高二上学期10月月考数学试题

合集下载

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

山西省部分学校2024-2025学年高二上学期10月月考数学试题(含答案)

2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。

4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。

辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷(含答案)

辽宁省大连市滨城高中联盟2024-2025学年高二上学期10月月考数学试卷(含答案)

滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在四面体中,已知点是的中点,记,则等于( )A. B.C. D.2.若平面的法向量为,直线的方向向量为,直线与平面的夹角为,则下列关系式成立的是( )A. B.C. D.3.若直线的一个法向量是,则该直线的倾斜角为( )A. B. C. D.4.已知空间向量,则向量在向量上的投影向量是( )A. B. C. D.5.设是的二面角内一点,是垂足,,则的长度为( )A.B.56.对于空间一点和不共线三点,且有,则( )A.四点共面B.四点共面ABCD E CD ,,AB a AC b AD c === BE 1122a b c -++ 1122a b c -+ 1122a b c -+ 1122a b c -++ αμ l vl αθcos v v μθμ⋅= cos v v μθμ⋅=sin v v μθμ⋅= sin v vμθμ⋅= AB )1a =- 30 60 120 150()()1,1,2,1,2,1a b =-=- a b ()1,1,1-555,,663⎛⎫- ⎪⎝⎭555,,636⎛⎫- ⎪⎝⎭111,,424⎛⎫- ⎪⎝⎭P 120 l αβ--,,,PA PB A B αβ⊥⊥4,3PA PB ==AB O ,,A B C 2OP PA OB OC =-+ ,,,O A B C ,,,P A B CC.四点共面D.五点共面7.将正方形沿对角线折成直二面角,下列结论不正确的是()A.B.,所成角为C.为等边三角形D.与平面所成角为8.正方形的边长为12,其内有两点,点到边的距离分别为3,2,点到边的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得和重合.则此时两点间的距离为( )二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有( )A.直线必过定点B.方程是直线的一般式方程C.直线的斜率为D.点到直线的距离为110.已知空间单位向量两两垂直,则下列结论正确的是( )A.向量与共线B.问量C.可以构成空间的一个基底,,,O P B C ,,,,O P A B C ABCD BD AC BD⊥AB CD 60︒ADC V AB BCD 60︒11ABB A ,P Q P 111,AA A B Q 1,BB AB AB 11A B ,P Q ()32y ax a a =-+∈R ()3,20Ax By C ++=10x ++=()5,3-20y +=,,i j k i j + k j - i j k ++ {},,i j i j k +-D.向量和11.如图,已知正六棱柱的底面边长为2,所有顶点均在球的球面上,则下列说法错误的是( )A.直线与直线异面B.若是侧棱上的动点,则C.直线与平面D.球的表面积为第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点关于直线对称的点是,则直线在轴上的截距是__________.13.若三条直线相交于同一点,则点到原点的距离的最小值为__________.14.已知正三棱柱的底面边长为是其表面上的动点,该棱柱内切球的一条直径是,则的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程:(1)过定点;(2)斜率为.16.(本小题满分15分)如图,在四面体中,面是的中点,是i j k ++ k ABCDEF A B C D E F ''''-''O DE 'AF 'M CC 'AM MD +'AF 'DFE 'O 18π()1,2A -y kx b =+()1,6B --y kx b =+x 2,3,100y x x y mx ny =+=++=(),m n ABC A B C '-''P MN PM PN ⋅ l l ()3,4A -16ABCD AD ⊥,2,BCD AD M =AD P的中点,点在棱上,且.请建立适当的空间直角坐标系,证明:面.17.(本小题满分15分)如图所示,平行六面体中.(1)用向量表示向量,并求;(2)求18.(本小题满分17分)如图,在五棱锥中,平面是等腰三角形.(1)求证:平面平面;(2)求直线与平面所成角的大小.19.(本小题满分17分)如图,在三棱柱中,棱的中点分别为在平面内的射影为是边长为2的等边三角形,且,点在棱上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:BM Q AC3AQ QC=PQ∥BCD1111ABCD A B C D-111ππ1,2,,23AB AD AA BAD BAA DAA∠∠∠======1,,AB AD AA1BD1BD1cos,BD ACP ABCDE-PA⊥,ABCDE AB∥,CD AC∥,ED AE∥,45,24,BC ABC AB BC AE PAB∠====VPCD⊥PACPB PCD111ABC A B C-1,AC CC1,,D E CABC,D ABCV12AA=F11B C(1)若点为棱的中点,求点到平面的距离;(2)求锐二面角的余弦值的取值范围.F 11B C F BDE F BD E --滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题参考答案一、单选题1.A2.D3.B4.C5.D6.B7.D8.【答案】B【详解】解法一:如图建系设圆柱底面半径为,则,所以,则所以.解法二:如图,设过点且平行底面的截面圆心为,过点且平行底面的截面圆心为,设圆柱底面半径为,则,所以,则,.r 2π12r =6πr =33,3,,9ππQ P ⎫⎛⎫--⎪ ⎪⎪ ⎪⎭⎝⎭PQ =P 1O Q 2O r 2π12r =6πr =121122222π,,63πO P O Q PQ PO O O O Q +===++222211221212||22PQ PO O O O Q r O O PO O Q∴=++=++⋅ 222266π36262cos 336,ππ3πPQ ⎛⎫⎛⎫=⋅++⋅⋅=⋅+∴= ⎪ ⎪⎝⎭⎝⎭9.AD 10.BCD.11.【答案】AC【详解】对于A ,如图①,连接,则,所以,所以直线与直线共面,故A 错误;对于B ,将平面沿着翻折到与平面共面的位置,得到矩形,如图②所示.因为底面边长为,所以则的最小值为,故B 正确;对于C ,以为坐标原点,所在直线分别为轴、轴、轴,建立如图①所示的空间直角坐标系,则,所以.设平面的法向量为,则,即,令,得,所以平面的一个法向量为.设直线与平面所成角为,则,故C 错误;对于D ,如图③,设球的半径为,根据对称性可知,正六棱柱的外接球的球心在上下底面的中心的连线的中点处.,则,所以球的表面积,故D 正确.,AD A D ''AD ∥,A D A D ''''∥E F ''AD ∥E F ''DE 'AF 'ACC A ''CC 'CDD C ''ADD A ''2π2,3ABC ∠=AC =AM MD +'AD =='F ,,FA FD FF 'x y z ()(()()(2,0,0,,0,0,0,0,,A F F D E '-'(()(,0,,AF FD FE =''=-=- DFE '(),,m x y z = 00FD m FE m ⎧⋅=⎪⎨⋅=⎪'⎩ 00y x =⎧⎪⎨-++=⎪⎩1z =x =DFE ')m = AF 'DFE 'θ1sin 3θO R 12O O 1122,O C O O ==22222211922R OC O C O O ==+=+=O 294π4π18π2S R ==⨯=12.13.【答案】【详解】由解得把代入可得,所以,所以点到原点的距离当时等号成立,此时.所以点到原点的距离的最小值为14.【答案】【详解】由题意知内切球的半径为1,设球心为,则.因为.四、解答题15.【答案】(1)或.(2)或.【详解】(1)由题意知直线的斜率存在,设为则直线的方程为,它在轴,轴上的截距分别是,由已知,得,解得或.故直线的方程为或.(2)设直线在轴上的截距为,则直线的方程是,它在轴上的截距是,8-2,3,y x x y =⎧⎨+=⎩1,2.x y =⎧⎨=⎩()1,240mx ny ++=2100m n ++=102m n =--(),m n d ==4n =-2m =-(),m n []0,4O ()()PM PN PO OM PO ON ⋅=+⋅+ ()2OP PO OM ON OM ON =+⋅++⋅ 2||1PO =- []0,4PM PN ⋅∈ 2360x y +-=83120x y ++=660x y -+=660x y --=l kl ()34y k x =++x y 43,34k k--+()43436k k ⎛⎫+⨯+=± ⎪⎝⎭123k =-283k =-l 2360x y +-=83120x y ++=l y b l 16y x b =+x 6b -由已知,得,所以.所以直线的方程为或.16.解法一:以为坐标原点,所在直线为z 轴,线段的延长线为y 轴,建立如图所示空间直角坐标系,设,由题意得,因为,所以即即所以,所以又因为面BCD 的一个法向量为所以所以又因为面所以面.解法二:66b b -⋅=1b =±l 660x y -+=660x y --=D DA BD 2BD a =()()()10,2,0,0,0,2,0,0,1,0,,2B a A M P a ⎛⎫-- ⎪⎝⎭3AQ QC =34AQ AC = ()()3,,2,,24Q Q Q x y z x y -=-331,,442Q Q Q x x y y z ===331,,442Q x y ⎛⎫ ⎪⎝⎭33,,044PQ x y a ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄BCDPQ ∥BCD取的中点,连接,因为为BM 的中点,所以,所以平面,过作,交BC 于以为坐标原点,的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.因为为中点,设则设点的坐标为.因为,所以.因为为的中点,故,又为的中点,故,所以又平面BCD 的一个法向量为,故,所以又平面BCD ,所以平面BC D.17.【答案】(1)2【详解】(1),BD O OP P OP ∥MD OP ⊥BCD O OE BD ⊥,E O ,,OE OD OP2,AD M =AD 2BD a=()()0,,2,0,,0A a B a -C ()00,,0x y 3AQ QC = 003131,,4442Q x a y ⎛⎫+ ⎪⎝⎭M AD ()0,,1M a P BM 10,0,2P ⎛⎫ ⎪⎝⎭00313,,0444PQ x a y ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄PQ ∥111,BD AD AA AB BD =+-= 111BD AD AB AD AA AB =-=+-则,所以.(2)由空间向量的运算法则,可得,因为且,因为是正方形,所以,则.18.【答案】(1)见详解(2)【详解】(1)证明:在中,因为,所以,因此故,所以,即又平面,所以.又平面,且,所以平面.又平面,所以平面平面.(或者建系求法向量,证明法向量垂直,略)(2)由(1)知两两相互垂直,分别以的方向为轴、轴、轴正方向,建立()2222211111222BD AD AA AB AD AA AB AD AA AD AB AB AA =+-=+++⋅-⋅-⋅ 111412*********=+++⨯⨯⨯--⨯⨯⨯=1BD = AC AB AD =+ 11,2AB AD AA ===11ππ,23BAD BAA DAA ∠∠∠===ABCD AC = ()()221111BD AC AD AA AB AB AD AD AB AD AA AB AA AD AB AD AB ⋅=+-⋅+=⋅++⋅+⋅--⋅ 22ππππ11cos121cos 21cos 111cos 22332=⨯⨯++⨯⨯+⨯⨯--⨯⨯=111cos ,BD AC BD AC BD AC ⋅===⋅ π6ABC V 45,4,ABC BC AB ∠=== 2222cos458AC AB BC AB BC =+-⋅⋅= AC =222BC AC AB =+90BAC ∠= AB AC⊥PA ⊥,ABCDE AB ∥CD ,CD PA CD AC ⊥⊥,PA AC ⊂PAC PA AC A ⋂=CD ⊥PAC CDC PCD PCD ⊥PAC ,,AB AC AP ,,AB AC AP x y z如图所示的空间直角坐标系,由于是等腰三角形,所以.又,因此,.因为,所以四边形是直角梯形.因为,所以,因此,故,所以.因此.设是面的一个法向量,则,解得.取,得.又,设表示向量与平面的法向量所成的角,则,又因为,所以,因此直线与平面所成的角为.PAB V PA AB ==AC =()()0,0,0,A B ()(0,,0,0,C P AC ∥,ED CD AC ⊥ACDE 2,45,AE ABC AE ∠== ∥BC 135BAE ∠= 45CAE ∠= sin452CD AE =⋅== ()D (()0,,CP CD =-= (),,m x y z =PCD 0,0m CP m CD ⋅=⋅= 0,x y z ==1y =()0,1,1m =(BP =- θBP PCD m1cos 2m BP m BP θ⋅==⋅ π0,2θ⎡⎤∈⎢⎥⎣⎦π3θ=PB PCD π619.【答案】(1(2)解法一:连接,因为在平面内的射影为,所以平面,由于平面,所以,由于三角形是等边三角形,所以,以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,因为所以又因为为中点,所以所以设面的一个法向量为则令,则所以所以点到平面的距离为(2)因为在棱上(包括端点)设12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥ABC BD AC ⊥BD ==1DC ==D 1,,DB DA DC x y z (())11,0,1,0,,0,2C C B E ⎛-- ⎝)11C B CB == 1B F 11B C 12F 12BF ⎛= ⎝ BDE ()111,,m x y z =1(0,,2BD ED ⎛== ⎝ 111000x BD m y ED m ⎧=⎧⋅=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 11z =1y =()m = F BDE BF m m ⋅== F 11B C ()111,01C F C B λλ= ……因为,所以设平面的法向量为,令所以,设锐二面角为,则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.解法二:(1)连接,因为在平面内的射影为,所以平面,由于平面,所以,)11C B = )1,,0C F λ=BDF ()222,,n x y z = 11,,0),DF DC C F λλ=+=+= 22220000DF n x y x DB n λ⎧⋅=++=⎪⇒⎨=⋅=⎪⎪⎩⎩ 2y =2z λ=-()m λ=- F BD E --θ1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥由于三角形是等边三角形,所以,又以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,又,故,则设平面的法向量为,则,故可设,又,所以点到平面的距离为.(2)设,则,设平面的法向量为,则令,所以,所以,设锐二面角为,ABC ,BD AC BD ⊥==1DC ==D 1,,DCDB DCx yz (()()11,1,0,0,,2C C E B ⎛ ⎝()11C B CB ==-(11,2B F ⎛-- ⎝()1,,2DE DB ⎛== ⎝ BDE ()111,,m x y z =1111020m DE x z m DB ⎧⋅=+=⎪⎨⎪⋅==⎩ ()m = 1,2BF ⎛=- ⎝ F BDE BF m m ⋅== ()()1111101,C F C B C B λλ=≤≤=- (()(11111DF DC C F DC C B λλλ=+=+=+-=- BDF ()222,,n x y z =22220000DF n x y y DB n λ⎧⎧⋅=-++=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 2x =2z λ=)n λ=F BD E --θ则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣。

安徽省阜阳市红旗中学2024-2025学年高二上学期第一次月考(10月)数学试题

安徽省阜阳市红旗中学2024-2025学年高二上学期第一次月考(10月)数学试题

安徽省阜阳市红旗中学2024-2025学年高二上学期第一次月考(10月)数学试题一、单选题1.设,x y ∈R ,向量(),1,1a x =r ,()1,,1b y =r ,()2,4,2c =-r ,且a b ⊥r r ,//b c r r ,则a b +r r 等于( ) A.BC .3D .42.已知向量()()2,1,3,4,2,a b t =-=-r r的夹角为钝角,则实数t 的取值范围为( )A .10,3⎛⎫-∞ ⎪⎝⎭ B .()10,66,3∞⎛⎫--⋃- ⎪⎝⎭C .10,3⎛⎫+∞ ⎪⎝⎭ D .()10,66,3⎛⎫+∞ ⎪⎝⎭U3.当直线():10,0x yl a b a b+=>>过点()1,4P ,当a b +取得最小值时,直线l 的方程为:( )A .50x y +-=B .480x y +-=C .260x y +-=D .290x y +-=4.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,且6AB AP ==,2AD =,60BAD BAP DAP ∠=∠=∠=︒,E ,F 分别为PB ,PC 上的点,且2PE EB =u u u r u u u r ,PF FC =u u ur u u u r ,EF =u u u r ( )A .1BC .2 D5.点()11,M x y 在函数e x y =的图象上,当[)10,1x ∈时,1111y x +-可能等于( ) A .1-或2-B .1-或3-C .2-或3-D .06.已知直线l 过点()0,3,30y -+=及x 轴围成等腰三角形,则l 的方程为( )A 30y +-=B 390y -+=30y -+=C 30y -+=D 30y +-=390y -+=7.在正三棱锥P ABC -中,AB ==且该三棱锥的各个顶点均在以O 为球心的球面上,设点O 到平面P AB 的距离为m ,到平面ABC 的距离为n ,则nm=( )A .3BC D 8.古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上.下底面均为半圆形的柱体.若1AA 垂直于半圆柱下底面半圆所在平面,13AA =,4AB =,2CD =,E 为弧11A B 的中点,则直线CE 与平面1DEB 所成角的正弦值为( )A B C D二、多选题9.下列说法正确的是( )A .23(R)y ax a a =-+∈直线必过定点(2,3)B .直线12y x +=在y 轴上的截距为1C .直线30x +=的倾斜角为150︒D .点(2,3)(3,2)A B ---,,直线:10l mx y m +--=与线段AB 相交,则实数m 的取值范围是34m ≤或4≥m10.已知单位向量i r ,j r ,k r 两两所成的夹角均为θ(0πθ<<,且π2θ≠),若空间向量a r满足(),,R a xi yj zk x y z =++∈r r r r ,则有序实数组(),,x y z 称为向量a r在“仿射”坐标系O zyz -(O为坐标原点)下的“仿射”坐标,记作(),,a x y z θ=r,则下列命题正确的有( )A .已知(2,0,1)a θ=-r ,(1,0,2)b θ=r ,则0a b ⋅=r rB .已知111(,,)a x y z θ=r ,222(,,)b x y z θ=r ,则121212(,,)a b x x y y z z θ-=---rrC .已知3π(1,0,0)OA =u u u r ,3π(0,1,0)OB =u u u r ,3π(0,0,1)OC =u u u r,则三棱锥O ABC -的体积V =D .已知π3(,,0)a x y =r,π3(0,0,)b z =r,其中0xyz ≠,则当且仅当x y =,向量a r ,b r 的夹角取得最小值11.如图,在棱长为1的正方体1111ABCD A B C D -中,点Q 为1C D 的中点,点P 是棱1CC 上一动点(与C ,1C 不重合),过点P 作1PE C D ⊥,点E 为垂足,再过点E 作1EQ CD ⊥,点1Q 为垂足.则( )A .PE ⊥平面11ABC DB .三棱锥1Q BCP -体积的最大值为124C .存在点P 使得1//PQ 平面11AB C DD .存在点P 使得1PQ PQ ⊥三、填空题12.若直线30mx ny ++=在y 轴上的截距为-3y -=角的2倍,则m =,n =.13.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线. 已知ABC V 的顶点()1,0A ,()0,2B ,且AC BC =,则ABC V 的欧拉线的一般式方程为.14.某中学组织学生到一工厂开展劳动实习,加工制作帐篷.将一块边长为6m 的正方形材料先按如图①所示的阴影部分截去四个全等的等腰三角形(其中2m AA BB CC DD ''''====),然后,将剩余部分沿虚线折叠并拼成一个四棱锥型的帐篷(如图②).该四棱锥底面ABCD 是正方形,从顶点P 向底面作垂线,垂足恰好是底面的中心,则直线PA 与平面PBC 所成角的正弦值为.四、解答题15.已知直线1l :()1210a x y +--=,直线2l :()()21210a x a y ---+= (1)若12l l //,求实数a 的值; (2)若12l l ⊥,求实数a 的值.16.已知直线()1:340l kx y k k ---=∈R 过定点P .(1)求过点P 且在两坐标轴上截距的绝对值相等的直线方程;(2)若直线l 过点P 且交x 轴正半轴于点A ,交y 轴负半轴于点B ,记ABC V 的面积为S (O 为坐标原点),求S 的最小值,并求此时直线l 的方程.17.如图,在四棱锥P ABCD -中,2,1,,PD AD PD DA PD DC ==⊥⊥,底面ABCD 为正方形,,M N 分别为,AD PD 的中点.(1)求证:PA ∥平面MNC ;(2)求直线PB 与平面MNC 所成角的正弦值;(3)求点B 到平面MNC 的距离.18.如图,在平面四边形ABCD 中,//AB DC ,ABD △是边长为2的正三角形,3,DC O =为AB 的中点,将AOD △沿OD 折到POD V 的位置,PC =(1)求证:PO BD ⊥;(2)若E 为PC 的中点,求直线BE 与平面PDC 所成角的正弦值.19.如图所示,半圆柱1OO 与四棱锥A BCDE -拼接而成的组合体中,F 是半圆弧BC 上(不含,B C )的动点,FG 为圆柱的一条母线,点A 在半圆柱下底面所在平面内,122,OB OO AB AC ====(1)求证:CG BF ⊥;(2)若//DF 平面ABE ,求平面FOD 与平面GOD 夹角的余弦值; (3)求点G 到直线OD 距离的最大值.。

天津市2023-2024学年高二上学期10月第一次月考数学试题含解析

天津市2023-2024学年高二上学期10月第一次月考数学试题含解析

2023-2024天津市高二年级第一学期第一次阶段性检测数学试卷(答案在最后)一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.本大题共9个小题,每题5分,共45分.)1.直线0x +-=的倾斜角为()A.6πB.4π C.23π D.56π【答案】D 【解析】【分析】根据直线方程求出直线斜率,再根据斜率和倾斜角间的关系即可求出倾斜角.【详解】0x +-=可化为:83y x =-+,∴直线的斜率为3-,设直线的倾斜角α,则tan 3α=-,∵[)0,πα∈,∴5π6α=.故选:D .2.3a =-是直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线互相垂直求出a 的值,从而判断结论.【详解】因为直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直,所以()()()11230a a a a -+-+=,解得1a =或3a =-,所以3a =-是直线()1:130l ax a y +--=与直线()()2:12320l a x a y -++-=互相垂直的充分不必要条件.故选:A .3.设x ,y ∈R ,向量(,1,1),(1,,1),(2,4,2)a x b y c ===- ,且,a c b c ⊥ ∥,则|2|a b +=()A.B. C.3D.【答案】B 【解析】【分析】由向量的关系列等式求解x ,y 的值,再运用向量的数乘及加法的坐标表示公式,结合向量的模计算得出结果.【详解】解:向量(,1,1),(1,,1),(2,4,2)a x b y c ===-,且,a c b c ⊥ ∥,∴2420124a c x y⋅=-+=⎧⎪⎨=⎪-⎩,解得12x y =⎧⎨=-⎩∴2(21,2,3)(3,0,3)a b x y +=++=,∴|2|a b +==B 正确.故选:B .4.圆2240x x y -+=与圆22430x y x +++=的公切线共有A.1条 B.2条C.3条D.4条【答案】D 【解析】【分析】把两个圆方程化成标准方程,分别求出两圆的圆心坐标及两圆的半径,比较圆心距与两圆半径和与差的关系,判断出两圆的位置关系,进而可以判断出有几条公切线.【详解】2240x x y -+=⇒222(2)2x y -+=圆心坐标为(2,0)半径为2;22430x y x +++=⇒222(2)1x y ++=圆心坐标为(2,0)-,半径为1,圆心距为4,两圆半径和为3,因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.故本题选D.【点睛】本题重点考查了圆与圆的位置关系的判定、公切线的条数.解决的方法就是利用圆的标准方程求出圆心坐标以及半径,比较圆心距与两圆半径和差的关系.5.已知点M 是圆22:1C x y +=上的动点,点()2,0N ,则MN 的中点P 的轨迹方程是()A.()22114x y -+=B.()22112x y -+=C.()22112x y ++=D.()22114x y ++=【答案】A 【解析】【分析】设出线段MN 中点的坐标,利用中点坐标公式求出M 的坐标,根据M 在圆上,得到轨迹方程.【详解】设线段MN 中点(,)P x y ,则(22,2)M x y -.M 在圆22:1C x y +=上运动,22(22)(2)1x y ∴-+=,即221(1)4x y -+=.故选:A .【点睛】本题考查中点的坐标公式、求轨迹方程的方法,考查学生的计算能力,属于基础题.6.如图,已知正三棱柱111ABC A B C -的棱长均为2,则异面直线1A B 与1B C所成角的余弦值是A.32B.12C.14D.0【答案】C 【解析】【分析】建立空间直角坐标系,结合空间向量的结论求解异面直线所成角的余弦值即可.【详解】以AC 的中点O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则:()10,1,2A -,)B,)12B ,()0,1,0C ,向量)12A B =-,()12B C =-,11cos ,A B B C <> 1111A B B C A B B C ⋅=⨯=14=.本题选择C 选项.【点睛】本题主要考查异面直线所成的角的求解,空间向量的应用等知识,意在考查学生的转化能力和计算求解能力.7.圆223x y +=与圆223330x y x y m +-+-=的公共弦所在的直线与两坐标轴所围成的三角形面积为2,则m 的值为()A.3-B.1- C.3D.3或1-【答案】D 【解析】【分析】根据题意,联立两个圆的方程,可得两圆的公共弦所在的直线的方程,由直线的方程可得该直线与x ,y 轴交点的坐标,进而可得1|1||1|22m m ⨯-⨯-=,解可得m 的值,即可得答案.【详解】根据题意,圆223x y +=与圆223330x y x y m +-+-=,即2222303330x y x y x y m ⎧+-=⎨+-+-=⎩,两式相减可得:10x y m -+-=,即两圆的公共弦所在的直线的方程为10x y m -+-=,该直线与x 轴的交点为(1,0)m -,与y 轴的交点为(0,1)m -,若公共弦所在的直线和两坐标轴所围成图形的面积为2,则有1|1||1|22m m ⨯-⨯-=,变形可得:2(1)4m -=,解可得:3m =或1-;故选:D8.已知直线l :10()x ay a R +-=∈是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则||AB =A.2B. C.6D.【答案】C 【解析】【详解】试题分析:直线l 过圆心,所以1a =-,所以切线长6AB ==,选C.考点:切线长9.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是A. B. C. D.【答案】B 【解析】【详解】试题分析:易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.所以sin()124πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.【考点定位】1、直线与圆;2、三角代换.二、填空题:(本大题共6小题,每题5分,共30分)10.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于______________.【答案】【解析】【分析】利用圆的弦长公式,结合点线距离公式即可得解.【详解】因为圆224x y +=的圆心为()0,0O ,半径2r =,它到直线3450x y +-=的距离1d ==,所以弦AB的长AB ==故答案为:11.已知实数x ,y 满足方程22410x y x +-+=.则yx的最大值为_____________.【解析】【分析】当直线y kx =与圆相切时,k 取得最值,利用切线的性质求出k ;【详解】解:设圆22:410C x y x +-+=,即22(2)3x y -+=.设yk x=,则当直线y kx =与圆C 相切时,直线斜率最大或最小,即k 最大或最小.如图所示:设直线y kx =与圆C 切于第一象限内的点A,则AC =2OC =,1OA ∴=,tan ACk AOC OA∴=∠==,由图象的对称性可知当y kx =与圆C相切于第四象限内时,k =∴yx.【点睛】本题主要考查直线的斜率公式,点到直线的距离公式的应用,直线和圆相切的性质,属于中档题.12.直线12:310,:2(1)10l ax y l x a y ++=+++=,若12//l l ,则a 的值为______;此时1l 与2l 的距离是______.【答案】①.3-②.12【解析】【分析】由直线平行的判定列方程求参数a ,注意验证排除重合的情况,再根据平行线距离公式求距离.【详解】由12//l l ,则(+1)=6a a ,即2+6=(+3)(2)=0a a a a --,可得3a =-或=2a ,当3a =-时,12:3+3+1=0,:22+1=0l x y l x y --,符合题设;当=2a 时,12:2+3+1=0,:2+3+1=0l x y l x y 为同一条直线,不合题设;综上,3a =-,此时1211:=0,:+=032l x y l x y ---,所以1l 与2l 的距离11|+|2312d .故答案为:3-,1213.如图,在平行六面体中,2AB =,1AD =,14AA =,90DAB ∠=︒,1160DAA BAA ∠=∠=︒,点M 为棱1CC 的中点,则线段AM 的长为______.【答案】【分析】利用向量数量积求得向量AM的模,即可求得线段AM 的长【详解】112AM AB BC CM AB AD AA =++=++则AM ==即线段AM14.已知()0,3A ,点P 在直线30x y ++=,圆C :22420x y x y +--=,则PA PC +最小值是______.【答案】【解析】【分析】求出点A 关于直线30x y ++=的对称点B 的坐标,可得PA PC +的最小值BC .【详解】因为22:420C x y x y +--=可转化为:22(2)(1)5x y -+-=,则圆心为()2,1C ,半径为r =.设A 关于直线30x y ++=的对称点B 的坐标为(),a b ,则:3302231a b b a +⎧++=⎪⎪⎨-⎪=⎪-⎩,解得63a b =-⎧⎨=-⎩,即()6,3B --,所以+=+PA PC PB PC 的最小值是==BC故答案为:15.若直线220kx y k ++-=与曲线1x =有两个不同的交点,则实数k 的取值范围是【答案】[),15,3⎛⎫-∞--⋃+∞ ⎪ ⎪⎝⎭【解析】【分析】1x +=,表示圆心为()1,1C ,半径2r =,在直线1x =及右侧的半圆,作出直线220kx y k ++-=与半圆,利用数形结合即得.【详解】方程220kx y k ++-=是恒过定点(2,2)P -,斜率为k -的直线,1x +=,即22(1)(1)4(1)x y x -+-=≥,表示圆心为()1,1C ,半径2r =,在直线1x =及右侧的半圆,半圆弧端点(1,1),(1,3),A B -在同一坐标系内作出直线220kx y k ++-=与半圆22:(1)(1)4(1C x u x -+-=≥),如图,当直线220kx y k ++-=与半圆C2=,且0k ->,解得2613k -=+,又5PB k =-,所以13k ->+或5k -≤-,所以13k <--或5k ≥.故答案为:[),15,3⎛⎫-∞--⋃+∞ ⎪ ⎪⎝⎭.三、解答题.(本大题共5小题,共75分)解答应写出文字说明,证明过程或演算步骤.16.已知a ,b ,c 分别为锐角三角形ABC 三个内角,,A B C 2sin a C =.(1)求A ;(2)若a =2b =,求c ;(3)若2cos 3B =,求()cos 2B A +的值.【答案】(1)π3(2)3(3)141518+-【解析】【分析】(1)根据题意由正弦定理以及锐角三角形可得π3A =;(2)利用余弦定理解方程可得3c =;(3)根据二倍角以及两角和的余弦公式即可计算出()1cos 218B A ++=-.【小问1详解】由于π02C <<,所以sin 0C ≠,2sin a C =2sin sin C A C =,所以sin 2A =,且三角形ABC 为锐角三角形,即π0,2A ⎛⎫∈ ⎪⎝⎭所以π3A =.【小问2详解】在ABC 中,由余弦定理知2222471cos 242b c a c A bc c +-+-===,即2230c c --=,解得3c =或1c =-(舍),故3c =.【小问3详解】由2cos 3B =,可得sin 3B =,所以22451cos 2cos sin 999B B B =-=-=-,2sin 22sin cos 2339B B B ==⨯⨯=()114531415cos 2cos 2cos sin 2sin 929218B A B A B A ++=-=-⨯-⨯=-,即()1cos 218B A ++=-17.如图,在三棱台111ABC A B C -中,90BAC ∠=︒,4AB AC ==,111112A A A B AC ===,侧棱1A A ⊥平面ABC ,点D 是棱1CC 的中点.(1)证明:1BB ⊥平面1AB C ;(2)求点1B 到平面ABD 的距离;(3)求点C 到直线1B D 的距离.【答案】(1)见解析(2)5(3)7【解析】【分析】(1)建立空间直角坐标系,利用向量法证明线线垂直;(2)利用向量法求由点到面的距离公式求解;(3)利用向量中点到直线的距离公式求解.【小问1详解】以点A 为原点,分别以AB ,AC ,1AA 所在的直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则()0,0,0A ,()4,0,0B ,()0,4,0C ,()10,0,2A ,()12,0,2B ,()10,2,2C ,()0,3,1D ,()12,0,2BB =- ,()12,0,2AB =u u u u r ,11440BB AB ⋅=-+= ,10BB AC ⋅= ,∴11BB AB ⊥,1BB AC ⊥,又∴1AB AC A = ,1AB ,AC ⊂平面1AB C ,∴1BB ⊥平面1AB C【小问2详解】设平面ABD 的法向量(),,m x y z = ,取()4,0,0AB = ,()0,3,1AD = 则00m AB m AD ⎧⋅=⎪⎨⋅=⎪⎩ ,即4030x y z =⎧⎨+=⎩,故03x z y =⎧⎨=-⎩令1y =,解得0x =,3z =-故平面ABD 的一个法向量()0,1,3m =- ,点1B 到平面ABD的距离15m d AB m⋅=== .【小问3详解】()12,3,1B D =-- ,()0,1,1CD =- ,∴11CD B D B D⋅== ∴点C 到直线1B D距离7d ===.18.求满足下列条件的直线方程.(1)过点()2,4M ,且在两坐标轴上的截距相等的直线l 的方程;(2)已知()3,3A -,()1,1B ,两直线1:240l x y -+=,2:4350l x y ++=交点为P ,求过点P 且与,A B 距离相等的直线方程;(3)经过点()2,1M ,并且与圆2268240x y x y +--+=相切的直线方程.【答案】(1)20x y -=或60x y +-=;(2)20x y +=或30x y -+=;(3)4350x y --=或2x =..【解析】【分析】(1)根据题意,分直线l 过原点和直线l 不过原点时,两种情况讨论,结合直线的截距式方程,即可求解;(2)联立方程组求得()2,1P -,分直线l 过点P 且与AB 平行和直线l 过点P 和AB 中点N ,求得直线l 的斜率,结合点斜式方程,即可求解;(3)根据题意,求得圆心()3,4O ,半径1r =,分切线斜率存在和切线斜率不存在,两种情况讨论,求得切线的方程,即可得到答案.【详解】解:(1)当直线l 过原点时,可得所求直线为2y x =,即20x y -=,满足题意;当直线l 不过原点时,设直线l 的方程为1x y a a +=,其中0a ≠,代入()2,4M ,可得241a a+=,解得6a =,所以所求直线l 的方程为166x y +=,即60x y +-=,综上可得,直线l 的方程为20x y -=或60x y +-=.(2)由题意,联立方程组2404350x y x y -+=⎧⎨++=⎩,解得21x y =-⎧⎨=⎩,所以()2,1P -,当直线l 过点P 且与AB 平行,可得2142AB k ==--,即直线l 的斜率12l k =-,所以直线l 的方程()1122y x -=-+,即20x y +=;当直线l 过点P 和AB 中点N ,因为()3,3A -,()1,1B ,可得()1,2N -,则111PN k ==,所以直线l 的方程12y x -=+,即30x y -+=,综上,满足条件直线方程为20x y +=或30x y -+=.(3)将圆的方程,化为()()22341x y -+-=,可得圆心()3,4O ,半径1r =,将点()2,1M 代入,可得()()2223141-+->,所以点M 在圆外,①当切线斜率存在时,设切线方程为()12y k x -=-,即210kx y k --+=,1==,解得43k =,所以所求直线的方程为481033x y --+=,即4350x y --=;②当切线斜率不存在时,此时过点()2,1M 的直线方程为2x =,此时满足圆心到直线2x =的距离等于圆的半径,即直线2x =与圆相切,符合题意,综上可得,所求切线为4350x y --=或2x =.19.如图所示,直角梯形ABCD 中,AD BC ∕∕,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,CF =EDCF ⊥平面ABCD .(1)求证:DF ∕∕平面ABE ;(2)求平面ABE 与平面EFB 夹角的余弦值;(3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为4,若存在,求出线段BP 的长,若不存在,请说明理由.【答案】(1)见解析(2)53131(3)存在,2BP =【解析】【分析】(1)取BC 中点G ,连接DG ,证明DA 、DG 、DE 两两垂直,建立空间直角坐标系,先证明直线向量与平面法向量数量积为零,进而证明直线与平面平行;(2)利用向量法即可求出二面角的余弦值;(3)假设存在,设(),01DP DF λλ=≤≤,利用向量法根据线面角求出λ,从而可得出答案.【小问1详解】证明:取BC 中点G ,连接DG ,因为112BG BC AD ===,又因为//AD BC ,所以四边形ABGD 为平行四边形,所以DG AB ∕∕,又因为AB AD ⊥,所以DA DG ⊥,因为四边形EDCF 为矩形,所以ED CD ⊥,又因为平面EDCF ⊥平面ABCD ,平面EDCF ⋂平面ABCD CD =,所以ED ⊥平面ABCD ,又,DA DG ∈平面ABCD ,所以ED DA ⊥,ED DG ⊥,于是DA 、DG 、DE 两两垂直,建立如图所示的空间直角坐标系,则()()((1,0,0,1,2,0,,1,2,A B E F -,则(0AB = ,2,0),(1AE =- ,0,(1DF =- ,2,设平面ABE 的法向量为(m x =,y ,)z,200AB m y AE m x ⎧⋅==⎪⎨⋅=-+=⎪⎩ ,令1z =,m = ,0,1),因为0DF m ⋅== ,所以DF m ⊥ ,又因为DF ⊂平面ABE ,所以DF ∕∕平面ABE ;【小问2详解】解:(1BE =- ,2-,(2BF =- ,0,设平面BEF 的法向量为(n a =,b ,)c,2020BE n a b BF n a ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,可取n =,4),cos ,31m n m n m n ⋅===⋅ ,所以平面ABE 与平面EFB 所成锐二面角的余弦值为53131;【小问3详解】假设存在,设(),01DP DF λλ=≤≤,则(),2DP DF λλλ==- ,()1,2,0BD =--所以()1,2BP BD DF λλ=+=--- ,因为直线BP 与平面ABE所成角的正弦值为4,所以cos ,4BP m BP m BP m ⋅=== ,解得12λ=或14,当12λ=时,33,1,22BP ⎛=-- ⎝⎭,2BP =,当14λ=时,533,,424BP ⎛=-- ⎝⎭,2BP =,所以存在点P ,使得直线BP 与平面ABE所成角的正弦值为4,2BP =.20.已知圆M与直线340x -+=相切于点(,圆心M 在x 轴上.(1)求圆M 的标准方程;(2)若直线()()():21174l m x m y m m +++=+∈R 与圆M 交于P ,Q 两点,求弦PQ 的最短长度;(3)过点M 且不与x 轴重合的直线与圆M 相交于A ,B 两点,O 为坐标原点,直线OA ,OB 分别与直线=8x 相交于C ,D 两点,记OAB △,OCD 的面积为1S ,2S ,求12S S 的最大值.【答案】(1)22(4)16x y -+=(2)(3)12S S 的最大值为14【解析】【分析】(1)设圆的方程为222()x a y r -+=,再由直线340x +=与圆相切于点,可得关于a 与r 的方程组,求得a 与r 的值,则圆M 的方程可求;(2)直线(21)(1)74()m x m y m m R +++=+∈恒过定点(3,1),且该点在圆内,当直线截圆的弦以定点(3,1)为中点时,弦长最短;(3)由题意知,π2AOB ∠=,设直线OA 的方程为=y kx ,与圆的方程联立求得A 的坐标,同理求得B 的坐标,进一步求出C 与D 的坐标,写出12S S ,利用基本不等式求最值.【小问1详解】解:由题可知,设圆的方程为222()x a y r -+=,由直线340x +=与圆相切于点,得22(1)+7=11a r a⎧-⎪⎨-⎪-⎩,解得=4a ,4r =,∴圆的方程为22(4)16x y -+=;【小问2详解】解:由直线:(21)(1)74(R)l m x m y m m +++=+∈有:(27)(4)0m x y x y +-++-=;得2+7=0+4=0x y x y -⎧⎨-⎩,即=3=1x y ⎧⎨⎩即直线l 恒过定点(3,1);又22(34)1216-+=<,即点(3,1)在圆C 内部;圆C 的圆心为(4,0)C ;设直线l 恒过定点(3,1)P ;当直线l 与直线CP 垂直时,圆心到直线的距离最长,此时弦长最短;此时||CP ===【小问3详解】解:由题意知,π2AOB ∠=,设直线OA 的斜率为(0)k k ≠,则直线OA 的方程为=y kx ,由22=+8=0y kx x y x ⎧⎨-⎩,得22(1)80k x x +-=,解得=0=0x y ⎧⎨⎩或228=1+8=1+x k k y k ⎧⎪⎪⎨⎪⎪⎩,则点A 的坐标为2288(,)11k k k ++,又直线OB 的斜率为1k-,同理可得:点B 的坐标为22288(,)11k k k k-++由题可知:8(8,8),(8,C k D k-,∴12||||||||.||||||||S OA OB OA OB S OD OC OC OD ==,又 228||11||81A C x OA k OC x k+===+,同理22||||1OB k OD k =+,∴2142222221112141222S k S k k k k k k==++++⋅+ .当且仅当||1k =时等号成立.∴12S S 的最大值为14.【点睛】本题考查圆的方程的求法,考查含参直线过定点问题及直线与圆位置关系的应用,训练了利用基本不等式求最值,考查运算求解能力,是中档题.。

江西省宜春市宜春中学2024-2025学年高二上学期10月第一次月考数学试题(含答案)

江西省宜春市宜春中学2024-2025学年高二上学期10月第一次月考数学试题(含答案)

2026届高二上学期第一次月考数学试卷(考试时间:120分钟试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、准考证号等信息。

2.请将答案正确填写在答题卡上。

第Ⅰ卷(选择题)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设直线的倾斜角为,则的值为()AB .CD .2.已知直线和,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知,且与夹角为锐角,则实数的取值范围是( )A .B .C .D .4.已知圆与轴相切,则( )A .1B .0或C .0或1D .5.如图所示,在四面体中,点是的中点,记,,则等于( )A .B .C .D .6.在圆锥中,轴截面为腰长为的等腰直角三角形,为底面圆上一点,且为线段上一动点,为等腰三角形,则的最小值为( )A .B .C .D .:220l x y -+=αcos α1:70l x my ++=()2:2320l m x y m -++=1m =-12l l ∥()()1,2,1,1,,1a b x =-=-abx ()2,1-(),1-∞()(),22,1-∞-- ()1,+∞()22420x y mx my m m ++-+=∈R x m =1414A BCD -E CD ,AB a AC b == AD c = BE1122a b c-++ 1122a b c-+1122a b c-+ 1122a b c-++ SO SAC △B E AB ABC △SE CE +)21+)22+7.已知,动圆经过原点,且圆心在直线上.当直线的斜率取最大值时,( )ABCD8.已知直线与圆交于不同的两点是坐标原点,且有的取值范围是( )A .B .C .D .二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分。

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)

2024年湖北云学名校联盟高二年级10月联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项考试时间:2024年10月15日15:00-17:00 时长:120分钟满分:150分是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =.故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−±.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.【答案】BCD 【解析】【分析】以{},,OA OB OC为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅=.对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+−2133AB AC +()()2133OB OA OC OA =−+−2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA =时,DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− ,又AB OB OA =−,所以13DH AB OC − .故DH ,AB ,OC 共面.故B 正确;对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+−12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++,所以:HG OA ⋅= 111336OA OB OC OA −++⋅ 2111336OA OB OA OC OA =−+⋅+⋅1119660336=−×+×+×=,所以HG OA ⊥ ,故GH OA ⊥,故C 正确;对D :设OH OA λ=,()01λ≤≤.因为:DH OH OD =−()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− .所以DH OH ⋅ 2133OA OB OC OAλλ =−−⋅()2233OA OA OB OA OCλλλ−⋅−⋅296λλ−,()01λ≤≤.当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8. 【答案】ACD 【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假. 【详解】对A :由222382103410a +−×−×−+<⇒8a >. 此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP=又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==,cos ACP ∠==41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角, 所以存在直线l 使得CA CB ⊥.故C 正确; 对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MP NPBP=⇒(4AP BP MP NP ⋅=⋅=−+=.又1sin 2PACS PA PC APC APC =⋅⋅∠=∠ ,PBCS BPC =∠ ,且sin sin APC BPC ∠=∠.所以22sin PAC PBC S S PA PB APC⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确. 故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值. 三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______. 【答案】49 【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max 27PA AO r=+=+=, 所以22max749PA==; 故()()2243x y −++的最大值是49. 故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = ,则BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=, ()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =..14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线0x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=,整理得21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC =, 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标;(3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = = , 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°. 所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =−− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= ++−+=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。

山东省菏泽市定陶第一中学2024-2025学年高二上学期10月测验数学试题(含答案)

山东省菏泽市定陶第一中学2024-2025学年高二上学期10月测验数学试题(含答案)

2024年10月高二月考数学测验试题一、单选题1.已知直线l 的一个方向向量为,则直线l 的倾斜角( )A .0B.C .D .2.若直线l 1:x -3y +2=0与直线l 2:mx -y +b =0关于x 轴对称,则m +b =( )A .B .-1C .-D .13.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .4.设动直线l 与交于两点.若弦长既存在最大值又存在最小值,则在下列所给的方程中,直线l 的方程可以是( )A .B .C .D .5.已知圆,直线与圆C 相交于两点,若圆C 上存在点P ,使得△ABP 为正三角形,则实数m 的值为( )A .B .C .或D .或6..若一条光线从点A(−2,−3)射出,经y 轴反射后与圆(x +3)2+(y−2)2=1相切,则反射光线所在直线的斜率为( )A. −53或−35B. −32或−23C. −54或−45 D. −43或−347.已知直线与直线的交点位于第一象限,则实数的取值范围是( ).A .B .或 θ=π6π4π31313()1,1P 2260x y y +-=AB AB 210x y --=210x y -+=230x y +-=230x y +-=()22:15C x y ++=e ,A B AB 2x y a +=2ax y a +=2ax y +=x ay a+=()22:14C x y -+=:20l x my m -+=,A B 43m =-43m =43m =-0m =43m =0m =21y kx k =++122y x =-+k 1162k -<<16k <-12k >C .D .8.已知直线与直线相交于点,则到直线的距离的取值范围是( )A .[2,32]B .C .D .[2,32)二、多选题9.已知直线,直线,则下列结论正确的是( )A .在轴上的截距为B .过点且不垂直x 轴C .若,则或D .若,则10. 圆和圆的交点为,,则有( )A .公共弦所在直线方程为B .线段中垂线方程为C . P (m,n )为圆上一动点,则(m+2)2+(n-4)2的最大值为6D .经过A 、B 两点且圆心在直线x -y -5=0上的圆C 的面积是13π 11.下列结论正确的是( )A .已知点在圆上,则的最大值是4B .已知是圆外一点,直线的方程是,则直线与圆相离C . 曲线C 1:x 2+y 2+2x =0与曲线C 2:x 2+y 2−4x−8y +m =0恰有三条公切线,则m =4D .若圆上恰有两点到点的距离为1,则的取值范围是三、填空题12.两圆交于点A(1,3)和B(m,1),两圆的圆心都在直线x−y +c2=0上,则m +c 的值等于________.62k -<<12k >1:310(R)l mx y m m --+=∈2:310(R)l x my m m +--=∈P P 0x y +=d()1110l x a y +-+=:2220l ax y ++=:1l x 1-2l ()0,1-12l l //1a =-2a =12l l ⊥23a =221:20x y x O +-=222:240O x y x y ++-=A B AB 0x y -=AB 10x y +-=1O (),P x y ()()22:112C x y -+-=x y +(),P a b 222x y r +=l 2ax by r +=l ()()()222:440M x y r r -+-=>()1,0N r ()4,613.写出圆:与圆:的一条公切线方程 .14.已知圆C 的方程为x 2+y 2=2,点P 是直线x−2y−5=0上的一个动点,过点P 作圆C 的两条切线PA 、PB ,A 、B 为切点,则四边形PACB 的面积的最小值为 ;直线AB 过定点 .四、解答题15. (1) 若直线l 经过点,且被两条相交直线和所截得的线段恰被点P 平分,求直线l 的方程.(2) 已知圆C:(x−a )2+(y−b )2=r 2(a >0,r >0)上,且截x 轴的弦长为2,截y 轴的弦长为求圆C 的方程.16.已知圆,直线过点.(1)若直线与圆相切,求直线的方程;(2)若直线l 分别与轴、轴的正半轴交于两点,求△AOB 面积的最小值及此时的直线方程.17.在平面直角坐标系中,三个点到直线l 的距离均为d ,且.(1)求直线l 的方程;(2)若圆C 过点,且圆心在x 轴的正半轴上,直线l 求圆C 的标准方程.18. 已知线段的端点的坐标是,端点的运动轨迹是曲线,线段的中点的轨迹方程是.(1)求曲线的方程;(2)已知斜率为的直线与曲线相交于异于原点的两点直线的斜率分别为,,且证明:直线恒过定点.M ()()22215x y -+-=N ()()22215x y +++=()2,4P -1:220--=l x y 2:70l x y +-=0y +=22:(2)1C x y -+=l ()3,2P l C l x y ,A B (0,0),(2,0),(0,6)O A B -1d <(1,0)AB B ()64,A C AB M()()22421x y -+-=C k l C O E F ,,OE OF ,1k 2k 122k k =.l19.如图,在平面直角坐标系中,已知矩形的长AB 为2,宽BC 为1,,边分别在轴、轴的正半轴上,点与坐标原点重合,将矩形折叠,使点落在线段上,设此点为M .(1)若折痕的斜率为-1,求折痕所在的直线的方程;(2)若折痕所在直线的斜率为,(为常数),试用表示点M 的坐标,并求折痕上任一点(x,y )满足的等式;(3)当时,求折痕长的最大值.参考答案:题号12345678910答案B BBD C D A D ABD ABD 题号11 答案ACD12.【答案】313.(或之一也可以)14. 【答案】 6;(25,−45) 四.解答题15.(1)(2) 16. (1)3x-4y-1=0或 (2)面积最小值12 2x +3y -12=017.(1) (2)18.(1)(1)设,,ABCD AB AD x y A A DC k k k -20k ≤≤20x y +=250x y -+=250x y --=440x y ++=()2214x y -++=(3x =330x y --=22(2)1x y -+=(),A x y ()00,M x y由中点坐标公式得因为点的轨迹方程是,所以,整理得曲线的方程为.(2)设直线的方程为,m ≠0,,,,由,得,所以,,所以,所以,且即,即,所以直线的方程为,即直线过定点.19.(1); (2); (3).006,24.2x x y y +⎧=⎪⎪⎨+⎪=⎪⎩M ()()22421x y -+-=226442122x y ++⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭C ()2224x y -+=l y kx m =+()11,E x y ()22,F x y 120x x ≠()2224y kx m x y =+⎧⎪⎨-+=⎪⎩()()2221220k xkm x m ++-+=()122221km x x k -+=-+21221m x x k=+()()()221212121212121212kx m kx m k x x km x x my y k k x x x x x x +++++===()222222241121km km m k k k m m k -++=+=+=+4m k =Δ0>()()22242410km k m --+>2440m km +-<l ()4y k x =+l ()4,0P --1y x =+2122k y kx =++。

河南省信阳市浉河区信阳高级中学北湖校区2024-2025学年高二上学期10月月考(一)数学试题

河南省信阳市浉河区信阳高级中学北湖校区2024-2025学年高二上学期10月月考(一)数学试题

河南省信阳市浉河区信阳高级中学北湖校区2024-2025学年高二上学期10月月考(一)数学试题一、单选题1.已知{}35A x x =-<<,{}4B x x =>,则A B =I ( ) A .{}35x x -<< B .{}5x x > C .{}45x x << D .{}34x x -<<2.抛物线21,(0)y x a a=->的准线方程是( ) A .4a y =B .4y a =-C .4ay =-D .4y a =3.若0,0m n >>,且3210m n +-=,则32m n+的最小值为( ) A .20B .12C .16D .254.已知21,e e u r u u r 是夹角为60︒的两个单位向量,则12a e e =+r u r u u r 与122b e e =-r u r u u r的夹角是( ) A .60︒B .120︒C .30︒D .90︒5.函数()sin 2f x x =的图象向左平移π4个单位长度,再把横坐标缩短为原来的一半,得到()g x 的图象,则()g x =( ) A .cos 4xB .cos x -C .cos4x -D .sin x -6.已知0x y += )AB .CD .7.如图所示,在棱长为2的正方体1111ABCD A B C D -中,E 为BC 的中点,113CF CC =,则异面直线EF 与11B D 所成角的余弦值为( )A .23B C D 8.已知抛物线x 2=4y 的焦点F 是椭圆2222y x a b +=1(a >b >0)的一个焦点,且该抛物线的准线与椭圆相交于A 、B 两点,若△F AB 是等边三角形,则此椭圆的离心率为( )A B 1 C D 1二、多选题9.若复数z 满足i 1i z =+,则下列命题正确的有( )A .z 的虚部是1-B .||z =C .1i z =+D .复数z 在复平面内对应的点位于第三象限10.设,A B 为两个随机事件,以下命题正确的是( )A .若A 与B 对立,则()1P AB =B .若A 与B 互斥,11(),()32P A P B ==,则5()6P A B +=C .若11(),()32P A P B ==,且1()6P AB =,则A 与B 相互独立D .若A 与B 相互独立,12(),()33P A P B ==,则1()9P AB =11.下列说法正确的有( )A .直线210x my ++=过定点1,02⎛⎫- ⎪⎝⎭B .过点()2,0作圆()2214x y +-=的切线l ,则l 的方程为240x y --=C .若圆221:230O x y y +--=与圆222:6100O x y x y m +--+=有唯一公切线,则25m =D .圆()2214x y +-=上存在两个点到直线20x y +-=的距离为212.如图,双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过右焦点2F 且斜l 交双曲线C 的右支于A 、B 两点,且227AF F B =u u u u r u u u u r,则( )A .双曲线C 的离心率为73B .12AF F △与12BF F △面积之比为7:1C .12AF F △与12BF F △周长之比为7:2D .12AF F △与12BF F △内切圆半径之比为3:1三、填空题13.向量b r与()2,1,2a =-r 共线且满足9a b ⋅=-r r ,则b =r .14.俗话说:“三个臭皮匠顶个诸葛亮”.但由于臭皮匠太“臭”,三个往往还顶不了一个诸葛亮.已知诸葛亮单独解出某道奥数题的概率为0.8,每个臭皮匠单独解出该道奥数题的概率是0.3.试问,至少要几个臭皮匠能顶个诸葛亮?.15.已知四面体ABCD 的顶点都在球О的表面上,平面ABC ⊥平面BCD ,2BC =,ABC V 为等边三角形,且=90BDC ∠︒,则球O 的表面积为.16.已知直线y kx =与椭圆C :222212x y b b+=交于A ,B 两点,弦BC 平行y 轴,交x 轴于D ,AD 的延长线交椭圆于E ,下列说法中正确的命题有.①椭圆C ②12AE k k =;③12AE BE k k ⋅=-; ④以AE 为直径的圆过点B .四、解答题17.甲袋子中装有2个红球、1个白球,乙袋子中装有1个红球、2个白球(袋子不透明,球除颜色外完全一样).(1)现从甲、乙两个袋子中各任选1个球,求选出的2个球的颜色相同的概率; (2)从甲、乙两袋6个球中任选2个球,求选出的2个球来自同一袋子的概率.18.已知ABC V 的内角,,A B C 的对边分别为,,,a b c b a c <cos21A A -=, (1)求A 的大小;(2)若sin sin a A c C B +=,求ABC V 的面积.19.著名古希腊数学家阿基米德首次用“逼近法”的思想得到了椭圆的面积公式S ab π=,(,a b 分别为椭圆的长半轴长和短半轴长)为后续微积分的开拓奠定了基础,已知椭圆C :221189x y +=. (1)求C 的面积;(2)若直线:230l x y +-=交C 于,A B 两点,求AB .20.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是直角梯形,AB BC ⊥,//AD BC ,且122AB BC BB AD ====.(1)求证:1AB ⊥平面1A BC ;(2)求平面1ACD 与平面11ABB A 所成锐二面角的余弦值. 21.已知圆22(2)5C x y +-=:,直线10l mx y :-+=.(1)求证:对R m ∈,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线l 相交于A B ,两点,求弦AB 的中点M 的轨迹方程.22.已知抛物线()2:0C y ax a =>上的点()0,2P x 到焦点F 的距离为02x .(1)求抛物线C 的方程;(2)点(),4T m 在抛物线上,直线l 与抛物线交于,A B 两点(第一象限),过点A 作x 轴的垂线交于点H ,直线AH 与直线OT 、OB 分别交于点,M N (O 为坐标原点),且2A AM N =u u u r u u u u r ,证明:直线l 过定点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期10月月考数学试题
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2016高一下·南阳期末) 学校为了解高二年级1201名学生对某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()
A . 10
B . 20
C . 30
D . 40
2. (2分)设等差数列{an}的前n项和为Sn ,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是()
A . S2 011=2 011,a2 007<a5
B . S2 011=2 011,a2 007>a5
C . S2 011=-2 011,a2 007≤a5
D . S2 011=-2 011,a2 007≥a5
3. (2分) (2018高二上·重庆期中) 已知直线的方程为,则该直线的倾斜角为
A .
B .
C .
4. (2分)(2019·江南模拟) 如图所示,正方体中,点,,,,分别为棱,,,,的中点.则下列叙述中正确的是()
A . 直线平面
B . 直线平面
C . 平面平面
D . 平面平面
5. (2分) (2018高二上·霍邱期中) 两条平行直线与之间的距离是()
A .
B .
C . 2
D . 1
6. (2分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产品数量之比为2;4:3:5,现用分层抽样的方法抽取一个容量为n的样本,样本中产品丁有100件,则此样本容量n等于()
A . 220
B . 240
C . 260
7. (2分) (2019高三上·珠海期末) 已知点满足方程,则点的轨迹为()
A . 圆
B . 椭圆
C . 双曲线
D . 抛物线
8. (2分)(2019·贵州模拟) 下面的程序框图是为了求出满足的最小偶数,那么在“ □”和“ ”两个空白框中,可以分别填入()
A . 和是奇数
B . 和是奇数
C . 和是偶数
D . 和是偶数
9. (2分) (2018高二上·安庆期中) 如果数据x1 , x2 ,…xn的平均数为,方差为s2 ,则5x1+2,5x2+2,…5xn+2的平均数和方差分别为()
A . ,s
B . 5 +2,s2
C . 5 +2,25s2
D . ,25s2
10. (2分) (2018高二上·安庆期中) 直线与圆有公共点,则的最大值为()
A .
B .
C .
D . 2
11. (2分) (2018高二上·黄山期中) 已知三棱锥的所有顶点都在球的球面上,平面
,则球的体积为()
A .
B .
C .
D .
12. (2分) (2018高三上·福建期中) 直线与圆相交于、两点.若
,则的取值范围是()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分)(2018·自贡模拟) 通常,满分为分的试卷,分为及格线.若某次满分为分的测试卷,人参加测试,将这人的卷面分数按照,,…,分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面得分采用“开方乘以取整”的方法进行换算以提高及格率(实数的取整等于不超过的最大整数),如:某位学生卷面分,则换算成分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为________.(结果用小数表示)
14. (1分)(2017·黑龙江模拟) 设某总体是由编号为01,02,…,19,20的20个个体组成的,利用下面的随机数表依次选取6个个体,选取方法是从随机数表第一行的第三列数字开始从左到右依次选取两个数字,则选出来的第6个个体的编号为________.
1818 0792 4544 1716 5809 7983 8619
6206 7650 0310 5523 6405 0526 6238.
15. (1分)(2019·龙岩模拟) 已知抛物线的焦点为,其准线与轴的交点为,过点作直线与抛物线交于两点.若以为直径的圆过点,则的值为________.
16. (1分) (2018高二上·吉安期中) 过直线l:上一点P作圆C:的切线,
,若,关于直线l对称,则点P到圆心C的距离为________.
三、解答题 (共6题;共60分)
17. (10分) (2018高二上·定远期中) 直线过点P 且与x轴、y轴的正半轴分别交于A , B两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB的周长为12;②△AOB的面积为6.若存在,求出方程;若不存在,请说明理由.
18. (10分) (2019高二上·哈尔滨月考) 如图
(1)圆台的较小底面半径为,母线长为,一条母线和底面的一条半径有交点且成,求圆台的侧面积.
(2)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中俯视图由两个半圆和两条线段组成,求该几何体的表面积.
(3)圆台的较小底面半径为,母线长为,一条母线和底面的一条半径有交点且成,求圆台的侧面积.
19. (10分) (2019高三上·杭州月考) 已知两个非零向量,且,
(1)求的夹角;
(2)求的夹角;
(3)若,求的最小值.
(4)若,求的最小值.
20. (10分) (2018高一上·新泰月考) 如图所示,在棱长为2的正方体中, M、N分别是AA1、AC 的中点.
(1)求证:MN∥BCD1A1;
(2)求证:MN∥BCD1A1;
(3)求证:MN⊥C1D;
(4)求证:MN⊥C1D;
21. (10分) (2018高二上·玉溪期中) 设数列{an}的前n项和Sn满足:Sn=nan﹣2n(n﹣1),首项 =1.(1)求数列{an}的通项公式;
(2)求数列{an}的通项公式;
(3)设数列的前n项和为Mn,求证: Mn .
(4)设数列的前n项和为Mn,求证: Mn .
22. (10分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆的半径r的取值范围;
(3)求圆心C的轨迹方程.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共60分) 17-1、
18-1、18-2、18-3、
19-1、19-2、19-3、19-4、
20-1、20-2、
20-3、20-4、21-1、
21-2、21-3、21-4、22-1、22-2、
22-3、。

相关文档
最新文档