高二上学期数学(理)第一次月考试卷含答案
2024-2025学年重庆市南岸区广益中学高二(上)第一次月考数学试卷(含答案)

2024-2025学年重庆市南岸区广益中学高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线3x +3y−1=0的倾斜角为( )A. π6B. π3C. 2π3D. 5π62.已知直线l 1:(a−1)x +y +1=0,l 2:2ax +y +3=0,若l 1//l 2,则实数a =( )A. −1或1B. 0或1C. 1D. −13.设e 1、e 2是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( )A. e 1与e 1−e 2B. e 1+e 2与e 1−3e 2C. e 1−2e 2与−3e 1+6e 2D. 2e 1+3e 2与e 1−2e 24.已知空间直角坐标系O−xyz 中的点A(2,−1,−3)关于xOy 平面的对称点为B ,则|AB|的值为( )A.14B. 4C. 6D. 2105.如图,四棱锥P−OABC 的底面是矩形,设OA =a ,OC =b ,OP =c ,E 是棱PC上一点,且PE =2EC ,则BE =x a +y b +z c ,则x +y +z =( )A. 1B. −1C. −13D. −536.直线l 的方向向量为l ,平面α与β的法向量分别为m ,n ,则下列选项正确的是( )A. 若l ⊥α,则l ⋅m =0 B. 若l//β,则l =kn C. 若α⊥β,则m ⋅n =0D. 若α//β,则m ⋅n =07.已知向量a =(3,−2,−3),b =(−2,x−1,2),且a 与b 的夹角为钝角,则x 的取值范围是( )A. (−5,+∞) B. (−5,73)∪(73,+∞)C. (−∞,−5)D. (73,+∞)8.若θ∈R ,则直线y =xcosθ−1的倾斜角α的取值范围为( )A. [π4,3π4]B. [0,π2)⋃(π2,3π4]C. [0,π4]∪[3π4,π)D. [0,π4]⋃(π2,3π4]二、多选题:本题共3小题,共18分。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
四川省南充2024-2025学年高二上学期10月月考数学试题含答案

南充高中高2023级上期第一次月考数学试卷(答案在最后)考试时间:120分钟满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“2sin 2θ=”是“π4θ=”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】C 【解析】【分析】判断“sin 2θ=”和“π4θ=”之间的逻辑推理关系,即可得答案.【详解】当2sin 2θ=时,π2π,Z 4k k θ=+∈或3π2π,Z 4k k θ=+∈,推不出π4θ=;当π4θ=时,必有2sin 2θ=,故“sin 2θ=”是“π4θ=”的必要不充分条件,故选:C2.设l ,m 是两条不同的直线,α,β,γ是三个不同的平面,下列说法正确的是()A.若//l α,//m α,则//l mB.若//l α,//l β,则//αβC.若l α⊥,m α⊥,则//l mD.若αγ⊥,βγ⊥,则//αβ【答案】C【分析】根据直线与直线的位置关系、直线与平面的位置关系和平面与平面的位置关系依次判断选项即可.【详解】对选项A ,若//l α,//m α,则l 与m 的位置关系是平行,相交和异面,故A 错误.对选项B ,若//l α,//l β,则α与β的位置关系是平行和相交,故B 错误.对选项C ,若l α⊥,m α⊥,则根据线面垂直的性质得l 与m 的位置关系是平行,故C 正确.对选项D ,若αγ⊥,βγ⊥,则α与β的位置关系是平行和相交,故D 错误.故选:C3.若sin 2αα-+=,则tan(π)α-=()A. B.C.3D.3-【答案】C 【解析】【分析】由sin 2αα-+=两边同时平方,从而利用sin tan cos =aa a可以实现角α的弦切互化,【详解】由sin 2αα-+=两边同时平方,可得22sin cos 3cos 4αααα-+=,∴222222sin cos 3cos tan 34sin cos tan 1ααααααααα-+-+==++,解得tan 3α=-.()tan tan 3παα∴-=-=.故选:C.4.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB A C 的中点,则直线1A M 和BN 夹角的余弦值为()A.23B.33C.23D.13【解析】【分析】以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,根据向量夹角的余弦公式求解即可.【详解】分别以1,,DA DC DD 所在直线为,,x y z轴,建立如图所示空间直角坐标系,设正方体1111ABCD A B C D -的棱长为2,则()1(2,0,2),(1,1,0),(2,2,0),1,1,2A M B N ,所以()1(1,1,2),1,1,2MA BN =-=--设向量1MA 与BN的夹角为θ,则1142cos 63MA BN MA BNθ⋅===⋅,所以直线1A M 和BN 夹角的余弦值为23,故选:C .5.在三棱锥S ABC -中,()()20SC SA BS SC SA ++⋅-=,则ABC V 是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】C 【解析】【分析】由向量的线性运算得到2,SC SA BS BC BA SC SA BC BA ++=+-=- ,从而说明22BC BA = ,即可求解.【详解】()()22,SC SA BS SC SA SB SC SB SA SB BC BA SC SA AC BC BA ++=+-=-+-=+-==- ,()()()()2220SC SA SB SC SA BC BA BC BA BC BA ∴+-⋅-=+⋅-=-= ,BC BA ∴=,即BC BA =,所以ABC V 是等腰三角形.故选:C6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.38B.29C.59D.34【答案】B 【解析】【分析】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,用列举法即可求解.【详解】记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为,,A B C ,(),x y 代表依次摸出的卡片,{},,,x y A B C ∈,则基本事件分别为:()()()()()()()()(),,,,,,,,,,,,,,,,,A A A B A C B A B B B C C A C B C C ,其中一张为“琮琮”,一张为“宸宸”的共有两种情况:()(),,,A B B A ,所以从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是29.故选:B.7.已知函数()3f x x =,若正实数a ,b 满足()()490f a f b +-=,则11a b+的最小值为()A.1B.3C.6D.9【答案】A 【解析】【分析】根据函数的奇偶性可得49a b +=,再结合基本不等式“1”的代换可得解.【详解】由已知()3f x x =,定义域为R ,且()()()33f x x x f x -=-=-=-,则()f x 是R 上的奇函数,且函数()3f x x =在R 上单调递增,又()()490f a f b +-=,即()()()499f a f b f b =--=-,则49a b =-,即49a b +=,且0a >,0b >,所以()1111114144415999a b a b a b a b a b b a b a ⎛⎫⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又44a b b a +≥=,即()11141554199a b a b b a ⎛⎫+=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即32a =,3b =时,等号成立,即11a b+的最小值为1.故选:A.8.已知正三棱锥P ABC -的六条棱长均为6,S 是ABC V 及其内部的点构成的集合.设集合{}5T Q S PQ =∈=,则集合T 所表示的曲线长度为()A.5πB.2πC.3D.π【答案】B 【解析】【分析】求出以P 为球心,5为半径的球与底面ABC 的截面圆的半径后即可求解.【详解】设顶点P 在底面上的投影为O ,连接BO ,则O 为三角形ABC 的中心,且23632BO =⨯⨯=,故PO ==因为5PQ =,故1OQ =,故S 的轨迹为以O 为圆心,1为半径的圆,集合T 所表示的曲线长度为2π故选:B二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()A.2ω=B.π6ϕ=C.()f x 的图象关于点π,012⎛⎫⎪⎝⎭对称D.()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增【答案】ACD 【解析】【分析】根据三角函数的图象,先求得ω,然后求得ϕ,根据三角函数的对称性、单调性确定正确答案.【详解】()()5ππ2ππ,π,2,sin 22632T T f x x ωϕω=-=∴==∴==+,π2sin π133f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ2π7π,22636ϕϕ-<<<+<,所以2πππ,326ϕϕ+==-,所以A 选项正确,B 选项错误.()ππππsin 2,2π,,66122k f x x x k x k ⎛⎫=--==+∈ ⎪⎝⎭Z ,当0k =时,得π12x =,所以()f x 关于π,012⎛⎫⎪⎝⎭对称,C 选项正确,11111πππππ2π22π,ππ,26263k x k k x k k -+<-<+-+<<+∈Z ,当11k =时,得()f x 在54π,π63⎛⎫ ⎪⎝⎭上递增,则()f x 在区间5ππ,4⎛⎫⎪⎝⎭上单调递增,所以D 选项正确.故选:ACD10.对于随机事件A 和事件B ,()0.3P A =,()0.4P B =,则下列说法正确的是()A.若A 与B 互斥,则()0.3P AB =B.若A 与B 互斥,则()0.7P A B ⋃=C.若A 与B 相互独立,则()0.12P AB =D.若A 与B 相互独立,则()0.7P A B ⋃=【答案】BC 【解析】【分析】根据互斥事件、相互独立事件的概率公式计算可得.【详解】对于A :若A 与B 互斥,则()0P AB =,故A 错误;对于B :若A 与B 互斥,则()()()0.7P A B P A P B =+= ,故B 正确;对于C :若A 与B 相互独立,则()()()0.12P AB P A P B ==,故C 正确;对于D :若A 与B 相互独立,则()()()()0.30.40.30.40.58P A B P A P B P AB ⋃=+-=+-⨯=,故D 错误.故选:BC11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点,M N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<,则下列结论中正确的有()A.(a ∃∈,使12MN CE=B.线段MN 存在最小值,最小值为23C.直线MN 与平面ABEF 所成的角恒为45°D.(a ∀∈,都存在过MN 且与平面BEC 平行的平面【分析】利用向量的线性运算可得()1MN a BC aBE =-+,结合向量的模的计算可判断B 的正误,结合向量夹角的计算可判断C 的正误,结合共面向量可判断D 的正误.【详解】因为四边形ABCD 正方形,故CB AB ⊥,而平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,CB ⊂平面ABCD ,故CB ⊥平面ABEF ,而BE ⊂平面ABEF ,故CB BE ⊥.设MC AC λ=,则= BN BF λ,其中()0,1λ=,由题设可得MN MC CB BN AC CB BF λλ=++=++,()()()1BC BA CB BA BE BC BE λλλλ=-+++=-+,对于A ,当12λ=即2a =时,111222MN BC BE CE =-+= ,故A 正确;对于B ,()22222111221222MN λλλλλ⎛⎫=-+=-+=-+ ⎪⎝⎭ ,故22MN ≥,当且仅当12λ=即2a =时等号成立,故min 22MN =,故B 错误;对于C ,由B 的分析可得()1MN BC BE λλ=-+,而平面ABEF 的法向量为BC 且()211MN BC BC λλ⋅=-=-,故cos ,MN BC =,此值不是常数,故直线MN 与平面ABEF 所成的角不恒为定值,故C 错误;对于D ,由B 的分析可得()1MN BC BE λλ=-+ ,故,,MN BC BE为共面向量,而MN ⊄平面BCE ,故//MN 平面BCE ,故D 正确;故选:AD三、填空题(本题共3小题,每小题5分,共15分.)12.复数2i12iz +=-的共轭复数z =______.【分析】根据复数的除法运算及共轭复数的概念可求解.【详解】因为2i 12i z +=-()()()()2i 12i 12i 12i ++=-+5i i 5==,所以z =i -.故答案为:i-13.已知向量()2,1,1a =- ,()1,,1b x = ,()1,2,1c =-- ,当a b ⊥ 时,向量b 在向量c上的投影向量为________.(用坐标表示)【答案】()1,2,1-【解析】【分析】先根据向量垂直得到方程,求出3x =,再利用投影向量公式求出答案.【详解】因为a b ⊥ ,所以210a b x ⋅=-+=,所以3x =.因为()1,3,1b = ,所以b 在c 上的投影向量为()1,2,1||||b c cc c c ⋅⋅=-=-.故答案为:()1,2,1-14.已知在ABC V 中,满足)34AB AC AB ACAB AC AB AC++=+,点M 为线段AB 上的一个动点,若MA MC ⋅ 取最小值3-时,则BC 边的中线长为______.【答案】1112【解析】【分析】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,根据题意可推得||3,||4AD AN == ,2π3ADE ∠=,进一步根据MA MC ⋅ 取最小值3-时,求得对应的AC =AB =,由此即可得解.【详解】设)34,,AB AC AB AC AD AN AE ABAC AB AC+===+,则//,//AD EN AN DE ,四边形ADEN为平行四边形,||||3||3,||4,||4||||AB AD AD AN AE AC AN =====,22343712πcos 23423ADE ADE +-∴∠==-⇒∠=⨯⨯,又四边形ADEN 为平行四边形,3πBAC ∴∠=,设,,0,0MA AD AC AN λμλμ==≤≥,()()296MA MC MA MA AC AD AD AN λλμλλμ⋅=⋅+=⋅+=+,由题意2963λλμ+≥-即29630λλμ++≥恒成立,且存在,R λμ∈使得29630λλμ++=成立,其次29630λλμ++=当且仅当2296303Δ361080λλλμμμ⎧⎧=-++=⎪⇔⎨⎨=-=⎩⎪=⎩,此时AC ==AB ==所以BC边的中线长为122AB AC +===.故答案为:2.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.如图,四边形ABCD 为矩形,且2AD =,1AB =,PA ⊥平面ABCD ,1PA =,E 为BC 的中点.(1)求证:PE DE ⊥;(2)求四棱锥P ABCD -的外接球体积.【答案】(1)证明见解析(2【解析】【分析】(1)连接AE ,由线面垂直得到PA DE ⊥,再由线面垂直的判定定理得到DE ⊥平面PAE ,即可证明;(2)由底面为矩形利用长方体的性质可得四棱锥外接球的半径,再由体积公式计算体积.【小问1详解】连结,AE E 为BC 的中点,1EC CD ==,∴DCE △为等腰直角三角形,则45DEC ∠=︒,同理可得45AEB ∠=︒,∴90AED ∠=︒,∴DE AE ⊥,又PA ⊥平面ABCD ,且DE ⊂平面ABCD ,∴PA DE ⊥,又∵AE PA A = ,,AE PA ⊂平面PAE ,∴DE ⊥平面PAE ,又PE ⊂平面PAE ,∴DE PE ⊥.【小问2详解】∵PA ⊥平面ABCD ,且四边形ABCD 为矩形,∴P ABCD -的外接球直径2R =∴2R =,故:3344ππ332V R ⎛⎫=== ⎪ ⎪⎝⎭,∴四棱锥P ABCD -.16.ABC V 的内角,,A B C 的对边分别为,,a b c ,已知cos cos a B b A b c -=+.(1)求角A 的值;(2)若a ABC = ,求,b c .【答案】(1)2π3(2)2,2【解析】【分析】(1)由正弦定理及三角恒等变换化简即可得解;(2)由三角形面积公式及余弦定理求解即可.【小问1详解】cos cos a B b A b c -=+ ,由正弦定理可得:sin cos sin cos sin sin A B B A B C -=+,sin sin()sin cos cos sin C A B A B A B =+=+ ,sin cos sin cos sin sin cos cos sin A B B A B A B A B ∴-=++,即2sin cos sin B A B -=,sin 0B ≠ ,1cos 2A ∴=-,(0,π)A ∈ ,2π3A ∴=.【小问2详解】由题意,1sin 24ABC S bc A bc ===△,所以4bc =,由222222cos a b c bc A b c bc =+-=++,得()2216b c a bc +=+=,所以4b c +=,解得:2b c ==.17.全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为45,34,23,在实践技能考试中“合格”的概率依次为12,23,23,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.【答案】(1)35(2)13【解析】【分析】(1)先根据对立事件的概率公式结合独立事件概率乘积公式计算;(2)先应用对立事件的概率公式及独立事件概率乘积公式应用互斥事件求和计算;【小问1详解】记甲,乙,丙三人在医学综合笔试中合格依次为事件1A ,1B ,1C ,在实践考试中合格依次为2A ,2B ,2C ,设甲没有获得执业医师证书的概率为P124131()1525P P A A =-=-⨯=.【小问2详解】甲、乙、丙获得执业医师证书依次为12A A ,12B B ,12C C ,并且1A 与2A ,1B 与2B ,1C 与2C 相互独立,则()12412525P A A =⨯=,()12321432P B B =⨯=,()12224339P C C =⨯=,由于事件12A A ,12B B ,12C C 彼此相互独立,“恰有两人获得执业医师证书”即为事件:()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++,概率为212142141(1)(1)(1)52952952934P =⨯⨯-+⨯-⨯+-⨯⨯=.18.为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50,50,60,…,90,100得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在50,60的平均成绩是56,方差是7,落在60,70的平均成绩为65,方差是4,求两组成绩的总平均数z 和总方差2s .【答案】(1)0.030(2)84(3)平均数为62;方差为23【解析】【分析】(1)根据频率之和为1即可求解,(2)根据百分位数的计算公式即可求解,(3)根据平均数的计算公式可求得两组成绩的总平均数;再由样本方差计算总体方差公式可求得两组成绩的总方差,即可求解.【小问1详解】由每组小矩形的面积之和为1得,0.050.10.2100.250.11a +++++=,解得0.030a =.【小问2详解】成绩落在[)40,80内的频率为0.050.10.20.30.65+++=,落在[)40,90内的频率为0.050.10.20.30.250.9++++=,显然第75百分位数[)80,90m ∈,由()0.65800.0250.75m +-⨯=,解得84m =,所以第75百分位数为84;【小问3详解】由频率分布直方图知,成绩在[)50,60的市民人数为1000.110⨯=,成绩在[)60,70的市民人数为1000.220⨯=,所以10562065621020z ⨯+⨯==+;由样本方差计算总体方差公式,得总方差为()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+.19.如图,三棱柱111ABC A B C -中,2AB =,且ABC V 与1ABA △均为等腰直角三角形,1π2ACB AA B ∠=∠=.(1)若1A BC 为等边三角形,证明:平面1AAB ⊥平面ABC ;(2)若二面角1A AB C --的平面角为π3,求以下各值:①求点1B 到平面1A CB 的距离;②求平面11B A C 与平面1A CB 所成角的余弦值.【答案】(1)证明见解析(2)①2217,②277【解析】【分析】(1)根据等腰直角三角形及等边三角形的性质可得各边长,再根据勾股定理证明线线垂直,根据线线垂直可证线面垂直,进而可证面面垂直;(2)根据二面角的定义可值1CEA 为等边三角形,①利用等体积转化法可得点到平面距离;②根据二面角的定义可得两平面夹角.【小问1详解】设AB 的中点为E ,连接CE ,1A E ,如图所示,因为ABC V 与1ABA △均为等腰直角三角形,1π2ACB A AB ∠=∠=,故1cos 452BC A B AB ==⋅︒=CE AB ⊥,且112CE AB ==,1112A E AB ==,因为1A BC 为等边三角形,故12==AC BC ,故22211A C CE A E =+,即1CE A E ⊥,又AB ,1A E ⊂平面1AA B ,1A E AB E ⋂=,故CE ⊥平面1AA B ,且CE ⊂平面ABC ,故平面1AA B ⊥平面ABC ;【小问2详解】①由(1)知,CE AB ⊥,1A E AB ⊥,且平面1AA B ⋂平面ABC AB =,故1CEA ∠即二面角1A AB C --的平面角,即1π3CEA ∠=,故1CEA 为等边三角形,则111CA CE A E ===,因为CE AB ⊥,1A E AB ⊥,1A E CE E ⋂=,且CE ,1A E ⊂平面1CEA ,所以AB ⊥平面1CEA ,设线段1A E 中点为F ,则1CF A E ⊥,AB CF ⊥,又AB ,1A E ⊂平面11ABB A ,1AB A E E = ,CF ∴⊥平面11ABB A ,又在三角形1CEA中易知:2CF =,∴11111112133226C A BB A BB V CF S -=⋅=⨯⨯⨯⨯= ,又在三角形1A BC 中,由11AC =,1BC A B ==则22211113cos 24BC A B A CA BC BC AB +-∠==⋅,1sin 4A BC ∠=,则11117sin 24A BC S AB BC A BC =⋅⋅∠= ,设点1B 到平面1A CB 的距离为d ,又由1111113C A BB B A BC A BC V V S d --==⋅⋅△,可得7d =,即求点1B 到平面1A CB 的距离为2217;②由①知,AB ⊥平面1CEA ,而11//AB A B ,故11A B ⊥平面1CEA ,且1A C ⊂平面1CEA ,故111A B AC ⊥,则2211115B C A B AC =+=,设1AC 和1B C 的中点分别为M ,N ,连接MN ,BN ,BM,则11//MN A B ,11112MN A B ==,1MN AC ⊥,又因为12BC A B ==1BM A C ⊥,且MN ⊂平面11A B C ,BM ⊂平面1A BC ,故BMN ∠即二面角11B A C B --的平面角,且222211722BM BC CM BC A C ⎛⎫=-=-= ⎪⎝⎭,因为112BB AA BC ===,故1BN B C ⊥,则222211322BN BC CN BC B C ⎛⎫=-=-= ⎪⎝⎭,所以222731744cos 277212BM MN BN BMN BM MN +-+-∠==⋅⨯⨯,故平面11B A C 与平面1A CB 所成角的余弦值为277.。
2024-2025学年天津市滨海学校高二数学上学期第一次月考试卷及答案解析

2024-2025学年天津市滨海学校高二数学上学期第一次月考试卷满分:150分考试时间:100分钟一、单选题(每题5分,共60分)1.20my ++=的倾斜角为π3,则m =()A.1B.1- C.2D.2-【答案】B 【解析】【分析】由直线的倾斜角求直线的斜率,结合直线方程得m 的值.20my ++=倾斜角为π33m-1m =-.故选:B2.若方程2242x y x y a +-+=表示圆,则实数a 的取值范围为()A.(,5)-∞-B.(5,)-+∞C.(,0)-∞ D.(0,+∞)【答案】B 【解析】【分析】方程配方,左边配成平方和的形式,右边为正即可表示圆.【详解】方程化为标准方程为22(2)(1)5x y a -++=+,有50a +>,∴5a >-..故选:B3.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A.()()22211x y ++-= B.()()22214x y ++-=C.()()22211x y -++= D.()()22214x y -++=【答案】B 【解析】【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.4.圆22260x y x y +-+=的圆心到直线20x y -+=的距离为()A.B.2C.3D.【答案】D 【解析】【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=的距离为=故选:D.5.若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是()A.ππ,63⎡⎫⎪⎢⎣⎭ B.ππ,62⎛⎫⎪⎝⎭C.ππ,32⎛⎫⎪⎝⎭D.ππ,32⎡⎤⎢⎣⎦【答案】B 【解析】【分析】根据题意结合斜率、倾斜角之间的关系分析求解.【详解】因为直线:l y kx =-(0,P ,直线2360x y +-=与坐标轴的交点分别为()()3,0,0,2A B ,直线AP的斜率3AP k =,此时倾斜角为π6;直线BP 的斜率不存在,此时倾斜角为π2;所以直线l 的倾斜角的取值范围是ππ,62⎛⎫ ⎪⎝⎭.故选:B.6.若1:10l x my --=与()2:2310l m x y --+=是两条不同的直线,则“1m =-”是“12l l ∥”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用两直线平行解出m 的值即可.【详解】由题意,若12l l ∥,所以()()()132m m ⨯-=--,解得1m =-或3m =,经检验,1m =-或3m =时,12l l ∥,则“1m =-”是“12l l ∥”的充分不必要条件,故选:C .7.四棱锥S ABCD -中,()4,2,3AB =- ,()4,1,0AD =- ,()3,1,4AS =--,则顶点S 到底面ABCD的距离为()A.1B.2C.3D.4【答案】A 【解析】【分析】先求出平面ABCD 的法向量,再根据点到面的距离的向量公式求解即可.【详解】设平面ABCD 的法向量为(),,n x y z =,则有423040n AB x y z n AD x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令3x =,则12,4y z ==,所以()3,12,4n =,所以顶点S 到底面ABCD 的距离为91216113n AS n ⋅-+-== .故选:A .8.已知直线30x y λ++=与直线2610x y ++=间的距离为2,则λ=()A.92-或112B.9-C.9-或11D.6或4-【答案】A 【解析】【分析】运用两条平行直线间的距离公式计算即可.【详解】直线30x y λ++=可化为2620x y λ++=,所以102=,解得92λ=-或112λ=.故选:A.9.已知直线l 过定点()2,3,1A ,且方向向量为()0,1,1s = ,则点()4,3,2P 到l 的距离为()A.322B.2C.102D.【答案】A 【解析】【分析】先计算PA 与s的夹角的余弦值得出直线PA 与直线l 的夹角的正弦值,再计算点P 到直线l 的距离.【详解】由题意得()2,0,1PA =-- ,所以PA ==,又直线l 的方向向量为()0,1,1s=,则s ==,所以cos ,PA sPA s PA s⋅<>==-⋅,设直线PA 与直线l 所成的角为θ,则cos cos ,10PA s θ=<>= ,则sin 10θ=,所以点()4,3,2P 到直线l 的距离为sin 102d PA θ=⋅== .故选:A .10.已知点D 在△ABC 确定的平面内,O 是平面ABC 外任意一点,实数x ,y 满足32OD OC xOA yOB =--,则222x y +的最小值为()A.13 B.23C.1D.43【答案】D 【解析】【分析】根据空间四点共面及二次函数的最值求解.【详解】因为32OD OC xOA yOB =--,且,,,A B C D 四点共面,由空间四点共面的性质可知321x y --=,即22x y =-,所以()2222222442226846333x y y y y y y ⎛⎫+=-+=-+=-+≥ ⎪⎝⎭,所以当23y =时,222x y +有最小值43.故选:D11.已知集合()3,2,1y A x y y x ⎧⎫-==∈⎨⎬-⎩⎭R ,(){},4160,,B x y x ay x y =+-=∈R ,A B ≠∅ ,则实数a 的取值范围为()A.()(),44,-∞-+∞B.()(),22,-∞-+∞ C.()()(),22,44,-∞-⋃-⋃+∞ D.()()(),44,22,-∞-⋃-⋃+∞【答案】C 【解析】【分析】根据集合,A B 的元素以及A B ≠∅ 求得a 的取值范围.【详解】集合A 表示直线()321y x -=-,即21y x =+上除去点()1,3的点,集合B 表示直线4160x ay +-=上的点.因为A B ≠∅ ,所以直线21y x =+与4160x ay +-=相交,且交点不是点()1,3,所以240a +≠且43160a +-≠,解得2a ≠-且4a ≠.故选:C12.已知()11,A x y 、()22,B x y 为圆22:1C x y +=不同两点,且满足12OA OB ⋅=,则+)A.-B.2-C.2-D.【答案】D 【解析】【分析】求出π3AOB ∠=,题目转化为A 、B 到直线20x y +-=的距离之和,变换得到2AC BD EF +=,计算min2EF =-得到答案.【详解】因为1,1、2,2在圆221x y +=上,12OA OB ⋅=所以22111x y +=,22221x y +=,121212x x y y +=,且12121cos 2OA OB AOB x x y y OA OB⋅∠==+=⋅,因为0πAOB ≤∠≤,则π3AOB ∠=,因为1OA OB ==,则AOB V 是边长为1的等边三角形,表示A 、B 到直线20x y +-=的距离之和,原点O 到直线20x y +-=的距离为d ==如图所示:AC CD ⊥,BD CD ⊥,E 是AB 的中点,作EF CD ⊥于F ,且OE AB ⊥,2AC BD EF +=,2OE ==,故E 在圆2234x y +=上,min22EF d =-=.min2EF=故选:D.【点睛】关键点睛:本题的关键是首先求出π3AOB ∠=,再将题意转化为表示A 、B 到直线20x y +-=的距离之和,最后利用中位线性质和圆外点外圆上点距离最值问题解决.二、填空题(每题5分,共40分)13.已知经过()1,1A a a -+、()3,2B a 两点的直线l 的方向向量为()1,2-,则实数a 的值为______.【答案】1-【解析】【分析】由已知得出()2,1AB a a =+-,进而根据已知条件、结合向量共线列出方程,求解即可得出答案.【详解】由已知可得,()2,1AB a a =+-.又直线l 的方向向量为()1,2-,所以,()2,1AB a a =+-与()1,2-共线,所以有()()22110a a -+-⨯-=,解得1a =-.故答案为:1-.14.直三棱柱111ABC A B C -中,90BCA ∠=o ,11,D F 分别是1111A B A C ,的中点,1BC AC CC ==,则11BD AF 与所成角的余弦值为___________【答案】3010【解析】【分析】建立空间直角坐标系,利用向量的夹角即可求解.【详解】依题意可知1,,AC BC CC 两两相互垂直,由此建立如图所示空间直角坐标系,设12BC AC CC ===,则()()()()()()11112,0,0,1,0,2,1,0,2,0,2,0,1,1,2,1,1,2A F AF B D BD =-=-,设1BD 与1AF 所成角为α,则1111cos 10AF BD AF BD α⋅==⋅.故答案为:1015.已知直线l 的倾斜角为4,sin 5αα=,且这条直线l 经过点()3,5P ,则直线l 的一般式方程为__________.【答案】4330x y -+=或43270x y +-=【解析】【分析】先由倾斜角求直线的斜率,然后写出直线的点斜式方程,最后化为直线的一般式方程.【详解】因为4sin 5α=,且[)0,πα∈,则cos 53α==±,所以直线l 的斜率为4tan 3k α==±,又因为直线l 经过点()3,5P ,则直线l 的方程为()4533y x -±-=,所以直线l 的一般式方程为4330x y -+=或43270x y +-=.故答案为:4330x y -+=或43270x y +-=.16.如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若1160A AB A AD ∠=∠=,且13AA =,则1AC 的长为__________.【解析】【分析】由111AC AB BC CC AB AD AA =++=++,借助模长公式得出1AC 的长.【详解】因为111AC AB BC CC AB AD AA =++=++所以()2211AC AB AD AA =++222111222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅ 11119202132131722=+++⨯+⨯⨯⨯+⨯⨯⨯=即1AC =17.如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是_________.【答案】【解析】【分析】求出P 关于直线AB 和y 的对称点,由两个对称点间距离得结论.【详解】设点P 关于直线AB 的对称点为(,)D x y ,直线AB 方程为4x y +=,因此122422yx x y ⎧=⎪⎪-⎨+⎪+=⎪⎩.解得42x y =⎧⎨=⎩,即(4,2)D ,P 关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为CD =.故答案为:.18.①坐标系中,经过三点()()()0,0,1,1,2,0的圆的方程为___________②过()()5,0,2,1-两点,且圆心在直线3100x y --=上的圆的标准方程为___________【答案】①.2220x y x +-=②.()()221325x y -++=【解析】【分析】①设所求圆的一般方程为220x y Dx Ey F ++++=,将三个点的坐标代入圆的一般方程,可得出关于D 、E 、F 的方程组,解出这三个未知数的值,可得出圆的方程,进而可求得圆心坐标和半径.②首先设圆的标准方程为()()222x a y b r -+-=,根据题意得到()()()2222225213100a b r a b r a b ⎧-+=⎪⎪--+-=⎨⎪--=⎪⎩,再解方程即可.【详解】①设所求圆的一般方程为220x y Dx Ey F ++++=,由题意可得020240F D E F D F =⎧⎪+++=⎨⎪++=⎩,解得200D E F =-⎧⎪=⎨⎪=⎩,所以,所求圆的方程为2220x y x +-=②设圆的标准方程为()()222x a y b r -+-=,由题知:()()()2222225121331005a b r a a b r b a b c ⎧-+==⎧⎪⎪⎪--+-=⇒=-⎨⎨⎪⎪--==⎩⎪⎩,所以标准方程为()()221325x y -++=.故答案为:2220x y x +-=,()()221325x y -++=19.如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________,点S 与P 距离的最小值是________.【答案】①.2②.【解析】【分析】建系,根据空间向量的垂直关系可得点P 的轨迹方程为34y =.空1:根据圆的弦长公式运算求解;空2:根据空间中两点间距离公式运算求解.【详解】由题意可知,建立空间直角坐标系,如图所示.则()()(0,1,0,0,1,0,0,0,,0,0,3A B S M ⎛- ⎝⎭,设(),,0P x y,则0,1,,,,22AM MP x y ⎛⎛==- ⎝⎭⎝⎭uuu r uuu r ,因为AM ⊥MP,则01022AM MP x y ⎛⎫⋅=⨯+⨯+-= ⎪ ⎪⎝⎭uuu r uuu r ,解得34y =,所以点P 的轨迹方程为34y =,空1:根据圆的弦长公式,可得点P形成的轨迹长度为2=;空2:因为SP =,所以当0x =时,点S 与P距离的最小,其最小值为574.故答案为:2;4.20.已知圆22:(6)9C x y -+=,点M 的坐标为(2,4),过点(4,0)N 作直线l 交圆C 于A B 、两点,则MA MB +的取值范围为______【答案】812MA MB ≤+≤.【解析】【分析】取AB 中点为D ,连接MD ,CD ,确定点D 的轨迹为以NC 为直径的圆,根据MF r MD MFr -≤≤+得到答案.【详解】取AB 中点为D ,连接MD ,如图所示:则CD ND ⊥,又()6,0C,(4,0)N ,(2,4)M 故点D 的轨迹为以NC 为直径的圆,圆心为()5,0G ,半径为1r =,因为2MA MB MD +=,5MG =,所以MG r MD MG r -≤≤+,即46MD ≤≤,则812MA MB ≤+≤.故答案为:812MA MB ≤+≤.三、解答题(前两题每题12分,后两题每题13分,共50分)21.已知点()1,2P -,直线1:430l x y ++=和2:3550l x y --=(1)过点P 作1l 的垂线PH ,求垂足H 的坐标;(2)过点P 作l 分别于12,l l 交于点A B 、,若P 恰为线段AB 的中点,求直线l 的方程.【答案】(1)2133,1717H -⎛⎫⎪⎝⎭(2)310x y ++=【解析】【分析】(1)由直线的位置关系求PH 方程,再联立求解交点坐标,(2)设出A 点坐标,由中点表示B 点坐标,分别代入直线方程联立求解.【小问1详解】1:430l x y ++=,即43y x =--,则14PH k =,直线PH 为()1124y x =++,即490x y -+=,联立方程430490x y x y ++=⎧⎨-+=⎩,解得21173317x y ⎧=-⎪⎪⎨⎪=⎪⎩,故2133,1717H -⎛⎫ ⎪⎝⎭.【小问2详解】不妨设()00,A x y ,则()002,4B x y ---,则()()0000430325450x y x y ++=⎧⎨-----=⎩,解得0025x y =-⎧⎨=⎩,故直线l 过点()1,2P -和点()1522,5,321k --==--+,故直线方程为()312y x =-++,即310x y ++=.22.如图,在四棱锥P ABCD -中,四边形ABCD 是边长为3的正方形,PA ⊥平面ABCD ,PC =,点E 是棱PB 的中点,点F 是棱PC 上的一点,且2PF FC =.(1)证明:平面AEC ⊥平面PBC ;(2)求平面AEF 和平面AFC 夹角的大小.【答案】(1)证明见解析(2)4π.【解析】【分析】(1)以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,分别求出平面AEC 与平面PBC 的法向量,从而可证明.(2)分别求出平面AEF 和平面AFC 的法向量,利用向量法可求解.【小问1详解】如图,以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以()()()0,0,0,3,0,0,3,3,0A B C ,设()0,0,0()P t t >,则PC ==,解得3t =,即()0,0,3P .则()3333,0,,,0,,3,3,02222E AE AC ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,设平面AEC 的一个法向量为(),,n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即33022330x z x y ⎧+=⎪⎨⎪+=⎩令1x =,解得1,1y z =-=-,所以平面AEC 的一个法向量为()1,1,1n =--.因为()()0,3,0,3,0,3BC BP ==- ,设平面PBC 的一个法向量为()111,,m x y z =,所以0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩即11130330y x z =⎧⎨-+=⎩,令11x =,解得110,1y z ==,所以平面PBC 的一个法向量为()1,0,1m =,又0m n ⋅=,所以平面AEC ⊥平面PBC ;【小问2详解】()()113,3,31,1,133CF CP ==⨯--=-- ,所以()2,2,1AF AC CF =+=.设平面EAF 的一个法向量为()1222,,n x y z =,所以1100n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ ,即22222330,22220,x z x y z ⎧+=⎪⎨⎪++=⎩令21x =,解得221,12y z =-=-,所以平面EAF 的一个法向量为111,,12n ⎛⎫=-- ⎪⎝⎭.设平面CAF 的一个法向量为()2333,,n x y z =,则2200n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即33333330,220,x y x y z +=⎧⎨++=⎩令31x =,解得331,0y z =-=,所以平面CAF 的一个法向量为()21,1,0n =-.12121232cos ,2n n n n n n ⋅==⋅,所以平面AEF 和平面AFC 夹角的大小为4π23.已知圆M与直线340x +=相切于点(,圆心M 在x 轴上.(1)求圆M 的标准方程;(2)若直线l :(21)(1)74m x m y m +++=+()m ∈R 与圆M 交于P ,Q 两点,求弦PQ 的最短长度.【答案】(1)22(4)16x y -+=(2)【解析】【分析】(1)根据已知条件,设出圆的方程,再结合两点之间的距离公式,以及直线垂直的性质,即可求解.(2)先求出直线l 的定点,再判断定点在圆内,再结合垂径定理,以及两点之间的距离公式,即可求解.【小问1详解】依题意, 圆心M 在x 轴上,∴可设圆的方程为222()x a y r -+=,圆M与直线340x -+=相切于点,∴()2217711a r a⎧-+=⎪⎨=-⎪-⎩,解得4a =,4r =,故圆的方程为22(4)16x y -+=.【小问2详解】直线l :(21)(1)74m x m y m +++=+,()2740m x y x y ∴+-++-=,令27040x y x y +-=⎧⎨+-=⎩,解得31x y =⎧⎨=⎩,∴直线l 过定点(3,1)D ,又圆M 的方程为22(4)16x y -+=.所以圆心(4,0)M ,半径4r=,4<,故定点(3,1)D 在圆M 的内部,当直线MD 与直线l 垂直时,弦PQ 取得最小值,()3,1D ,(4,0)M ,∴DM =,∴弦PQ 的最短长度为==.24.如图,在四棱锥E ABCD -中,平面ABCD ⊥平面ABE ,//AB DC ,,222AB BC AB BC CD ⊥===,AE BE ==M 为BE 的中点.(1)求证://CM 平面ADE ;(2)在线段AD 上是否存在一点N ,使直线MD 与平面BEN 所成的角正弦值为21,若存在求出AN 的长,若不存在说明理由.【答案】(1)证明见解析(2)存在求出AN 的.【解析】【分析】(1)利用线面平行判定定理证明;(2)利用空间向量的坐标运算,求直线与平面的夹角的正弦值,即可求解.【小问1详解】取AE 的中点P ,连接,,MP DP∵AE BE ==∴ABE 是等腰三角形,∵点M 为BE 的中点.∴.//MP AB ,2=MP AB ,∵,2//AB DC AB CD =,可得四边形CDPM 是平行四边形,∴//CM DP ,又∵DP ⊂平面,ADE CM ⊄平面ADE ,∴.//CM 平面ADE ;【小问2详解】取AB 中点为O ,连接,DO EO ,则有//DO BC ,因为,AB BC ⊥所以,AB DO ⊥因为平面ABCD ⊥平面ABE ,交线为AB ,DO ⊂平面ABCD ,所以DO ⊥平面ABE ,且,OE OB ⊂平面ABE ,所以,DO OE DO OB ⊥⊥,且在等腰三角形ABE 中,OE OB ⊥,所以以O 为坐标原点,建立如图所示空间直角坐标系,())()()0,1,0,,0,1,1,0,0,1,B E CD ()()1,,0,0,1,0,0,1,1,22M A AD ⎛⎫=-= ⎪ ⎪⎝⎭假设AD 上存在一点N ,设()01,AN AD λλ=≤≤则()())0,1,,0,2,,1,0,N BN BE λλλλ-=-=-1,,1,22MD ⎛⎫=-- ⎪ ⎪⎝⎭设平面BEN 的一个法向量为(,,)m x y z =,则(2)0m BN y z m BE y λλ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取,y λ=则2x z λ==-,所以,2m λλ⎫=-⎪⎭,设直线MD 与平面BEN 所成的角为α,则sin α=,即cos ,21MD m MD m MD m⋅==⋅,整理得,21634130λλ-+=,解得12λ=或138λ=(舍去),故得到AN 的长为1222AN AD ==.。
江西省宜春市宜春中学2024-2025学年高二上学期10月第一次月考数学试题(含答案)

2026届高二上学期第一次月考数学试卷(考试时间:120分钟试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、准考证号等信息。
2.请将答案正确填写在答题卡上。
第Ⅰ卷(选择题)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设直线的倾斜角为,则的值为()AB .CD .2.已知直线和,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知,且与夹角为锐角,则实数的取值范围是( )A .B .C .D .4.已知圆与轴相切,则( )A .1B .0或C .0或1D .5.如图所示,在四面体中,点是的中点,记,,则等于( )A .B .C .D .6.在圆锥中,轴截面为腰长为的等腰直角三角形,为底面圆上一点,且为线段上一动点,为等腰三角形,则的最小值为( )A .B .C .D .:220l x y -+=αcos α1:70l x my ++=()2:2320l m x y m -++=1m =-12l l ∥()()1,2,1,1,,1a b x =-=-abx ()2,1-(),1-∞()(),22,1-∞-- ()1,+∞()22420x y mx my m m ++-+=∈R x m =1414A BCD -E CD ,AB a AC b == AD c = BE1122a b c-++ 1122a b c-+1122a b c-+ 1122a b c-++ SO SAC △B E AB ABC △SE CE +)21+)22+7.已知,动圆经过原点,且圆心在直线上.当直线的斜率取最大值时,( )ABCD8.已知直线与圆交于不同的两点是坐标原点,且有的取值范围是( )A .B .C .D .二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分。
四川省德阳2024-2025学年高二上学期第一次月考数学试题含答案

德阳高2023级2024年秋季第一学月考试数学试题(答案在最后)考试范围:必修二第十章、选修第一册第一章;考试时间:120分钟;命题人:高二数学组注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题1.已知集合{}2,0,1,3A =-,{}0,2,3B =,则A B = ()A.{}2,1- B.{}2,1,2- C.{}0,3 D.{}2,0,1,2,3-【答案】C 【解析】【分析】运用交集性质即可得.【详解】由{}2,0,1,3A =-,{}0,2,3B =,则{}0,3A B ⋂=.故选:C.2.2(2i)4z =+-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】将复数化为标准形式再根据复数的几何意义即可确定.【详解】2(2i)414i z =+-=-+,则z 在复平面内对应的点位于第二象限,故选:B.3.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为()A.5、10、15B.3、9、18C.3、10、17D.5、9、16【答案】B 【解析】【分析】利用分层抽样的定义求出对应人数,得到答案.【详解】抽取的高级职称人数为15303150⨯=,中级职称人数为45309150⨯=,一般职员的人数为903018150⨯=,故抽取的高级职称、中级职称、一般职员的人数分别为3、9、18.故选:B4.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A .6B.7C.8D.9【答案】C 【解析】【分析】借助百分位数定义计算即可得.【详解】由60.53⨯=,故这组数据的中位数为7982+=.故选:C.5.从1,2,3,4,5中任取2个不同的数,取到的2个数之和为偶数的概率为()A.13B.23C.12D.25【答案】D 【解析】【分析】应用列举法求古典概型的概率即可.【详解】任取2个不同数可能有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),共10种情况,其中和为偶数的情况有(1,3)、(1,5)、(2,4)、(3,5),共4种情况,所以取到的2个数之和为偶数的概率为42105=.故选:D6.已知空间中非零向量a ,b ,且1a = ,2b = , 60a b =,,则2a b - 的值为()A.1B.C.2D.4【答案】C 【解析】【分析】根据向量的模长公式即可求解.【详解】因为2222222(2)4444cos a b a b a a b b a a b a b b -=-=-⋅+=- ,14412442=-⨯⨯⨯+=,所以22a b -= .故选:C7.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫ ⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m = ,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ==,又7⋅= m n ,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.8.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,侧棱与底面垂直,若点C 到平面AB 1D 1的距离为5,则直线1B D 与平面11AB D 所成角的余弦值为()A.B.3710C.1010D.10【答案】A 【解析】【分析】先由等面积法求得1AA 的长,再以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -,运用线面角的向量求解方法可得答案.【详解】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D,则5CH =,设1AA a =,则AO CO AC ===,则根据三角形面积得1122AOC S AO CH AC ∆=⨯⨯=⨯,代入解得a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则1111(2,0,0),(0,2,0),(0,2,2(2,0,A B D D AD AB =-=-,1(B D =- ,设平面11AB D 的法向量为(n x =,y ,)z ,则1100n AD n AB ⎧⋅=⎨⋅=⎩,即2020y x ⎧-=⎪⎨-=⎪⎩,令x =,得n =.11110cos ,10||||B D n B D n B D n ⋅〈〉==,所以直线1B D 与平面1111D C B A故选:A.二、多选题9.设,A B 是两个概率大于0的随机事件,则下列结论正确的是()A.若A 和B 互斥,则A 和B 一定相互独立B.若事件A B ⊆,则()()P A P B ≤C.若A 和B 相互独立,则A 和B 一定不互斥D.()()()P A B P A P B <+ 不一定成立【答案】BC 【解析】【分析】对于AC :根据互斥事件和独立事件分析判断即可;对于B :根据事件间关系分析判断即可;对于D :举反例说明即可.【详解】由题意可知:()()0,0P A P B >>,对于选项A :若A 和B 互斥,则()0P AB =,显然()()()P AB P A P B ≠,所以A 和B 一定不相互独立,故A 错误;对于选项B :若事件A B ⊆,则()()P A P B ≤,故B 正确;对于选项C :若A 和B 相互独立,则()()()0P AB P A P B =>,所以A 和B 一定不互斥,故C 正确;对于选项D :因为()()()()P A B P A P B P AB =+- ,若A 和B 互斥,则()0P AB =,则()()()P A B P A P B =+ ,故D 错误;故选:BC.10.如图,点,,,,A B C M N 是正方体的顶点或所在棱的中点,则下列各图中满足//MN 平面ABC 的是()A. B.C. D.【答案】ACD 【解析】【分析】结合题目条件,根据线面平行的判断定理,构造线线平行,证明线面平行.【详解】对A :如图:连接EF ,因为,M N 为正方体棱的中点,所以//MN EF ,又//EF AC ,所以//MN AC ,AC ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故A 正确;对B :如图:因为,,,,A B C M N 是正方体棱的中点,所以//MN GH ,//BC EF ,//GH EF ,所以//BC MN ,同理://AB DN ,//AM CD .所以,,,,A B C M N 5点共面,所以//MN 平面ABC 不成立.故B 错误;对C :如图:因为,B C 是正方体棱的中点,所以//BC EF ,//MN EF ,所以//BC MN .⊂BC 平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故C 正确;对D :如图:因为,.B C M 为正方体棱的中点,连接ME 交AC 于F ,连接BF ,则BF 为MNE 的中位线,所以//BF MN ,BF ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故D 正确.故选:ACD11.如图,在平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将△ABD 折起到△PBD 的位置,使得平面PBD ⊥平面BCD ,连接PC ,下列说法正确的是()A.平面PCD ⊥平面PBDB.三棱锥P BCD -外接球的表面积为10πC.PD 与平面PBC 所成角的正弦值为34D.若点M 在线段PD 上(包含端点),则△BCM 面积的最小值为217【答案】ACD 【解析】【分析】结合线线垂直,线面垂直与面面垂直的相互转化关系检验A,根据外接球的球心位置即可结合三角形的边角关系求解半径,可判断B,结合空间直角坐标系及空间角及空间点到直线的距离公式检验CD .【详解】BCD △中,1CD =,2BC =,60A ∠=︒,所以3BD =,故222BD CD BC +=,所以BD CD ⊥,因为平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD CD ⊥,CD ⊂平面BCD 所以CD ⊥平面PBD ,CD ⊂平面PCD ,所以平面PCD ⊥平面BPD ,故A 正确;取BC 的中点为N ,PB 中点为Q ,过N 作12ON //PB,ON PB =,由平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD PB ⊥,PB ⊂平面PBD ,故PB ⊥平面BCD ,因此ON ⊥平面BCD ,由于BCD △为直角三角形,且N 为斜边中点,所以OB OC OD ==,又12ON //PB,ON PB =,所以QB ON ,BQ //ON =,因此OP OB =,因此O 为三棱锥P BCD -外接球的球心,且半径为2OB ==,故球的表面积为54π=5π4´,故B错误,以D为原点,联立如图所示的空间直角坐标系,则B 0,0),(0C ,1,0),P ,0,1),因为(0BP = ,0,1),(BC =,1,0),)01DP ,= ,设平面PBC 的法向量为(),,m x y z =,所以0000z m BP y m BC ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩,取x =)30m ,=所以cos ,4||||m DP m DP m DP⋅<>==,故PD 与平面PBC所成角的正弦值为4,故C 正确,因为M 在线段PD上,设M ,0,)a,则MB=,0,)a -,所以点M 到BC的距离d ==,当37a =时,d 取得最小值217,此时MBC ∆面积取得最小值12121277BC ⨯=,D 正确.故选:ACD.第Ⅱ卷(选择题)三、填空题12.如果从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率是________.【答案】112【解析】【分析】根据相互独立事件概率乘法公式求解.【详解】从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率1114312P =⨯=.故答案为:112.13.已知正方体1111ABCD A B C D -的棱长为2,点E 是11A B 的中点,则点A 到直线BE 的距离是__________.【答案】5【解析】【分析】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,利用点到直线的向量公式可得.【详解】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.则()()()2,0,0,2,2,0,2,1,2A B E ,所以()()0,2,0,0,1,2BA BE =-=-,记与BE同向的单位向量为u ,则5250,,55u ⎛=-⎝⎭,所以,点A 到直线BE 的距离455d ===.故答案为:514.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,点,E F 分别为,CD CP 的中点,点T 为PAB 内的一个动点(包括边界),若CT ∥平面AEF ,则点T 的轨迹的长度为__________.【答案】53153【解析】【分析】记AB 的中点为G ,点T 的轨迹与PB 交于点H ,则平面//CHG 平面AEF ,建立空间直角坐标系,利用CH垂直于平面AEF ,的法向量确定点H 的位置,利用向量即可得解.【详解】由题知,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 所在直线分别为,,x y z 轴建立空间直角坐标系,记AB 的中点为G ,连接CG ,因为ABCD 为正方形,E 为CD 中点,所以//AG CE ,且AG CE =,所以AGCE 为平行四边形,所以//CG AE ,又CG ⊄平面AEF ,AE ⊂平面AEF ,所以//CG 平面AEF ,记点T 的轨迹与PB 交于点H ,由题知//CH 平面AEF ,因为,CH CG 是平面CHG 内的相交直线,所以平面//CHG 平面AEF ,所以GH 即为点T 的轨迹,因为()()()()()()0,0,0,1,2,0,1,1,1,2,2,0,0,0,2,2,0,0A E F C P B ,所以()()()()2,0,2,2,2,2,1,2,0,1,1,1PB CP AE AF =-=--== ,设PH PB λ=,则()()()2,2,22,0,222,2,22CH CP PH CP PB λλλλ=+=+=--+-=--- ,设(),,n x y z =为平面AEF 的法向量,则200AE n x y AF n x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,令1y =得()2,1,1n =- ,因为CH n ⊥ ,所以()2222220λλ---+-=,解得23λ=,则22,2,33CH ⎛⎫=-- ⎪⎝⎭ ,又()1,2,0GC AE == 所以()22121,2,0,2,,0,3333GH GC CH ⎛⎫⎛⎫=+=+--= ⎪ ⎪⎝⎭⎝⎭ ,所以12145,0,33993GH ⎛⎫==+= ⎪⎝⎭.故答案为:53【点睛】关键点睛:本题关键在于利用向量垂直确定点T 的轨迹与PB 的交点位置,然后利用向量运算求解即可.四、解答题15.《中华人民共和国民法典》于2021年1月1日正式施行.某社区为了解居民对民法典的认识程度,随机抽取了一定数量的居民进行问卷测试(满分:100分),并根据测试成绩绘制了如图所示的频率分布直方图.(1)估计该组测试成绩的平均数和第57百分位数;(2)该社区在参加问卷且测试成绩位于区间[)80,90和[]90,100的居民中,采用分层随机抽样,确定了5人.若从这5人中随机抽取2人作为该社区民法典宣讲员,设事件A =“两人的测试成绩分别位于[)80,90和[]90,100”,求()P A .【答案】(1)平均数76.2;第57百分位数79;(2)()35P A =.【解析】【分析】(1)利用频率分布直方图计算平均数及百分位数;(2)根据分层抽样确定测试成绩分别位于[)80,90和[]90,100的人数,按照古典概型计算即可.【小问1详解】由频率分布直方图可知测试成绩的平均数450.04550.06650.2750.3850.24950.1676.2x =⨯+⨯+⨯+⨯+⨯+⨯=.测试成绩落在区间[)40,70的频率为()0.0040.0060.02100.3++⨯=,落在区间[)40,80的频率为()0.0040.0060.020.03100.6+++⨯=,所以设第57百分位数为a ,有()0.3700.030.57a +-⨯=,解得79a =;【小问2详解】由题知,测试分数位于区间[)80,90、[)90,100的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[)80,90中3人,用1A ,2A ,3A 表示,在区间[)90,100中2人,用1B ,2B 表示,从这5人中抽取2人的所有可能情况有:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31A B ,()32,A B ,()12,B B ,共10种,其中“分别落在区间[)80,90和[)90,100”有6种,所以()35P A =.16.在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)证明:B 1D ⊥平面ABD ;(2)证明:平面EGF ∥平面ABD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)建立空间直角坐标系,利用向量法来证得1B D ⊥平面ABD .(2)利用向量法证得平面//EGF 平面ABD .【小问1详解】以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .【小问2详解】由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG uuu r =,1,12a ⎛⎫ ⎪⎝⎭,EF =(0,1,1),1B D ·EG uuu r =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .17.已知甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立.(1)甲乙两人同时命中目标的概率;(2)甲乙两人中至少有1人命中目标的概率.【答案】(1)0.72(2)0.98【解析】【分析】(1)利用相互独立事件概率乘法公式即可求出答案.(2)利用对立事件概率计算公式和相互独立事件概率乘法公式即可求得答案.【小问1详解】因为甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立,设事件A 表示甲命中,事件B 表示乙命中,则()0.8P A =,()0.9P B =所以甲、乙两人同时命中目标的概率()()()0.80.90.72P AB P A P B ==⨯=,【小问2详解】甲乙两人中至少有1人命中目标的对立事件是甲、乙都没击中目标,甲、乙都没击中目标的概率()()()()()10.810.90.02P AB P A P B ==--=,所以甲乙两人中至少有1人命中目标的概率为:()()110.020.98P A B P AB =-=-= 18.如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,AF DE F ⊥为垂足.(1)求证:AF DB ⊥.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求平面EDC 与平面DCB 夹角的余弦值;②求点B 到平面CDE 的距离.【答案】(1)证明见解析(2)①41919;②25719【解析】【分析】(1)利用线面垂直得到AF ⊥平面BED ,进而证明AF DB ⊥即可.(2)①建立空间直角坐标系,利用二面角的向量求法处理即可.②利用点到平面的距离公式求解即可.【小问1详解】由题意可知DA ⊥底面,ABE BE ⊂平面ABE ,故BE DA ⊥,又,,,BE AE AE DE E AE DE ⊥⋂=⊂平面AED ,故BE ⊥平面AED ,由AF ⊂平面AED ,得AF BE ⊥,又,,,AF DE BE DE E BE DE ⊥⋂=⊂平面BED ,故AF ⊥平面BED ,由DB ⊂平面BED ,可得AF DB ⊥.【小问2详解】①由题意,以A 为原点,分别以AB ,AD 所在直线为y 轴、z 轴建立如图所示空间直角坐标系,并设AD 的长度为2,则(0,0,0),(0,2,0),(0,2,2),(0,0,2)A B C D ,因为DA ⊥平面ABE ,所以DEA ∠就是直线DE 与平面ABE 所成的角,所以tan 2DA DEA AE∠==,所以1AE =,所以31,,022E ⎛⎫ ⎪ ⎪⎝⎭由以上可得1(0,2,0),,,222DC DE ⎛⎫==- ⎪ ⎪⎝⎭ ,设平面EDC 的法向量为(,,)n x y z = ,则0,0,n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩ 即20,3120,22y x y z =⎧+-=⎪⎩取4x =,得n = .又(1,0,0)m = 是平面BCD 的一个法向量,设平面EDC 与平面DCB 夹角的大小为θ,所以cos cos ,19m n m n m n θ⋅==== ,所以平面EDC 与平面DCB 夹角的余弦值为41919.②因为33,,022BE ⎛⎫=- ⎪ ⎪⎝⎭,所以点B 到平面CDE的距离19BE n d n ⋅== .19.图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为2155,若存在,则1DP PC 的值;(3)在(2)的前提下,求出直线EP 与平面1ABC 所成角的正弦值.【答案】(1)证明见详解(2)存在,11DP PC =(3)155【解析】【分析】(1)作出辅助线,得到AF ⊥BE ,1C F ⊥BE ,且123AF C F ==,由勾股定理逆定理求出AF ⊥1C F ,从而证明出线面垂直,面面垂直;(2)建立空间直角坐标系,求平面1ABC 的法向量,利用空间向量求解出点P 的坐标,(3)根据(2)可得31,322EP ⎛= ⎝uu r ,利用空间向量求线面夹角.【小问1详解】取BE 的中点F ,连接AF ,1C F,因为四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,所以1,ABE BEC 均为等边三角形,故AF ⊥BE ,1C F ⊥BE,且1AF C F ==,因为1AC =,所以22211AF C F AC +=,由勾股定理逆定理得:AF ⊥1C F ,又因为AF BE F ⋂=,,AF BE ⊂平面ABE ,所以1C F ⊥平面ABED ,因为1C F ⊂平面1BEC ,所以平面1BC E ⊥平面ABED ;【小问2详解】以F 为坐标原点,FA 所在直线为x 轴,FB 所在直线为y 轴,1FC 所在直线为z轴,建立空间直角坐标系,则()()()()()10,0,0,,0,2,0,0,0,,3,0,0,2,0F A B C D E --,设(),,P m n t ,1DP DC λ= ,[]0,1λ∈,即()(3,m n t λ+=,解得:,33,m n t λ==-=,故),33,P λ--,设平面1ABC 的法向量为(),,v x y z = ,则()(12,0,AB AC =-=-,则1200v AB y v AC ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1x =,则1y z ==,故()v = ,其中1,33,C P λ=--则15C P v d v⋅=== ,解得:12λ=或32(舍去),所以否存在点P ,使得P 到平面1ABC 的距离为2155,此时11DP PC =.【小问3详解】由(2)可得:()3331,0,2,0,2222EP ⎛⎛=---= ⎝⎝ ,设直线EP 与平面1ABC 所成角为θ,则15sin cos ,5EP v EP v EP v θ⋅===⋅,所以直线EP 与平面1ABC 所成角的正弦值为5.。
福建师大附中2024-2025学年高二上学期10月月考数学试题(解析版)

福建师大附中2024-2025学年第一学期高二第一次月考数学试卷一、单选题(每小题5分,共40分)1. 若角α的终边上一点的坐标为(11)−,,则cos α=( )A. 1−B.C.D. 1【答案】C 【解析】【分析】根据任意角三角函数的定义即可求解.【详解】∵角α的终边上一点的坐标为(11)−,,它与原点的距离r=,∴cos x r α==, 故选:C.2. 下列函数中,在区间()1,2上为增函数的是 A. 1y x=B. y x =C. 21y x =−+D. 243y x x =−+【答案】B 【解析】【分析】根据基本初等函数的单调性判断出各选项中函数在区间()1,2上的单调性,可得出正确选项. 【详解】对于A 选项,函数1y x=在区间()1,2上为减函数; 对于B 选项,当()1,2x ∈时,y x =,则函数y x =在区间()1,2上为增函数;对于C 选项,函数21y x =−+在区间()1,2上为减函数; 对于D 选项,二次函数243y x x =−+在区间()1,2上为减函数. 故选B.【点睛】本题考查基本初等函数在区间上的单调性的判断,熟悉一次、二次、反比例函数的单调性是解题的关键,考查推理能力,属于基础题.3. 为了解甲、乙两个班级学生的物理学习情况,从两个班学生的物理成绩(均为整数)中各随机抽查20个,得到如图所示的数据图(用频率分布直方图估计总体平均数时,每个区间的值均取该区间的中点值),关于甲、乙两个班级的物理成绩,下列结论正确的是( )A. 甲班众数小于乙班众数B. 乙班成绩的75百分位数为79C. 甲班的中位数为74D. 甲班平均数大于乙班平均数估计值【答案】D 【解析】【分析】根据已知数据图,判断A ;根据频率分布直方图计算乙班成绩的75百分位数,判断B ;求出甲班的中位数,判断C ;求出两个班级的平均分,即可判断D.【详解】由甲、乙两个班级学生的物理成绩的数据图可知甲班众数为79, 由频率分布直方图无法准确得出乙班众数,A 错误; 对于乙班物理成绩的频率分布直方图,前三个矩形的面积之和为(0.0200.0250.030)100.75++×=, 故乙班成绩的75百分位数为80,由甲班物理成绩数据图可知,小于79分的数据有9个,79分的数据有6个, 故甲班的中位数为79,C 错误; 甲班平均数57258596768269279687882899874.820x ×++++×+×+×++×++=甲,乙班平均数估计值为10550.02650.025750.03+850.02950.00571.57= 4.8x =×+×+××+×=<乙(), 即甲班平均数大于乙班平均数估计值,D 正确, 故选:D 4.的直三棱柱111ABC A B C −中,ABC 为等边三角形,且ABC的外接圆半径为 ) A. 12π B. 8π C. 6π D. 3π【答案】A为【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC可得2πsin3a =,故a =则ABC的面积2S.可得11S AA AA ⋅==1AA =, 设三棱柱外接球的半径为R,则2221723233AA R =+=+=, 故该三棱柱外接球的表面积为24π12πR =. 故选:A .5. 已知函数()()()sin 20f x x ϕπϕ=+−<<,将()f x 的图象向左平移3π个单位长度后所得的函数图象关于y 轴对称,则关于函数()f x ,下列命题正确的是 A. 函数()f x 在区间,63ππ−上有最小值 B. 函数()f x 的一条对称轴为12x π=C. 函数()f x 在区间,63ππ−上单调递增 D. 函数()f x 的一个对称点为,03π【答案】C 【解析】【分析】根据平移关系求出函数的解析式,结合函数的奇偶性求出φ的值,利用三角函数的性质进行判断即可.【详解】将()f x 的图象向左平移3π个单位长度后得到2[2]233y sin x sin x ππϕϕ=++=++()(),此时函数为偶函数, 则232k k Z ππϕπ+=+∈,, 即06k k Z πϕππϕ=−+∈− ,,<<,∴当0k =时,6,πϕ=−则26f x sin x π=−()(),当63x ππ−<<时22233262x x πππππ−−−,<<,<<, 则此时函数()f x 在区间,63ππ − 上单调递增,且()f x 在区间,63ππ−上没有最小值, 故C 正确, 故选C .【点睛】本题主要考查三角函数性质判断,结合三角函数的平移关系求出函数的解析式是解决本题的关键.6. 如图,在三棱锥P ABC −中,PA ⊥平面ABC ,AC BC ⊥,AC =6BC =,D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,Q 为DE 上一点,AQ GQ ⊥,当AQG 的面积取得最小值时,三棱锥Q AEF −外接球的表面积为( )A. 24πB. 28πC. 32πD. 36π【答案】B 【解析】【分析】连接GF ,GD ,根据中位线性质得到线线平行关系,再利用线面垂直的性质得到线线垂直,设EQ x =,DQ y =,根据222AQ GQ AG +=得到()2221697x y x y +++=++,得到12AQG S AQ GQ =⋅= ,再根据基本不等式即可求出最值,再转化为长方体外接球问题即可.【详解】连接GF ,GD ,因为D ,E ,F ,G 分别为PB ,AB ,AC ,PC 的中点,的所以2//,11,//,2GF GF PA PA DE PA PA DE ==,1//,2GD BC GD BC =,1//,2EF BC EF BC =,则//GF DE ,因为PA ⊥平面ABC , 所以GF ⊥平面ABC ,DE ⊥平面ABC ,AE ⊂ 平面ABC ,所以DE AE ⊥,所以DE GD ⊥,AF ⊂ 平面ABC ,所以GF AF ⊥.设EQ x =,DQ y =,则AQ ,GQ ,AG ==,因为AQ GQ ⊥,所以222AQ GQ AG +=,即()2221697x y x y +++=++, 整理得9xy =,所以12AQGS AQ GQ =⋅= 由基本不等式得2216924216y x xy +≥=,当且仅当43y x =,即x =y =所以当AQC S 取得最小值时,EQ =,DQ =. 因为AF EF ⊥,QE ⊥平面AEF ,所以可将三棱锥Q AEF −补形为如图所示的长方体,则三棱锥Q AEF −的外接球即该长方体的外接球,易知该长方体外接球的直径为AQ =,故三棱锥Q AEF −,故三棱锥Q AEF −外接球的表面积为4π728π×=,故选:B .【点睛】方法点睛:求解有关三棱锥外接球的问题时,常见方法有两种:一种是补形,解题时要认真分析图形,看能否把三棱锥补形成一个正方体(长方体),若能,则正方体(长方体)的顶点均在外接球的球面上,正方体(长方体)的体对角线为外接球的直径;另一种是直接法,三棱锥中过任意两个面的外接圆圆心的垂线的交点即三棱锥外接球的球心.7. 、,外接球表面积为20π,则正四棱台侧棱与底面所成角的正切值为( ) A. 1 B. 3 C. 1或3 D.12或32【答案】C 【解析】【分析】在正四棱台1111ABCD A B C D −中,取截面11AAC C ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,分析可知球心在直线1OO 上,对球心的位置进行分类讨论,求出1OO 的长,利用线面角的定义可求得结果.【详解】在正四棱台1111ABCD A B C D −中,设其上底面为正方形ABCD ,下底面为正方形1111D C B A ,设正方形ABCD 、1111D C B A 的中心分别为O 、1O ,由正四棱台的几何性质可知,1OO ⊥平面1111D C B A ,取截面11AAC C , 则正四棱台的外接球球心E 在直线1O O 上,分以下两种情况讨论: ①E 在AC 、11A C 的同侧,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11211OO EO EO =−=−=, 过点A 在平面11AAC C 内作11AF AC ⊥, 因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且11AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 1AFAA F A F∠==; ②若球心E 在线段1OO 上,如下图所示:设球E 的半径为R ,则24π20πR =,可得R =由圆的几何性质可知EO AC ⊥,111EO A C ⊥,且2AC ==,11114A C B =,所以,2OE =,11EO ,所以,11213OO EO EO =+=+=, 过点A 在平面11AAC C 内作11AF A C ⊥,因为11//AC A C ,11AF A C ⊥,111OO A C ⊥,1//AF OO ∴,则四边形1AOO F 为矩形,且13AF OO ==,11O FAO ==,111211A F AO O F =−=−=, 因为1//AF OO ,则AF ⊥平面1111D C B A ,则1AA 与平面1111D C B A 所成角为1AA F ∠, 且11tan 3AFAA F A F∠==. 综上所述,正四棱台侧棱与底面所成角的正切值为1或3. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=.8. 在ΔΔΔΔΔΔΔΔ中,BC CA CA AB ⋅=⋅ ,2BA BC += ,且233B ππ≤≤,则BA BC ⋅的取值范围是A [2,1)− B. 2,13C. 22,3 −D. 22,3−【答案】D 【解析】【分析】由BC CA CA AB ⋅=⋅,可以得到()0CA BC BA ⋅+= ,利用平面向量加法的几何意义,可以构造平行四边形BCDA ,根据()0CA BC BA ⋅+=,可知平行四边形BCDA 是菱形,这样在Rt BOA ∆中,可以求出菱形的边长,求出BA BC ⋅的表达式,利用233B ππ≤≤,构造函数,最后求出BA BC ⋅的取值范围.【详解】()0()0BC CA CA AB CA BC AB CA BC BA ⋅=⋅⇒⋅−=⇒⋅+=,以,BC BA 为邻边作平行四.边形BCDA ,如下图:所以BC BA BD += ,因此0CA BD CA BD ⋅=⇒⊥,所以平行四边形BCDA 是菱形,设CA BD O ∩=,2BA BC +=,所以=21BD BO ⇒=,在Rt BOA ∆中, 1cos cos 2BO ABO AB ABC AB ∠=⇒=∠ 212cos ()cos 1cos cos 2ABCy ABC ABC AB A C C B B ∠==⋅∠=⋅∠+∠ , 设211cos [,]3322x ABC ABC x ππ=∠≤∠≤∴∈− , 所以当11[,]22x ∈− 时,'22201(1)x y y x x =⇒=>++,21x y x =+是增函数,故2[2,]3y ∈−,因此本题选D.【点睛】本题考查了平面加法的几何意义、以及平面向量数量积的取值范围问题,利用菱形的性质、余弦的升幂公式、构造函数是解题的关键.二、多选题(每小题6分,共18分)9. 一组样本数据12,,,n x x x …的平均数为()0x x ≠,标准差为s .另一组样本数据122,,,n n n x x x ++…,的平均数为3x ,标准差为s .两组数据合成一组新数据1212,,,,,,n n n x x x x x +⋅⋅⋅⋅⋅⋅,新数据的平均数为y ,标准差为s ′,则( ) A. 2y x > B. 2y x = C. s s ′> D. s s ′=【答案】BC 【解析】【分析】由平均数与标准差的定义求解判断. 【详解】由题意322nx n xyx n+⋅=, 222222121()()()nn k k ns x x x x x x x nx ==−+−++−=−∑,同理222222211(3)9nnkkk n k n ns xn x xnx=+=+=−⋅=−∑∑ 两式相加得22221210nk k ns x nx ==−∑,22222221122(2)8nnkk k k ns x n x x nx ==′=−⋅=−∑∑,所以2222ns ns ′>,s s ′>. 故选:BC .10. 在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别为棱BC 与11D C 的中点,则下列选项正确的有( )A. 1//A B 平面1AECB. EF 与1BC 所成的角为30°C. ⊥EF 平面1B ACD. 平面1AEC 截正方体1111ABCD A B C D −的截面面积为 【答案】ABD 【解析】【分析】设点M 为棱11A D 的中点,得到四边形1AEC M 为平行四边形,利用线面平行的判定定理,证得1//A B 平面1AEC ,可判定A 正确;再得到四边形1AEC M 为菱形,求得截面的面积,可判定D 正确;设1CC 的中点为N ,证得1//EN BC ,得到NEF ∠为EF 与1BC 所成的角,利用余弦定理求得cos NEF ∠,可判定B 正确;假设⊥EF 平面1B AC 正确,得到1EF B C ⊥,结合11FC B C ⊥,证得1B C ⊥平面1EFC ,得到11B C EC ⊥,进而判定C 错误.【详解】如图1所示,设点M 为棱11A D 的中点,则1MC AE ,平行且相等,所以四边形1AEC M 为平行四边形,又1//A B ME ,1⊄A B 平面1AEC ,ME ⊂平面1AEC ,所以1//A B 平面1AEC ,故A 正确; 由上可知,四边形1AEC M 为平面1AEC 截正方体1111ABCD A B C D −的截面,易得11AE EC C M MA ====,故四边形1AEC M 为菱形,又其对角线EM =,1AC =12××,故D 正确; 设1CC 的中点为N ,连接,EN FN ,因为,E N 分别为BC 与1CC 的中点,所以1//EN BC ,故NEF ∠为EF 与1BC 所成的角,又EN FN ==,EF =由余弦定理可得222cos 2EN EF NF NEF EN EF +−∠==⋅ 所以EF 与1BC 所成的角为30°,故B 正确;如图2所示,假设⊥EF 平面1B AC 正确,则1EF B C ⊥,又11FC B C ⊥,1EF FC F ∩=,所以1B C ⊥平面1EFC ,得11B C EC ⊥. 在正方形11B C CB 中,11B C EC ⊥,显然不成立,所以假设错误, 即⊥EF 平面1B AC 错误,故C 错误. 故选:ABD .11. 已知,a b 均为正数且11a b a b+=+,下列不等式正确的有( )A. 23+≥B.2+≥C. 3a +≥D.23a b a+≥ 【答案】BCD 【解析】【分析】由已知条件可得1ab =,然后逐个分析判断即可 【详解】由11a b a b+=+,得a b a b ab ++=,所以()()0ab a b a b +−+=,()(1)0a b ab +−= 因为,a b 均为正数,所以1ab =,对于A ,2≥===,即ab 时取等号,所以A 错误,对于B 2+≥=,即1a b ==时取等号,所以B 正确,对于C ,因为1ab =,所以1a b=,所以13a b +=+≥=,=,即1a b ==时取等号,所以C 正确,对于D ,因为1ab =,所以22223a a ba b b b a ab++==++≥,当且仅当2a b =,即1a b ==时取等号,所以D 正确,故选:BCD三、填空题(每小题5分,共15分)12. 已知1x >−,则41x x ++的最小值为___________. 【答案】3 【解析】【分析】由1x >−可得10x +>,将41x x ++整理为4111++−+x x ,再利用基本不等式即可求解. 【详解】因为1x >−,所以10x +>,所以441111x x x x +=++−++13≥−=, 当且仅当411x x +=+,即1x =时取等号, 所以41x x ++的最小值为3, 故答案为:3【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 13. 已知函数222log ,1()32,1x a x f x x ax a x + =++<, ①若a =1,f (x )的最小值是_____;②若f (x )恰好有2个零点,则实数a 的取值范围是_____. 【答案】 ①. ﹣14 ②. 1(1,][0,)2−−+∞ 【解析】【分析】(1)对分段函数的两段函数分别求最小值,然后比较可得; (2)结合函数性质与解方程()0f x =,可得结论.【详解】(1)由题意22log 1,1()32,1x x f x x x x +≥ =++< , 1x ≥时,2()log 1f x x =+单调递增,min ()(1)1f x f ==, 1x <时,2231()32()24f x x x x =++=+−,min 31()()24f x f =−=−, 所以32x =−时,min 1()4f x =−;(2)若0a =,则22log ,1(),1x x f x x x ≥ = <,恰有两个零点0和1,满足题意,若0a >,则1x ≥时,2()log 0f x x a a =+≥>无零点, 但1x <时,22()32f x x ax a =++有两个零点a −和2a −,满足题意,当0a <时,则1x ≥时,2()log f x x a =+是增函数,min ()0f x a =<,有一个零点, 1x <时,由22()320f x x ax a =++=得x a =−或2x a =−,因为()f x 只有两个零点,所以121a a −< −≥,解得112a −<≤−, 综上,a 的取值范围是1(1,][0,)2−−+∞ .【点睛】本题考查求分段函数的最值,由分段函数的零点个数求参数取值范围.解题时需分类讨论,按分段函数的定义分类讨论.14. 如图所示,在△ABC 中,AB =AC =2,AD DC = ,2DE EB =,AE 的延长线交BC 边于点F ,若45AF BC ⋅=− ,则AE AC ⋅= ____.【答案】229【解析】【分析】过点D 做DG AF ,可得16EF AF =,15BF BC =,4155AF AB AC =+ 由45AF BC ⋅=− 可得2cos 3BAC ∠=,可得541()655AE ACAB AC AC ⋅=+⋅ ,代入可得答案. 【详解】解:如图,过点D 做DG AF ,易得:13EF BE DG BD ==,13EF DG =,12DG CD AF AC ==,故12DG AF =,可得:16EF AF =, 同理:12BF BE FG ED ==,11FG AD GC CD ==,可得15BF BC =, 1141()5555AF AB BF AB BC AB AC AB AB AC =+=+=+−=+ ,由45AF BC ⋅=− ,可得22411424()()555555AB AC AC AB AC AB AB AC +⋅−=−+⋅=− , 可得:14244422cos 5555BAC ×−×+××∠=−,可得:2cos 3BAC ∠=, 255412122122()2246655353369AE AC AF AC AB AC AC AB AC AC ⋅=⋅=+⋅=⋅+=×××+×= ,故答案为:229. 【点睛】本题主要考查平面向量的线性运算和平面向量的数量积,由题意作出DG AF 是解题的关键.四、解答题(共77分)15. 如图1,在平面四边形PBCD 中,已知BC PB ⊥,PD CD ⊥,6PB =,2BC =,2DP CD =,DA PB ⊥于点A .将PAD △沿AD 折起使得PA ⊥平面ABCD ,如图2,设MD PD λ=(01λ≤≤).(1)若23λ=,求证:PB //平面MAC ; (2)若直线AM 与平面PCD,求λ的值. 【答案】(1)证明见解析 (2)12λ= 【解析】【分析】(1)利用线面平行的判定定理即可证明;(2)利用空间向量的坐标表示,表示出线面夹角的余弦值即可求解. 【小问1详解】在平面四边形PBCD 中,BC PB ⊥,6PB =,2BC =,所以CP =tan BPC ∠= 又PD CD ⊥,2DP CD =,所以CD =,PD =,1tan 2DPC ∠=, 所以()1123tan tan 111123BPD BPC DPC +∠=∠+∠==−×,所以45BPD ∠=°. 所以在Rt PAD △中,易得4PA AD ==. 因为DA PB ⊥,BC PB ⊥,所以//AD BC .在四棱锥P ABCD −中,连接BD ,设BD AC F ∩=,连接MF ,因为23λ=,所以2DMMP =, 又2AD DFBC FB==,所以MF PB ∥. 因为MF ⊂平面MAC ,PB ⊄平面MAC ,所以PB ∥平面MAC .【小问2详解】由题意易知AB ,AD ,AP 两两垂直,故可建立如图所示的空间直角坐标系,则()0,0,0A ,()2,2,0C ,()0,4,0D ,()0,0,4P , 则()2,2,0CD =− ,()0,4,4PD =−.设平面PCD 法向量为(),,n x y z =,则00n CD n PD ⋅= ⋅=,即220440x y y z −+= −= , 令1x =,得11y z == ,即()1,1,1n = . 由MD PD λ=,得()0,4,4MD λλ=− , 故()0,44,4M λλ−,()0,44,4AM λλ=−.由直线AM 与平面PCD,的得cos ,AM n AM n AM n⋅==,解得12λ=. 16. 如图,直三棱柱111ABC A B C −的体积为1,AB BC ⊥,2AB =,1BC =.(1)求证:11BC A C ;(2)求二面角11B A C B −−的余弦值. 【答案】(1)证明见解析 (2【解析】【分析】(1)法一:由线面垂直证明即可;法二:用空间直角坐标系证明即可;(2)法一:过O 作1OH A C ⊥于H ,连接BH ,由已知得出BHO ∠为二面角11B A C B −−的平面角,求解即可;法二:建立空间直角坐标系求解. 【小问1详解】直三棱柱111ABC A B C −的体积为:111121122V AB BC AA AA =×⋅⋅=×××=, 则11AA BC ==,四边形11BCC B 为正方形,法一:在直棱柱111ABC A B C −中,1BB ⊥面ABC ,11AB A B ∥, 又AB ⊂平面ABC ,则1AB BB ⊥,因为AB BC ⊥,1AB BB ⊥,1BB BC B = ,1,BB BC ⊂平面11BCC B , 所以AB ⊥平面11BCC B ,又1BC⊂平面11BCC B , 所以1AB BC ⊥,因为11AB A B ∥,所以11A B ⊥1BC , 在正方形11BCC B 中,有11BC B C ⊥,因为11BC B C ⊥,11A B ⊥1B C ,1111A B B C B = ,111,A B B C ⊂平面11A CB , 所以1⊥BC 平面11A CB ,又1A C ⊂平面11A CB , 所以11BC A C .法二:直棱柱111ABC A B C −,1BB ⊥平面ABC ,又AB BC ⊥,以B 为原点,BC ,BA ,1BB 所在直线为x 轴,y 轴, z 轴,建立空间直角坐标系, 则()0,0,0B ,()10,0,1B ,()1,0,0C ,1(0,2,1)A ,1(1,0,1)C ,1(1,0,1)BC =,1(1,2,1)A C =−− ,11110(2)1(1)0BC A C ⋅=×+×−+×−=,所以11BC A C .【小问2详解】由(1)得11BC A C ,设11B C BC O = ,在11A B C 中,过O 作1OH A C ⊥于H ,连接BH ,因为1OH A C ⊥,11BC A C ,1,OH BC ⊂平面BHO ,且1OH BC O ∩=, 所以1A C ⊥平面BHO ,又BH ⊂平面BHO ,所以1AC BH ⊥,所以BHO ∠为二面角11B A C B −−的平面角, 因为11Rt Rt COH CA B ∽△△,111CA CO OH A B =,得OH = 又在Rt BOH中,BO =BH =,cos OH BHO BH ∠=, 所以二面角11B A C B −−法二:()0,0,0B ,()10,0,1B ,()C ,1(0,2,1)A ,1(1,0,1)C ,(1,0,0)BC =,1(0,2,1)BA = ,设平面1BCA 的法向量:1111(,,)n x y z = , 则111111020n BC x n BA y z ⋅== ⋅+ ,取11y =,得1(0,1,2)n =− ,1(1,0,1)B C=−,11(0,2,0)B A = ,设面11B CA 的法向量2222(,,)n x y z = , 则21222112020n B C x z n B A y ⋅=−= ⋅== ,取21x =,得2(1,0,1)n = , 设二面角11B A C B −−的大小为θ,则:121212|||cos ||cos ,|||||n n n n n n θ⋅=<>==因为θ为锐角,所以二面角11B A C B −−17. 如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得12MNcos DMN DM∠==.则异面直线BC 与MD(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD所成的角.计算可得CMsin CDM CD∠=.即直线CD 与平面ABD. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MN DMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CMABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.Rt △CAD 中,CD=4.在Rt △CMD中,sin CM CDM CD ∠=. 所以,直线CD 与平面ABD点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 棱柱1111ABCD A B C D −的所有棱长都等于4,60ABC ∠=°,平面11AA C C ⊥平面ABCD ,160A AC ∠=°.(1)证明:1DB AA ⊥;(2)求二面角1D AA B −−的平面角的余弦值;(3)在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置.【答案】(1)证明见解析;(2)35;(3)点P 在1C C 的延长线上且使1C C CP =. 【解析】【分析】(1)建立空间直角坐标系,结合10AA BD ⋅=,即可证得1DB AA ⊥;在(2)分别求得平面1AA D 和平面1AA B 的一个法向量,解向量的夹角公式,即可求解;(3)设1CP CC λ= ,求得BP 的坐标和平面11DA C 的法向量,结合30n BP ⋅= ,求得1λ=−,即可得到结论.【详解】由题意,连接BD 交AC 于O ,则BD AC ⊥,连接1A O ,在1AAO 中,14AA =,2AO =,160AAO ∠=°,∴2221112cos 60AO AA AO AA AO =+−=°⋅22211AO A O AA +=, ∴1A O AO ⊥,由于平面11AA C C ⊥平面ABCD ,所以1A O ⊥底面ABCD ,所以以OB 、OC 、1OA 所在直线为x 轴、y 轴、z 轴建立如图所示空间直角坐标系,则()0,2,0A −,()B ,()0,2,0C,()D −,(10,0,A , (1)由于()BD =−,(10,2,AA =,()2,0AB = , 则10AA BD ⋅= ,∴1BD AA ⊥.(2)设平面1AA D 的法向量()2,,n x y z = ,则21200n AA n AD ⋅= ⋅=,即0y y += + ,取1x =,可得()21n =− , 同理,可得平面1AA B的法向量()11,n = , 所以1212123cos 5n n n n n n ⋅⋅==− , 又由图可知成钝角,所以二面角1D A A B −−的平面角的余弦值是35. (3)假设在直线1CC 上存在点P ,使//BP 平面11DA C ,设1CP CC λ= ,(),,P x y z ,则()(,2,0,2,x y z λ−=,得(0,22,)P λ+,(22,)BP λ−+, 设3n ⊥ 平面11DA C ,则31131n A C n DA ⊥ ⊥ ,设()3333,,n x y z = ,得到333200y = +=,不妨取()31,0,1n =− ,又因为//BP 平面11DA C ,则30n BP ⋅= 即0−=得1λ=−.即点P 在1C C 的延长线上且使1C C CP =.【点睛】本题主要考查了空间向量在线面位置关系的判定与证明中的应用,以及直线与平面所成角的求解,其中解答中熟记空间向量与线面位置关系的关系,以及线面角的求解方法是解答的关键,着重考查推理与运算能力.19. 已知非空集合A 是由一些函数组成,满足如下性质:①对任意()f x A ∈,()f x 均存在反函数1()f x −,且1()f x A −∈;②对任意()f x A ∈,方程()f x x =均有解;③对任意()f x 、()g x A ∈,若函数()g x 为定义在R 上的一次函数,则(())f g x A ∈.(1)若1()()2x f x =,()23g x x =−,均在集合A 中,求证:函数12()log (23)h x x A =−∈; (2)若函数2()1x a f x x +=+(1x ≥)在集合A 中,求实数a 的取值范围; (3)若集合A 中的函数均为定义在R 上的一次函数,求证:存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.【答案】(1)见详解;(2)[]1,3a ∈;(3)见详解; 【解析】【分析】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③即可证明.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,可得1a ≥,变形21()1211x a a f x x x x ++==++−++,[)()1,x ∈+∞.与2的关系分类讨论,利用基本不等式的性质即可求解.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =), 由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=,可得ad b bc d +=+,即11b d a c =−−,即可得证. 【详解】(1)由1()()2x f x A =∈,根据性质①可得112()log f x x A −=∈,且存在00x >,使得 1002log x x =,由()23g x x A =−∈,且为一次函数,根据性质③可得:()()112()log (23)hx x f g x A −=−=∈.(2)由性质②,方程()211x a x x x +=≥+,即a x =在[)1,x ∈+∞上有解,1a ∴≥, 由22111()12111x a x a a f x x x x x +−+++===++−+++[)()1,x ∈+∞,2>,3a >时,112a −>,且()112a f f − =, ∴此时()f x 没有反函数,即不满足性质①.2≤,13a ≤≤时,函数()f x 在[)1,+∞上单调递增,∴此时()f x 有反函数,即满足性质①.综上:[]1,3a ∈.(3)任取()1f x ax b =+,()2f x cx d A =+∈,由性质①,0a c ≠,不妨设,1a c ≠,(若1a =,则0b =,()1f x x =),由性质③函数()()()()12g x f f x acx ad b A ==++∈, 由性质①:()()1x bc d h x A ac −−+=∈,由性质③:()()()()()1()acx bd b bc d ad b bc d h g x x A ac ac−++−++−+===∈ 由性质②方程:()()ad b bc d x x ac+−++=, ∴ad b bc d +=+,即11b d ac =−−, ()1f x x =,可得ax b x +=,1b x a =−, ()2f x x =,可得cx d x +=,1d x c =−, 由此可知:对于任意两个函数()1f x ,()2f x ,存在相同的0x 满足:()()10020f x x f x =,∴存在一个实数0x ,使得对一切()f x A ∈,均有00()f x x =.质,难度较大.。
福建省宁德市古田县第一中学2024-2025学年高二上学期第一次月考数学试题(含答案)

古田县第一中学2024-2025学年高二上学期第一次月考数学试卷班级__________姓名__________座号__________考号__________考生须知:1.本卷满分150分,考试时间120分钟;2.答题时,所有答案必须写在答题卡上,写在试卷上无效;3.考试结束后,只需上交答题卡.第I 卷一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合要求的.1.35是数列的( )A.第16项B.第17项C.第18项D.第19项2.已知数列是等差数列,且,则( )A.4B.6C.8D.103.已知等差数列的前项和为,若,则的值是( )A.95B.55C.100D.不确定4.已知数列为等比数列,若,则( )A.B.2C.4D.5.已知等差数列的前项和为,且,则当取得最大值时,( )A.37B.36C.18D.196.在中国古代诗词中,有一道“八子分绵”的数学命题:“九百九十六斤绵,分给八子做盘缠,次第每人多十七,要将第七数来言.”题意是:把996斤绵分给8个儿子做盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第7个儿子分到的绵是( )A.167斤B.184斤C.191斤D.201斤7.设数列满足,且,则数列前10项的和为( )A.B. C. D.8.已知数列的前项和为,且满足,则数列的前81项的和为( )A.1640B.1660C.1680D.1700二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目3,5,7,9,⋯{}n a 238232a a a ++=4a ={}n a n n S 31710a a +=19S {}n a 2480,16a a a >=6a =4-4±{}n a n n S 36370,0S S ><n S n ={}n a 11a =()*11n n a a n n +-=+∈N 1n a ⎧⎫⎨⎬⎩⎭201119111710159{}n a n n S ()112n n S a n =+-{}n na要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在公比为整数的等比数列中,是数列的前项和,若,则下列说法正确的是( )A.B.数列是等比数列C.D.数列是公差为2的等差数列10.已知等差数列的前项和为,公差为,且,若,则下列命题正确的是()A.数列是递增数列B.是数列中的最小项C.和是中的最小项D.满足的的最大值为2511.设等比数列的公比为,其前项和为,前项积为,且,则下列结论正确的是( )A.B.C.的最大值为D.的最大值为第II 卷三、填空题:本题共3小题,每小题5分,共15分.12.已知等比数列中,,公比,则__________.13.已知为正项等比数列的前项和,若,则__________.14.数列满足,数列的前项和为,且,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记为等差数列的前项和,已知.(1)求的通项公式;(2)求的最小值.q {}n a n S {}n a n 142332,12a a a a ⋅=+=2q ={}2n S +8510S ={}lg n a {}n a n n S d 10a <101512a a a +={}n a 13a {}n a 12S 13S {}n S 0n S <n {}n a q n n S n n T 6167711,1,01a a a a a ->><-01q <<7801a a <<n S 7S n T 6T {}n a 4738512,124a a a a ⋅=-+=q ∈Z 10a =n S {}n a n 242349,2a a S a a ==+7a ={}n a 31n a n =+{}n b n n T 1(1)n n n b a +=-19T =n S {}n a n 32618,5a S a =-={}n a n S16.(15分)已知是等差数列,.(1)求数列的通项公式及前项和;(2)若等比数列满足,求的通项公式.17.(15分)某食品公司年初投资300万元,购置冻干银耳生产设备,立即投入生产,预计第一年该生产设备的使用费用为36万元,以后每年增加6万元,该生产设备每年可给公司带来121万元的收入.假设第年该设备产生的利润(利润该年该设备给公司带来的收入-该年的使用费用)为.(1)写出的表达式;(2)在该设备运行若干整年后,该食品公司需要升级产品生产线,决定处置该生产设备,现有以下两种处置方案:①当总利润(总利润=各年的收入之和-各年的使用费用-购置生产设备的成本)最大时,以7万元变卖该生产设备;②当年平均总利润最大时,以72万元变卖该生产设备.请你为该公司选择一个合理的处置方案,并说明理由.18.(17分)已知等差数列中,,公差大于0,且是与的等比中项.(1)求数列的通项公式;(2)记,求数列的前项和.19.(17分)已知数列的前项的和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.{}n a 141,7a a =={}n a n n S {}n b 2235,b a b a =={}n b n =n a n a {}n a 35a =41a +21a +73a +{}n a ()*11n n n b n a a +=∈⋅N {}n b n n T {}n a n n S ()*22n n S a n =-∈N {}n a ()2log ,1n n n n n b a c a b ==⋅+{}n c n n T古田县第一中学2023级高二第一次月考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合要求的.1.【解答】解:数列的通项为,由,得,所以35是数列的第17项.故选:B.2.【解答】解:由题设,故.故选:C.3.【解答】解:在等差数列中,由,得..故选:B.4.【解答】解:数列为等比数列,若,则偶数项均为正数,由,则.故选:C.5.【解答】解:等差数列的前项和为,且,,,则从而当时,取得最大值.故选:C.3,5,7,9, 21n +2135n +=17n =3,5,7,9, 238354222432a a a a a a ++=+==48a ={}n a 31710a a +=1010210,5a a =∴=()11919101919195952a a S a+⨯∴===⨯={}n a 20a >4816a a =64a ={}n a n n S 36370,0S S ><()()()13636136181936181802a a S a a a a +==+=+>()1373719373702a a S a +==<18190,0,a a ><18n =n S6.【解答】记8个儿子按年龄从大到小依次分棉斤,斤,斤,斤,因为按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,所以数列为等差数列,且公差为17,所以.因为绵的总数为996斤,所以,解得.所以第7个儿子分到的绵是斤.故选:A.7.【解答】因为数列满足,且,所以当时,,当时,上式也成立,所以,所以,所以数列的前项和为,所以数列的前10项和为,故选A.故选:A.8.【解答】由,有,有.又由,可得,可得则数列的前81项的和为.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【解答】解:在公比为整数的等比数列中,是数列的前项和,,1a 2a 3a 8,a ⋯{}n a ()1171n a a n =+-1878179962a ⨯+⨯=165a =765176167a =+⨯={}n a 11a =()*11n n a a n n +-=+∈N 2n ≥()()()12111212n n n n n a a a a a a n -+=-++-+=+++=1n =()12n n n a +=()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭1n a ⎧⎫⎨⎬⎩⎭n 1111122122311n n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦ 1n a ⎧⎫⎨⎬⎩⎭2011()112n n S a n =+-()()111111*********n n n n n n n a S S a n a n a a ++++=-=+-+-=-+11n n a a ++=11112a S a ==10a =0,1,n n a n ⎧=⎨⎩为奇数为偶数{}n na ()402802468016402⨯+++++== q {}n a n S {}n a n 142332,12a a a a ⋅=+=,解得(舍)或,故A 正确,数列是等比数列,故B 正确;,故C 正确;数列不是公差为2的等差数列,故D 错误.故选:ABC.10.【解答】解:对于A :因为等差数列的前项和为,公差为,且,所以,所以,因为,所以,数列是递增数列,A 正确;对于B :因为数列是递增数列,所以最小项是首项B 错误;对于C :因为,所以当或时,取最小值,C 正确;对于D :由不等式可得,又因为,所以满足的的最大值为D 错误.故选:AC.11.【解答】解:由条件,可得,中没有最大值,的最大值为.故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.【解答】解:,3112113212a a q a q a q ⎧⋅=∴⎨+=⎩1116,2a q ==12,2a q ==()1212222,12n n n S +-+=+=∴-{}2n S +()8821251012S -==-2,lg lg2,n n n a a n =∴=∴ {}n lga {}n a n n S d 11015120,a a a a <+=11191411a d a d a d +++=+131120a a d =+=1120a d =-<0d >{}n a {}n a 1,a 1130,0a a <=12n =13n =n S ()()()()1131112250,222n n n n n dnS na d n a d d n --=+=-+=-<025n <<*n ∈N 0n S <n 24,6167711,1,01a a a a a ->><-6781,01,01a a a <<<<<()()77860,1,0,1,n a q a a S a ∴=∈∈n T 6T 4738512,124a a a a ⋅=-+=,则得或者,公比为整数,,,解得,即故答案为:512.13.【解答】为正项等比数列,且公比;,.故答案为:12.14.【解答】因为,数列的前项和为,所以.故答案为:31.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解答】(1)解:设等差数列的公差为,由,可得,解得,所以数列的通项公式为.384738512,124a a a a a a ∴⋅=⋅=-+=384,128a a =-=34128,4a a ==- q 384,128a a ∴=-=54128q ∴-=2q =-22108128(2)1284512,a a q ==⨯-=⨯={}n a 0n a ∴>0q >224339,3a a a a ==∴= ()21224343423473212122,2,3412a a qa a a a S a a q a a q S a a a a +++=+∴====∴==⨯=++ 131,(1)n n n n a n b a +=+=-{}n b n n T 191234171819T a a a a a a a =-+-++-+ 471013525558=-+-++-+ ()()()471013525558=-+-++-+ 3958275831=-⨯+=-+={}n a d 32618,5a S a =-=()111218255a d a d a d +=-⎧⎨+=+⎩124a =-3d ={}n a ()11327n a a n d n =+-=-(2)解:由(1)知,可得数列为递增数列,且,所以当时,;当时,;当时,,所以,当或9时,取得最小值,即,所以,故的最小值为.16.【解答】(1)设等差数列的公差为,则.,数列的通项公式及前项和(2)设等比数列的公比为,由,得,的通项公式为.17.【解答】(1)由题意可知第年的使用费为首项为36,公差为6的等差数列第年的使用费为,,所以的表达式为3d ={}n a 939270a =⨯-=*18,n n ≤≤∈N 0n a <9n =90a =*10,n n ≥∈N 0n a >8n =n S ()198991082a a S S +===-108n S ≥-n S 108-{}n a d 41712413a a d --===-()12121n a n n ∴=+-=-()12n n n a a S +=()21212n n n +-=={}n a n 2n S n ={}n b q 22353,9b a b a ====323b q b ==22n n b b q -=⋅21333n n --=⨯={}n b ∴21333n n n b --=⨯=n n ()3616n +-⨯()1213616n a n ⎡⎤∴=-+-⨯⎣⎦()*8561691,n n n =--=-+∈N n a *691,n a n n ∴=-+∈N(2)设的前项和为,则,若采用第一种方案,则总收入最大,根据二次函数的对称轴公式,可得或,,当时,即第15年时总利润最大为(万元),若采用第二种方案,令,,当且仅当时取等号,第10的平均利润最大,此时的总利润为(万元),故最大利润为综上所述,两种方案的最终利润一样,但是第二种方案只用了10的时间,因此选择第二种方案合理.18.【解答】(1)设等差数列的公差为,因为,则,因为是与的等比中项,所以,即化简得,解得或(舍)所以.(2)由(1)知,,n a n n S ()2859163882n n n S n n +-==-+4423b x a =-=14n =15n =14151514644,645,S S S S ∴==∴>∴15n =6453007352-+=300300300388388n n S b n n n n n -⎛⎫==--+=-++ ⎪⎝⎭3003260n n∴+≥=10n =∴10300280S -=28072352+={}n a ()0d d >35a =4275,5,54a d a d a d =+=-=+11a +21a +73a +()()()2427113a a a +=++()()2(6)684,d d d +=-+254120d d --=2d =65d =-21n a n =-21n a n =-所以,所以.数列的前项和19.【解答】(1)当时,,当时,.,是以2为首项,2为公比的等比数列,.(2),①②①-②得,.()()1112121n n n b a a n n +==-+11122121n n ⎛⎫=- ⎪-+⎝⎭123n nT b b b b =++++ 11111111121335572121n n ⎛⎫=-+-+-++- ⎪-+⎝⎭ 11122121n n n ⎛⎫=-= ⎪++⎝⎭{}n b n 21n nT n =+1n =11122,2S a a =-∴=2n ≥1n n n a S S -=-()12222n n a a -=---122n n a a -=-12n n a a -∴={}n a ∴1222n n n a -∴=⨯=()2log 2,12nnn n b n c n ===+⋅()1212232212n n n T n n -=⨯+⨯++⨯++⨯ ()23122232212n n n T n n +=⨯+⨯++⨯++⨯ ()231422212nn n T n +-=++++-+⨯ ()()122121221n n n +⨯-=+-+⨯-()1112122n n n n n +++=-+⨯=-⋅12n n T n +∴=⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年度高二上学期数学(理)第一次月考试卷第I 卷(选择题)一、单选题(本题共12小题,每小题5分,总分60分)1.若直线l 1:mx ﹣3y ﹣2=0与直线l 2:(2﹣m )x ﹣3y+5=0互相平行,则实数m 的值为 A . 2 B . ﹣1 C . 1 D . 02.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的等腰三角形,其中1OA OB ==,则原平面图形的面积为( ) A . 1 B . 2C .32D . 23.若变量x,y 满足约束条件{x +y ≤4x −y ≤2x ≥0,y ≥0 ,则3x +y 的最大值是( )A . 2B . 4C . 6D . 104.设,是两条不同的直线,是一个平面,则下列命题正确的是( ) A. 若,,则 B. 若,,则 C. 若,,则 D. 若,,则 5.已知等比数列{a n }的前n 项和为S n ,若a 5=3,S 6=28S 3,则a 3=( ) A . 19B . 13C . 3D . 96.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A . 1B . 2C . 3D . 47.在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,已知a −c =√66b ,sinB =√6sinC .则cosA 的值为( )A . √63B . √64C . √33D . √348.已知函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,且1)(=αf )3,0(πα∈,则=+)652cos(πα( )A . 13B . ±2√23C . 2√23D . −2√239.在ΔABC 中,E 为AC 上一点,AC ⃑⃑⃑⃑⃑ =3AE ⃑⃑⃑⃑⃑ ,P 为BE 上任一点,若AP ⃑⃑⃑⃑⃑ =mAB ⃑⃑⃑⃑⃑ +nAC ⃑⃑⃑⃑⃑ (m >0,n >0),则3m +1n 的最小值是( ) A . 9B . 10C . 11D . 1210.正方体ABCD −A 1B 1C 1D 1中E 为棱CC 1的中点,求异面直线AE 与A 1B 所成角的余弦值( ) A . -√26B . √26C . -√212D . √21211.已知M ,N 是圆O:x 2+y 2=4上两点,点P(1,2),且0=⋅PN PM ,则|MN ⃑⃑⃑⃑⃑⃑⃑ |的最小值为( ) A . √5−1 B . √5−√3 C . √6−√3D . √6−√212.在正四面体P −ABC 中,D,E,F 分别为AB,BC,CA 的中点,则下面四个结论中不成立...的是( ) A . 平面PDE ⊥平面ABC B . BC ∥平面PDF C . DF ⊥平面PAED . 平面PAE ⊥平面ABC第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,总分20分)13.若不等式022>-+bx ax 的解集为),(41-2-,则a+b 的值为___________.14.平面向量a →与b →的夹角为60°,a →=(2,0),|b →|=1,则|a →+2b →|等于____________.15.已知圆C 的方程为(x −1)2+(y −2)2=4,点P (2,3)为圆C 内的一点,过点P (2,3)的直线l 与圆C 相交于A ,B 两点,当|AB |最小时,直线l 的方程为___________.16.空间有两个正方形ABCD 和ADEF 相交于AD ,M 、N 分别为BD 、AE 的中点..,则以下结论中正确的是(填写所有正确结论对应的序号)①MN ⊥AD ; ②MN 与BF 的是对异面直线;③MN //平面ABF ④MN 与AB 的所成角为60°l m αl m ⊥m α⊂l α⊥l α⊥l m //m α⊥l α//m α⊂l m //l α//m α//l m //试卷第2页,总2页三、解答题(本题共6小题,总分70)17.(本小题10分)已知正项等比数列{}n a 的前n 项和为n S ,且6347S S a -=, 532a =. (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T .18.(本小题12分)已知圆22:4C x y +=. (1)求过定点()4,0M 的圆的切线方程;(2)直线l 过点()1,2P ,且与圆C 交于,A B 两点,若23AB =,求直线l 的方程.19.(本小题10分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,∠BCD=135°,侧面PAB ⊥底面ABCD ,∠BAP=90°,AB=AC=PA=2,E ,F ,M 分别为BC ,AD ,PD 的中点.(Ⅰ)求证:ME ∥平面PAB ; (Ⅱ)求证:EF ⊥平面PAC20.(本小题12分)已知函数f(x)=√3sinxcosx −cos 2x +12.(1)求函数f(x)的对称轴;(2)在ΔABC 中,角A,B,C 所对的边分别为a,b,c ,若f(A)=1,a =3,ΔABC 的面积为2√3,求b +c 的值.21、在四棱锥ABCD P -中,底面ABCD 为菱形,AC PAB PAD ,∠=∠交BD 于O . (1)求证:平面⊥PAC 平面PBD ;(2)延长BC 至G ,使CG BC =,连结DG PG ,.试在棱PA 上确定一点E ,使//PG 平面BDE ,并求此时EPAE的值.22.(本小题12分)已知圆221:60C x y x ++=关于直线1:21l y x =+对称的圆为C .(1)求圆C 的方程;(2)过点()1,0-作直线l 与圆C 交于,A B 两点, O 是坐标原点,是否存在这样的直线l ,使得在平行四边形OASB 中OS OA OB =-?若存在,求出所有满足条件的直线l 的方程;若不存在,请说明理由.2018-2019学年度高二上学期数学(理)第一次月考试卷参考答案一、选择题1-5 CADBB 6-10 CBDDB 11-12 BA 二、填空题13.−13. 14.32 15.x+y-5=0 16.①③ 三、解答题17.解:(1) 0n a >,2634564417S S a a a q q a a -++==++= ∴2q =或3q =-(舍去).-----------------------------------------------2分又 532a =,故5142a a q==,--------------------------------------------3分 所以数列{}n a 的通项公式为112n nn a a q -=⋅=.------------------------------4分 (2)由(Ⅰ)知2nn na n =⋅, ∴23222322n n T n =+⨯+⨯++⋅,①------------------------------------5分∴()2312222122n n n T n n +=+⨯++-⋅+⋅,②----------------------------6分②-①得()1322222n n n n T n +=⋅-++++,------------------------------8分∴()1122n n T n +=-⋅+.-------------------------------------------------10分18.解:(1)设切线方程在为()4y k x =-,即40kx y k --=.---------------1分23k =⇒=±,---------------------------------------4∴切线方程为)4y x =-.-------------------------------------------5分 (2)当直线l 垂直于x 轴时,直线方程为1x =,l 与圆的两个交点坐标为(和(1,,其距离为.----7分当直线l 不垂直于x 轴,设其直线方程为()21y k x -=-,即20kx y k --+=,设圆心到此直线距离为d ,则=1d =,--------------------8分又2211k d k -+==+.解得34k =, 所求直线方程为3450x y -+=.------------------------------------------11分 综上所述,所求所求直线方程为3450x y -+=或1x =.---------------------12分 19.(1)法1:取PA 中点N,连接BN ,MN -------------------------------------1分N M , 分别为PD,PA 中点AD MN 21//=∴----------------------------------2分中点、分别为、AD BC F E ,底面ABCD 为平行四边形AD BE 21//=∴,故N BE //M =---------------------4分 所以四边形BEMN 为平行四边形故ME//BN ------------------------------------------5分PABME PAB BN PAB ME 平面平面平面//,∴⊂⊄ ---------------------6分法2:中点、分别为、AD BC F E ,底面ABCD 为平行四边形AB EF //∴EFM AB EFM EF 平面平面⊄⊂,EFM AB 平面//∴--------------------------------------------2分EFMPA EFM PA EFM MF PAMF AD PD F M 平面平面平面中点,分别为//.,//,,∴⊄⊂∴ -------------------------------4分---------------------5分PABME EFM ME 平面平面//∴⊂ ---------------------------------------------------6分(2)证明:法1: 在平行四边形ABCD 中,︒=∠=135,BCD AC AB ,∴AC AB ⊥.EFM PAB A PA AB PAB AB PAB PA 平面平面且平面平面又//.,∴=⊂⊂ NF E 、分别为AD BC ,的中点,AB EF //∴,AC EF ⊥∴.侧面底面,且,∴底面.又 底面,∴. 又,平面,平面,∴平面. 法2: 侧面底面,且,∴底面.PAC PA 平面又⊂ ABCD PAC 平面平面⊥∴在平行四边形ABCD 中,︒=∠=135,BCD AC AB , ∴AC AB ⊥.F E 、分别为AD BC ,的中点,AB EF //∴,AC EF ⊥∴.PACEF AC ABCD PAC 平面平面平面又⊥∴=20.解:(1)f(x)=√32sin2x −12cos2x =sin(2x −π6) 由2x −π6=π2+k π,k ∈Z 得x =π3+k π2,k ∈Z所以函数f(x)的对称轴为x =π3+k π2,k ∈Z .(2)∵f(A)=sin(2A −π6)=1∵A ∈(0,π)∴2A −π6∈(−π6,11π6) ∴2A −π6=π2∴A =π3∵ΔABC 的面积为2√3 ∴12bcsinA =√34bc =2√3 ∴bc =8由余弦定理a 2=b 2+c 2−2bccosA 得9=(b +c)2−2bc −bc =(b +c)2−24∴(b +c)2=33∴b +c =√3321解:(1)AB AD PAB PAD =∠=∠,PAB PAD ∆≅∆∴,得PD PB =O 为BD 中点,BD PO ⊥∴,底面ABCD 为菱形,⊥∴=⋂⊥∴BD O PO AC BD AC ,, 平面PAC ,⊂BD 平面∴,PBD 平面⊥PAC 平面PBD . (2)连接AG 交BD 于M ,在PAG ∆中,过M 作PG ME //交PA 于E ,连接ED 和EB , ⊄PG 平面⊂ME BDE ,平面//,PG BDE ∴平面BDE21~,2,//==∴∆∆=BG AD GM AM BGM ADM AD BG BG AD , 21,//==∴MG MA EP EA ME PG ,即21=EP AE . 22.解:(1)圆1C 化为标准为()2239x y ++=,设圆1C 的圆心()13,0C -关于直线1:21l y x =+的对称点为(),C a b ,则11CC l k k =-, 且1CC 的中点3,22a b M -⎛⎫⎪⎝⎭在直线1:21l y x =+上,----2分 所以有()213{3102ba ba ⨯=-+--+=,解得: 1{2a b ==-,--------------------4分 所以圆C 的方程为()()22129x y -++=.------5分(2)法1:由OS OA OB BA =-=,所以四边形OASB 为矩形,所以OA OB ⊥.要使OA OB ⊥,必须使·0OAOB=,即: 12120x x y y +=. 设直线l 方程为1-=my x联立()()01)44()1(92112222=--++⎩⎨⎧=++--=y m y m y x my x 得 ()1,0-在圆C 内部,∴0∆>恒成立,11,144221221+-=+-=+m y y m m y y 12120x x y y +=0)1)(1(2121=+--∴y y my my 01)()1(21212=++-+y y m y y m 即01144-11)1(222=++-⋅+-+m m m m m 即10或解得:=m1:11:0=+-===y x l m x l m 时,当时,当存在直线1x =-和1y x =+,它们与圆C 交,A B 两点,且四边形OASB 对角线相等. -----------------------------12分法2:由OS OA OB BA =-=,所以四边形OASB 为矩形,所以OA OB ⊥.要使OA OB ⊥,必须使·0OAOB=,即: 12120x x y y +=. ①当直线l 的斜率不存在时,可得直线l 的方程为1x =-,与圆()()22:129C x y -++= 交于两点()2A-, ()1,2B -.因为()())()·11220OAOB=--+=,所以OA OB ⊥,所以当直线l 的斜率不存在时,直线:1l x =-满足条件.--------------------7分 ②当直线l 的斜率存在时,可设直线l 的方程为()1y k x =+. 设()()1122,,,A x y B x y 由()()⎩⎨⎧=++-+=921)1(22y x x k y 得: ()()22221242440k x k k x k k +++-++-=.由于点()1,0-在圆C 内部,所以0∆>恒成立,21222421k k x x k +-+=-+, 2122441k k x x k +-=+,-------------9分 要使OA OB ⊥,必须使·0OAOB=,即12120x x y y +=, 也就是: ()()22122441101k k k x x k +-+++=+------------10分整理得:01242144)1(2222222=++-+-+-++k k k k k k k k k ------------11分解得: 1k =,所以直线l 的方程为1y x =+存在直线1x =-和1y x =+,它们与圆C 交,A B 两点,且四边形OASB 对角线相等. -----------------------------12分。