区间为[]1,2,外层函数5y =为增函数,由复合函数同增异减法可知,函数()5f x =的单调减区间是[]1,2,故选:A. 【点睛】调区间时,要注意求出函数的定义域,要在函数定义域内得出单调区间,否则得到的单调区间无意义,考查分析问题和解决问题的能力,属于中等题.9.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l AB ⊥于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE x =,左侧部分面积为y ,则y 关于x 的图像大致为( )A .B .C .D .【答案】C【解析】试题分析:直线l 从A 到D 的移动过程中,面积在增大并且面积的增大率在增加,即函数的导数为正且在变大,直线l 从D 到C 的移动过程中,面积在增大,但面积的增大率不变,所以导数为正的常数,直线l 从C 到B 的增大过程中,面积在增大,但面积的增大率在减小,所以导数为正但逐渐减小,综上可得函数为增函数,且函数的导数先增大后不变再减小,C 项符合要求 【考点】函数导数的几何意义及瞬时变化率 点评:函数在某点处的导数值等于该点处的切线斜率10.已知函数()32f x x =-,()2g x x =,构造函数()()()()()()(),,g x f x g x F x f x f x g x ⎧≥⎪=⎨<⎪⎩,那么函数()y F x =( ) A .有最大值1,最小值﹣1 B .有最小值﹣1,无最大值 C .有最大值1,无最小值 D .有最大值3,最小值1【答案】C【解析】根据函数()F x 的定义令()()0g x f x -≥,可得函数()y F x =的解析式,作函数的图象即可求解. 【详解】由()()2320g x f x x x -=-+≥得,1x ≥;故()21321x x F x x x ⎧≤⎪=⎨-≥⎪⎩,,,故可作()21321x x F x x x ⎧≤⎪=⎨-≥⎪⎩,,的图象如下,通过图象观察可得有最大值1,没有最小值,故选C . 【点睛】本题考查了函数的图象的应用,准确得到函数的解析式作出函数的图象是解题的关键,属于中档题.11.已知偶函数()f x 对于任意x ∈R 都有()()1f x f x +=-,且()f x 在区间[]0,1上是单调递增,则()6.5f -、()1f -、()0f 的大小关系是( ) A.()()()0 6.51f f f <-<- B.()()()6.501f f f -<<- C.()()()1 6.50f f f -<-< D.()()()10 6.5f f f -<<-【答案】A【解析】利用题中等式推导出函数()y f x =是以2为周期的周期函数,由函数的周期性和奇偶性得出()()6.50.5f f -=,()()11f f -=,再利用函数()y f x =在区间[]0,1上的单调性可得出()6.5f -、()1f -、()0f 三个数的大小关系.【详解】 对任意的x ∈R ,()()1f x f x +=-,()()()21f x f x f x ∴+=-+=,所以,函数()y f x =是周期为2的周期函数,又函数()y f x =为偶函数,()()()6.50.50.5f f f -=-=,()()11f f -=, 函数()y f x =在区间[]0,1上单调递增,所以,()()()00.51f f f <<,即()()()0 6.51f f f <-<-,故选:A.【点睛】本题考查利用奇偶性和周期性比较函数值的大小关系,要充分利用周期性和奇偶性将自变量置于同一单调区间,考查分析问题和解决问题的能力,属于中等题. 12.已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则 A.12()()f x f x < B.12()()f x f x =C.12()()f x f x >D.1()f x 与2()f x 的大小不能确定【答案】A 【解析】【详解】故选A.二、填空题13.已知函数()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()3221f x x x =+-,则当()0,x ∈+∞时,()f x =______.【答案】3221x x -+【解析】设()0,x ∈+∞,求出()f x -的表达式,再利用奇函数的定义得出()()f x f x =--,可得出函数()y f x =在()0,∞+上的解析式.【详解】设()0,x ∈+∞,则(),0x -∈-∞,则()()()32322121f x x x x x -=⋅-+--=-+-,函数()y f x =是R 上的奇函数,则当()0,x ∈+∞时,()()3221f x f x x x =--=-+.故答案为:3221x x -+. 【点睛】本题考查奇函数的解析式,利用对称转移法求解,首先先设自变量x 在所求区间,然后求出()f x -的表达式,再利用奇函数的定义()()f x f x =--可得出结果,考查运算求解能力,属于中等题.14.设函数()f x 对0x ≠的一切实数都有2019()2()3f x f x x+=,则(2019)f =___________【答案】-2017【解析】分别令1x =和2019x = 代入等式,解方程组得到()2019f 的值. 【详解】1x =时,()()1220193f f +=,当2019x =时,()()2019216057f f +=即()()()()12201932019216057f f f f ⎧+=⎪⎨+=⎪⎩ ,解得()20192017f =-.故填:-2017. 【点睛】本题考查了利用方程组求解析式,属于简单题型,一般求解析式的方法分为: 1.待定系数法,适应于已知函数类型;2.代入法,适用于已知()f x 的解析式,求()f g x ⎡⎤⎣⎦的解析式;3.换元法,适用于已知()f g x ⎡⎤⎣⎦的解析式,求()f x 的解析式;4.方程组法,适用于已知()f x 和1f x ⎛⎫⎪⎝⎭的方程,或()f x 和()f x -的方程. 15.已知函数()()24f x x g x =+,()g x 为奇函数且()f x 在区间11,22⎡⎤-⎢⎥⎣⎦上的最大值与最小值分别为M 和m ,则M m +=______. 【答案】8【解析】先推导出函数()y f x =的图象关于点()0,4对称,可得出函数()y f x =在区间11,22⎡⎤-⎢⎥⎣⎦上的最高点和最低点也关于点()0,4对称,由此可得出M m +的值. 【详解】函数()y g x =为奇函数,则()()g x g x -=-,()()()()2244f x x g x x g x ∴-=+-⋅-=-⋅,则()()8f x f x +-=,所以,函数()y f x =的图象关于点()0,4对称,则函数()y f x =在区间11,22⎡⎤-⎢⎥⎣⎦上的最高点和最低点也关于点()0,4对称,因此,8M m +=,故答案为:8. 【点睛】本题考查函数对称性的应用,利用题中等式推导出函数的对称性是解题的关键,考查分析问题和解决问题的能力,属于中等题.16.已知函数()2,04442,4x x f x x x ⎧-<≤⎪=⎨⎪->⎩,函数()()0h x x ≠为偶函数,且当0x >时,()()h x f x =,若()()2h t h >,则实数t 的取值范围为______.【答案】()()2,00,2-【解析】判断出函数()y h x =在()0,∞+上为减函数,再由该函数为偶函数,结合()()2h t h >可得出2t t ⎧<⎨≠⎩,解出即可得出实数t 的取值范围.【详解】当0x >时,()2,044x x h x ⎧-<≤⎪=⎨⎪,易知函数()y h x =在区间(]0,4和()4,+∞上均为减函数,又函数()y h x =在()0,∞+上连续,所以,函数()y h x =在()0,∞+上为减函数,函数()()0y h x x =≠为偶函数,由()()2h t h >,得()()2h t h >,20t t ⎧<∴⎨≠⎩,解得22t -<<且0t ≠,因此,实数t 的取值范围是()()2,00,2-,故答案为:()()2,00,2-.【点睛】本题考查利用函数的单调性与奇偶性解不等式,在涉及到偶函数的性质时,可充分利用性质()()h x h x =,可简化分类讨论,考查运算求解能力,属于中等题.17.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的方案,根据图1上点A 、点B 以及射线AB 上的点的实际意义,用文字说明图2方案是______,图3方案是______.【答案】降低成本,票价不变 增加票价【解析】观察函数的图象可知,函数图象上的横坐标表示乘客量,纵坐标表示收支差额,结合图象可得出结论. 【详解】由图1可知,点A 表示无人乘车时收支差额为20-元,点B 表示有10人乘车时收支差额为零,线段AB 上的点表示亏损,AB 延长线上的点表示盈利.对于图2而言,与图1相比,两个一次函数的一次项系数没变,但无人乘车时收支差额变为10-元,差距在减少,则图2的方案是降低成本,票价不变;对于图3而言,与图1相比,图3对应的一次函数一次项系数增大了,但无人乘车时收支差额仍是20-元,则图3的方案是增加票价. 故答案为:降低成本,票价不变;增加票价. 【点睛】题中的意义,理解问题的叙述过程是解题的关键,考查分析问题和解决问题的能力,属于中等题.三、解答题18.已知集合{}2430A x x x =-+<,集合{}21B x m x m =≤≤-. (1)当1m =-时,求A B ;(2)若AB =∅,求实数m 的取值范围.【答案】(1){}23x x -≤<;(2)[)0,+∞.【解析】(1)解出集合A ,再将1m =-代入集合B ,再利用并集的定义求出集合AB ;(2)分B =∅和B ≠∅两种情况讨论,在B ≠∅的前提下,由题意得出11m -≤或23m ≥,由此可得出实数m 的取值范围.【详解】(1)解不等式2430x x -+<,得13x <<,{}13A x x ∴=<<, 当1m =-时,{}22B x x =-≤≤,因此,{}23A B x x ⋃=-≤<; (2)当B =∅时,21m m >-,得13m >,此时,A B =∅成立; 当B ≠∅时,21m m ≤-,得13m ≤, A B ⋂≠∅Q ,则11m -≤或23m ≥,解得0m ≥或32m ≥,此时,103m ≤≤. 综上所述,实数m 的取值范围是[)0,+∞. 【点睛】本题考查集合的并集运算,同时也考查了利用交集的运算结果求参数的取值范围,解题时要注意对集合分空集与非空集合两种情况讨论,考查分类讨论思想,考查运算求解能力,属于中等题.19.二次函数()f x 满足()()12f x f x x +-=,且()01f =. (1)求()f x 的解析式;(2)若在区间[]1,2上,不等式()2f x mx >恒成立,求实数m 的取值范围. 【答案】(1)()21f x x x =-+;(2)1,2⎛⎫-∞ ⎪⎝⎭. 【解析】(1)设()2f x ax bx c =++,由()01f =得出1c =,根据等式()()12f x f x x +-=列关于a 、b 的方程组,解出这两个未知数,可得出函数()y f x =的解析式;(2)当[]1,2x ∈时,由()2f x mx >利用参变量分离法得出121m x x<+-,并利用定义法证明出函数()11g x x x=+-在区间[]1,2上的单调性,求出函数()y g x =在区间[]1,2上的最小值,可求出实数m 的取值范围.【详解】(1)设()2f x ax bx c =++,则()01f c ==.()()()()()221111122f x f x a x b x ax bx ax a b x ⎡⎤+-=++++-++=++=⎣⎦,220a a b =⎧∴⎨+=⎩,解得11a b =⎧⎨=-⎩,因此,()21f x x x =-+; (2)当[]1,2x ∈时,由()2f x mx >,得221mx x x <-+,得121m x x<+-, 构造函数()11g x x x=+-,[]1,2x ∈,下面证明函数()y g x =在区间[]1,2上的单调性.任取1x 、[]21,2x ∈,且12x x <,即1212x x ≤<≤, 则()()()1212121212111111g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1212211212121212111x x x x x x x x x x x x x x x x --⎛⎫-=-+=--=⎪⎝⎭, 1212x x ≤<≤Q ,120x x ∴-<,1210x x ->,120x x >,()()12g x g x ∴<,所以,函数()11g x x x=+-在区间[]1,2上单调递增,则()()min 11g x g ==,21m ∴<,解得12m <,因此,实数m 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.【点睛】本题考查利用待定系数法求二次函数的解析式,同时也考查了利用不等式恒成立问题求参数的取值范围,在含单参数的不等式中,利用参变量分离法进行求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.20.已知函数y =f (x )在定义域[-1,1]上既是奇函数,又是减函数. (1)求证:对任意x 1,x 2∈[-1,1],有[f (x 1)+f (x 2)]·(x 1+x 2)≤0; (2)若f (1-a )+f (1-a 2)<0,求实数a 的取值范围. 【答案】(1)见解析;(2)0≤a <1.【解析】试题分析:(1)由x 2∈[﹣1,1],可得﹣x 2∈[﹣1,1],利用函数y=f (x )在定义域[﹣1,1]上是奇函数,又是减函数,即可证明结论;(2)f (1﹣a )+f (1﹣a 2)<0,等价于a 2+a ﹣2<0,即可求出实数a 的取值范围. 解析:(1)证明:若x 1+x 2=0,显然不等式成立. 若x 1+x 2<0,则-1≤x 1<-x 2≤1,因为f (x )在[-1,1]上是减函数且为奇函数, 所以f (x 1)>f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)>0. 所以[f (x 1)+f (x 2)](x 1+x 2)<0成立. 若x 1+x 2>0,则1≥x 1>-x 2≥-1, 同理可证f (x 1)+f (x 2)<0.所以[f (x 1)+f (x 2)](x 1+x 2)<0成立.综上得证,对任意x 1,x 2∈[-1,1],有[f (x 1)+f (x 2)]·(x 1+x 2)≤0恒成立. (2)因为f (1-a )+f (1-a 2)<0⇔f (1-a 2)<-f (1-a )=f (a -1),所以由f (x )在定义域[-1,1]上是减函数,得22211102{11 1 {02 1120a a a a a a a a -≤-≤≤≤-≤-≤⇒≤≤->-+-<解得0≤a <1.点睛:本题考查奇偶性与单调性的综合,考查学生分析解决问题的能力,属于中档题.解抽象函数不等式问题时,一般利用函数的奇偶性,和单调性转化为括号内的自变量的大小关系的比较。
河北省石家庄市第二中学2025届高三第二次联考数学试卷含解析

河北省石家庄市第二中学2025届高三第二次联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线C :24x y =的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,其中点A 在第一象限,若弦AB 的长为254,则AF BF =( ) A .2或12B .3或13C .4或14D .5或152.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( )A .10,10⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()10,+∞ 3.已知函数()(1)xf x x a e =--,若22log ,a b c ==则( )A .f (a )<f (b ) <f (c )B .f (b ) <f (c ) <f (a )C .f (a ) <f (c ) <f (b )D .f (c ) <f (b ) <f (a )4.在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若,AB a AD b ==,1AA c =,则与BM 相等的向量是( )A .1122a b c ++ B .1122a b c --+ C .1122a b c -+ D .1122-++a b c 5.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭6.设ln3a =,则lg3b =,则( )A .a b a b ab +>->B .a b ab a b +>>-C .a b a b ab ->+>D .a b ab a b ->>+7.欧拉公式为cos sin ix e x i x =+,(i 虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,3i e π表示的复数位于复平面中的( ) A .第一象限B .第二象限C .第三象限D .第四象限8.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341︒'2357︒'2413︒'2428︒'2444︒'正切值 0.439 0.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年D .早于公元前6000年9.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( ) A .23⎫+∞⎪⎪⎝⎭B .23⎛ ⎝⎦ C .)3,⎡+∞⎣D .(310.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2--11.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线y bx a =+近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )A .线性相关关系较强,b 的值为1.25B .线性相关关系较强,b 的值为0.83C .线性相关关系较强,b 的值为-0.87D .线性相关关系太弱,无研究价值12.在三棱锥D ABC -中,1AB BC CD DA ====,且,,,AB BC CD DA M N ⊥⊥分别是棱BC ,CD 的中点,下面四个结论: ①AC BD ⊥; ②//MN 平面ABD ;③三棱锥A CMN -2; ④AD 与BC 一定不垂直.其中所有正确命题的序号是( ) A .①②③B .②③④C .①④D .①②④二、填空题:本题共4小题,每小题5分,共20分。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期数学期末考试数学试卷

河北省石家庄市第二中学教育集团2023-2024学年高二下学期数学期末考试数学试卷一、单选题1.已知集合{}2230U x x x =--<,集合{}11A y y =-<<,则U A =ð( )A .()1,1-B .(]1,1-C .()1,3D .[)1,32.已知关于x 的不等式2230x x --<成立的一个必要不充分条件是3a x <<,则a 的取值范围是( ) A .(),1-∞-B .(],1-∞-C .()1,3-D .[)1,3-3.已知()()()88018211x a a x a x -=+-++-L ,则018a a a +++=L ( ) A .1-B .0C .1D .24.某公司为庆祝年利润实现目标,计划举行答谢联欢会,原定表演6个节目,已排成节目单,开演前又临时增加了2个互动节目.如果保持原节目的顺序不变,那么不同排法的种数为( ). A .42B .56C .30D .725.恩格尔系数是食品支出总额占个人消费支出总额的比值,恩格尔系数越小,消费结构越完善,生活水平越高.某学校社会调查小组通过调查得到如下数据:若y 与x 之间具有线性相关系,老张年个人消费支出总额为2.8万元,据此估计其恩格尔系数为( )(参考数据:5522115 1.1,5 2.5i i ii i x y x y xx ==-⋅=--=∑∑;参考公式:对于一组数据()()()1122,,,,,,n n x y x y x y ⋯,其回归直线ˆˆy bx a =+的斜率和截距的最小二乘法估计分别为1221ˆˆˆ,ni i i nii x ynx y bybx xnx ==-⋅==-∑∑)A .0.148B .0.138C .0.248D .0.2386.已知定义在()0,∞+上的函数()f x 满足()()0xf x f x -<',且()22f =,则()0f x x ->的解集是( ) A .(),ln2∞-B .()ln2,∞+C .()0,2D .()2,∞+7.已知函数()f x 及其导函数()g x 的定义域均为R ,()1f x +与()g x 均为偶函数,且()01f =,则()20240k f k ==∑( )A .2025B .2024C .1D .08.从集合{1,2,3,4}U =的非空子集中随机取出两个不同的集合A ,B ,则在A B U ⋃=的条件下,A B ⋂恰有1个元素的概率为( ) A .839B .1639C .3279D .25二、多选题9.已知0a >,0b >,a b ¹,且2a b +=,则( )A .112a b +>B .22112a b +> C .224a b +>D .22log log 2a b +>10.关于函数12()11x f x x e ⎛⎫=+ ⎪-⎝⎭下列结论正确的是( )A .图像关于y 轴对称B .图像关于原点对称C .在(),0∞-上单调递增D .()f x 恒大于011.水平相当的甲、乙、丙三人进行乒乓球擂台赛,每轮比赛都采用3局2胜制(即先赢2局者胜),首轮由甲乙两人开始,丙轮空;第二轮在首轮的胜者与丙之间进行,首轮的负者轮空,依照这样的规则无限地继续下去.以下说法正确的是( )A .在有甲参与的一轮比赛中,甲获胜的局数为随机变量X ,则()122P X == B .记前6轮比赛中甲参与的轮次数为随机变量Y ,则()134P Y == C .甲在第三轮获胜的条件下,第二轮也获胜的概率为13D .记事件=n C “第n 轮甲轮空”,则()1111332n n P C -⎛⎫=-- ⎪⎝⎭三、填空题12.函数()322f x x ax bx a =--+在1x =处有极值10,则实数=a .13.设,A B 是一个随机试验中的两个事件,且()23P A =,()512P B =,()56P A B +=,则(|)P B A =.14.已知函数()()e ln xf x x a x x =++有两个零点,则a 的取值范围为.四、解答题15.某高校实行提前自主招生,老师从6个不同的试题中随机抽取4个让学生作答,至少答对3个才能通过初试,已知某学生能答对这6个试题中的4个. (1)求该学生能通过自主招生初试的概率;(2)若该学生答对的题数为X ,求X 的分布列以及数学期望.16.已知二次函数()f x 的最小值为9-,且1-是其一个零点,x ∀∈R 都有()()22f x f x -=+. (1)求()f x 的解析式;(2)求()f x 在区间[]1,m -上的最小值;(3)若关于x 的不等式()9f x mx -≤-在区间()1,3上有解,求实数m 的取值范围.17.电信诈骗是指通过电话、网络和短信方式,编造虚假信息,设置骗局,对受害人实施远程诈骗的犯罪行为.随着5G 时代的全面来临,借助手机、网银等实施的非接触式电信诈骗迅速发展蔓延,不法分子甚至将“魔爪”伸向了学生.为了调查同学们对“反诈”知识的了解情况,某校进行了一次抽样调查.若被调查的男女生人数均为()20*n n ∈N ,统计得到以下列联表.经过计算,依据小概率值0.025α=的独立性检验,认为该校学生对“反诈”知识的了解与性别有关,但依据小概率值0.01α=的独立性检验,认为该校学生对“反诈”知识的了解与性别无关.(1)求n 的值;(2)为了增强同学们的防范意识,该校举办了主题为“防电信诈骗,做反诈达人”的知识竞赛.已知全校参加本次竞赛的学生分数η近似服从正态分布()80,25N ,若某同学成绩满足2μσημσ-≤≤+,则该同学被评为“反诈标兵”;若2ημσ>+,则该同学被评为“反诈达人”.(i )试判断分数为88分的同学能否被评为“反诈标兵”;(ii )若全校共有50名同学被评为“反诈达人”,试估计参与本次知识竞赛的学生人数.(四舍五入后取整) 附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.若()2~,x N μσ,则()0.6827P x μσμσ-≤≤+=,()220.9545P x μσμσ-≤≤+=,()330.9973P x μσμσ-≤≤+=18.设函数()y f x =的定义域D ⊆R ,若对任意x D ∈,均有()()f x f x -≠-成立,则称()y f x =为“无奇”函数.(1)判断函数①()2f x x =和②()2lg1xg x x-=+是否为“无奇”函数,说明理由; (2)若函数()1121x r x m +=++是“无奇”函数,求实数m 的取值范围.19.已知函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭有三个极值点123,,x x x ,且123x x x <<.(1)求实数k 的取值范围;(2)若2是()f x 的一个极大值点,证明:()()23131ef x f x k k x x -<--.。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)

石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石家庄二中20162017学年第一学期10月月考
高二数学(理)试卷
考试时间:60分钟 总分:100分
一、选择题(每题5分,共50分)
1.点(,1)A a 在椭圆22
142
x y +=的内部,则a 的取值范围是( )
A .(
B .(,(2,)-∞+∞
C .(2,2)-
D . (1,1)-
2.若方程2
2
(0)mx my n m n -=⋅<,则方程表示的曲线是( )
A. 焦点在x 轴上的双曲线
B. 焦点在y 轴上的双曲线
C. 焦点在x 轴上的椭圆
D. 焦点在y 轴上的椭圆
3.若双曲线()222103x y b b -=>的一个焦点到一条渐近线的距离等于焦距的1
4
,则该双曲
线的虚轴长是( )
A.2
B.1
4.已知椭圆E 的中心为坐标原点,离心率为
12
,E 的右焦点与抛物线2
:8C y x =的焦点重合,A 、B 是C 的准线与E 的两个交点,则||AB =( )
A.3
B.6
C.9
D.12
5.若AB 为过椭圆22
12516
x y +=中心的弦,F 为椭圆的焦点,则FAB ∆面积的最大值为( )
A.6
B.12
C.24
D.36
6.已知点P 在抛物线2
4y x =上,定点()2,3M ,则点P 到点M 的距离和到直线:1l x =-的距离之和的最小值为( )
A.
37
16
B.
11
5
D.3
7.若椭圆22
14x y +=双曲线2212
x y -=有相同的焦点12F F ,,点P 是椭圆与双曲线的一个交点,则12PF F ∆的面积是( )
A .4
B .2
C .1
D .
12
8.一动圆P 过定点M(-4,0),且与已知圆2
2
:(4)16N x y -+=相切,则动圆圆心P 的轨迹方程是( )
A.221(2)412x y x -=≥
B.221(2)412x y x -=≤
C.221412x y -=
D.221412
y x -=
9.已知c 是椭圆122
22=+b y a x (a >b >0)的半焦距,则b c a
+的取值范围是( )
A.(1)+∞,
B.)+∞
C.
D.
10.已知抛物线C :2
8y x =的焦点为F ,准线为,P 是上一点,Q 是直线PF 与C 的一个交点.若4FP FQ =,则QF =( )
A.
72 B .3 C. 5
2
D .2 二、填空题(每题5分,共25分)
11. 抛物线2
4y x =的准线方程为_____________.
12.已知双曲线2
2
21(0)y x b b
-=>的焦距为4,则b= ____ .
13.已知两定点1,0,1,0M N ,直线:23l y x ,在上满足
4=+PN PM 的点P
有 个.
14.已知椭圆E:122
22=+b
y a x (a >b >0)的右焦点为F ,短轴的一个端点为M ,直线
:340l x y -=交椭圆E 于A 、B 两点;若4=+BF AF ,点M 到直线的距离不小于5
4
,
则椭圆E 的离心率的取值范围是_______.
15.设点P 是双曲线122
22=-b
y a x (a >0,b >0)上一点,21,F F 分别是双曲线的左、右
焦点,I 为△21F PF 的内心,若12122()PF I PF I F F I S S S ∆∆∆-=,则该双曲线的离心率
是 .
三、解答题(16题10分,17题15分,共25分)
16.是否存在同时满足下列两条件的直线: (1)与抛物线x y 82
=有两个不同的交点A 和B ;
(2)线段AB 被直线1l :550x y +-=垂直平分.若不存在,说明理由,若存在,求出直线的方程.
17.如图,设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:2
22>=+a y a
x C 的左、右焦点,P 为
椭圆C 上任意一点,且12PF PF ⋅最小值为0. (1)求椭圆C 的方程;
(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.
图(6)
F 2
F 1
o
y
x
高二数学(理)答题纸
一、选择题(每题5分,共50分)
1, 2, 3, 4, 5, 6 , 7, 8, 9, 10
二、填空题(每题5分,共25分)
11.________ 12._______ 13._________ 14._________ 15._______
二、解答题(16题10分,17题15分,共25分)
16.
17.
图(6)F2
F1o y
x
(17题图)
高二数学(理)答案
1—10 ABABB CCCDB 11、1
16
y =-
123 13.2个 14. 3(0, 15.2
16.【解析】假定在抛物线x y 82=上存在这样的两点()()1122.A x y B x y ,,,则有:
()()()211121212222
888y x y y y y x x y x ⎧=⇒+-=-⎨=⎩()()()1212128AB
y y k x x y y -⇒==-+
∵线段AB 被直线1l :x+5y-5=0垂直平分,且
1155l AB k k =-∴=,,即
()
1285y y =+128
5y y ⇒+=. 设线段AB 的中点为()120004
25
y y M x y y +=
=,,则.代入x+5y-5=0得x=1.于是: AB 中点为415M ⎛⎫
⎪⎝⎭
,.故存在符合题设条件的直线,其方程为:
()4
512552105
y x x y -
=---=,即: 17.。