五年级奥数第六讲___排列组合
小学五年级逻辑思维学习—排列组合初步

小学五年级逻辑思维学习—排列组合初步知识定位理解加乘原理的根本,分辨何时使用加法原理、何时使用乘法原理知识梳理一、乘法原理:我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.二、加法原理:无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1+ m2+…+mk种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.加乘原理的区别:加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。
”例题精讲【题目】用2、4、5、7这4个不同数字可以组成24个互不相同的四位数,将它们从小到大排列,那么7254是第多少个数?【题目】用0、1、2、3、4这5个数字,组成各位数字互不相同的四位数,例如1023、2341等,求全体这样的四位数之和。
五年级奥数培优必考知识点——组合

五年级奥数培优必考知识点组 合一、排列知识复习1.排列指从n 个不同元素中任意取出m 个(m ≤n )元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
注意:排列是有顺序性的。
2.排列数从n 个不同元素中任意取出m 个(m ≤n )元素的所有排列的个数,叫做排列数,记为A m 。
二、组合大家一起来思考:如果从5个小朋友中选出3个小朋友组成一组去观看《喜洋洋与灰太狼之虎虎生威》,那么有多少种不同的选法呢?A 5÷A 3=10(种)1.排列是专门解决“排队”问题的,组合是专门解决“分组”的,即排列有顺序性,而组合没有顺序性。
2.组合指从n 个不同元素中任意取出m 个(m ≤n )元素组成一组,不计较组内各元素的顺序,叫做从n 个不同元素中取出m 个元素的一个组合。
3.组合数从n 个不同元素中任意取出m 个(m ≤n )元素的所有组合的个数,叫做组合数,记为C m 。
Cm =[n ⨯(n -1)⨯(n -2)⨯(n -3)⨯⨯(n -m +1)]÷[m ⨯(m -1)⨯(m -2)⨯(m -3)⨯⨯ 3⨯2⨯1]4.组合的特殊公式⑴思考:从5个小朋友里一个人也不选有多少种方法数?要是从5个人里选5个人呢?C 5 =C 5 =1,即C n =C n =1⑵计算: C 3 和C 3 ;C 5 和C 5①C 3=(3⨯2)÷(2⨯1) =3C 3 =3÷1=3 n n n0 5 0 2 1 2 3 2 13 3 n②C 5=(5⨯4)÷(2⨯1) =10C 5=(5⨯4⨯3)÷(3⨯2⨯1) =10巩固练习:例:计算C 100 -2C 100【例 1】某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排共有多少种站法?【例 2】10支球队进行足球比赛,实行单循环制(每两队之间比一场),那么一共要举行多少场比赛?若进行双循环制(有主客场之分)。
小学奥数之排列组合问题

题目:将5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为 _______. 答案:60
掌握基础概念和公式
理解排列组合的原理和计算方法
理解排列组合的概念和公式
练习题:有5个不同的小球放到4个不同的盒子里,要求每个盒子都不空,则不同的放法种数为多少? 答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。答案解析:根据题意,先选出5个小球,再将其分成4组,然后对4组进行排列,最后将排列后的4组对应到4个不同的盒子里。根据分步乘法计数原理,共有$A_{5}^{4} = 240$种不同的放法。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。练习题:用数字0,1,2,3,4可以组成多少个无重复数字且大于2000的三位数? 答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。答案解析:对于三位数的百位数字,不能为0,所以百位数字可以为1、2、3、4中的任意一个,共有4种选择。对于十位数字和个位数字,由于不能有重复数字,所以十位数字和个位数字各有4种选择。根据分步乘法计数原理,共有$4 \times 4 \times 3 = 48$个无重复数字且大于2000的三位数。练习题:有7把椅子摆成一排,现有3人随机就座,那么任何两人不相邻的坐法种数为多少? 答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。答案解析:先将没有人坐的4把椅子排好,再将有人坐的3把椅子插空,最后对3把有人坐的椅子进行全排列。根据分步乘法计数原理,共有$A_{5}^{3} = 60$种不同的坐法。
五年级奥数思维排列组合

五年级奥数思维排列组合
排列组合是一种思维方式,它可以帮助孩子们更好地理解数学知识,提高学习效率。
五年级的孩子们正处在学习数学的关键时期,掌握排列组合的技能对他们来说至关重要。
首先,孩子们要学会排列组合的基本概念,比如排列和组合的定义,以及它们之间的区别。
其次,孩子们要学会如何计算排列组合的结果,比如从一组数字中挑选出三个数字的排列组合有多少种可能。
此外,孩子们还要学会如何利用排列组合来解决实际问题。
比如,如果有三个人要排队,那么他们可以有多少种排列方式?孩子们可以利用排列组合的思维方式来解决这个问题。
最后,孩子们要学会如何利用排列组合来解决更复杂的问题,比如从一组数字中挑选出三个数字,使它们的和等于某个特定的数字,这就是一个更复杂的问题,孩子们可以利用排列组合的思维方式来解决这个问题。
总之,排列组合是一种重要的思维方式,五年级的孩子们要学会掌握排列组合的技能,以便更好地理解数学知识,提高学习效率。
五年级奥数计数综合排列组合ABC级教师版

实用文档排列组合知识结构排列问题一、在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.nm?个不同元)个元素,按照一定的顺序排成一列,叫做从一般地,从个不同的元素中取出(nnm素中取出个元素的一个排列.m根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.nm?个不同的元素的排列中取出)个元素的所有排列的个数,叫做从从个不同的元素中取出(nnm m P个元素的排列数,我们把它记做.m n 个步骤完成:根据排列的定义,做一个元素的排列由mm1种方法;:从个不同的元素中任取一个元素排在第一位,有步骤nn2种方法;个元素中任取一个元素排在第二位,有(步骤):从剩下的()11n?n?……)(个位置,有种步骤:从剩下的个元素中任取一个元素排在第1)](m?[n?1n??mn?(m?1)?mm方法;,即个不同元素中取出个元素的排列数是由乘法原理,从)1mn??n?2)?(?n(?n?1)(?nm m)1m??2)(n?.P?(nn?1)(nn?m1,开始,后面每个因数比前一个因数小,这里,,且等号右边从n n共有个因数相乘.m排列数二、n(P12?n??)???n1)(n?2??3的情况,排列数公式变为一般地,对于.nm?n nnn 个排列全部取出的排列,叫表示从个不同元素中取个元素排成一列所构成排列的排列数.这种nn的乘积,开始,后面每一个因数比前一个因数小,一直乘到做个不同元素的全排列.式子右边是从11实用文档n nn?nP!Pn!?n(?3?2?n?n?1)(?n?2)?!1.还可以写为:,读做,其中的阶乘,则记为nn在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.三、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.m?n)个(元素组成一组不计较组内各元素的次序,叫做从个不一般地,从个不同元素中取出nnm 同元素中取出个元素的一个组合.m从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.m?n)的所有组合的个数,叫做从个不同元素中取出个不同元从个不同元素中取出个元素(nnmm m 素的组合数.记作.C nm可分成以下两步:个元素的排列数一般地,求从个不同元素中取出的P nm nm第一步:从个不同元素中取出个元素组成一组,共有种方法;C nm nm第二步:将每一个组合中的个元素进行全排列,共有种排法.P m mmmm.根据乘法原理,得到CP?P?nmnm Pn(?n?1)(?n?2)?(?n?m?1)mn.因此,组合数?C?nm m(?m?1)(?m?2)??3?2?1P m这个公式就是组合数公式.四、组合数的重要性质mn?m m?n)一般地,组合数有下面的重要性质:(C?C nnmn?m这个公式的直观意义是:表示从个元素中取出个元素组成一组的所有分组方法.表示从CC nm nn个元素中取出()个元素组成一组的所有分组方法.显然,从个元素中选出个元素的分组方法nnm?mn恰是从个元素中选个元素剩下的()个元素的分组方法.nmmn?322人不去开会的方法是一样多的,即.人中选例如,从人开会的方法和从人中选出CC?55355n0,.规定C?1C?1nn五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1实用文档个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.六、使用插板法一般有如下三种类型:⑴个人分个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的nm m?1C1)?(m(n?1).个空隙中放上个插板,所以分法的数目为1n?nam个.这个时候,我们先发给每个人个,还剩下⑵个东西,要求每个人至少有个人分1)?(a个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1)]?(a[n?m m?1C.11)?m(a?n?nmm个东西,每个人多发1个人分个,这个东西,允许有人没有分到.这个时候,我们不妨先借来⑶m?1样就和类型⑴一样了,不过这时候物品总数变成了,因此分法的数目为.C)mn?(个1?n?m例题精讲一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复,则通过“住店法”可顺利解题,在这类问题使用住店处理的的元素看作“客”,能重复的元素看作“店”策略中,关键是在正确判断哪个底数,哪个是指数 4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(1)有【例1】4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(2)有 4个不同的邮筒,则有多少种不同投法?)将3封不同的信投入(3433344()3:【解析】(1))(2 个车间实习共有多少种不同方法?把6名实习生分配到72【例】种不同方案,【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有767.依次类推,由分步计数原理知共有种不同方案第二步:将第二名实习生分配到车间也有7种不同方案,33CA8338 D )A、、 B、、 C3【例】 8名同学争夺3项冠军,获得冠军的可能性有(88 3项冠名学生看作8家“店”,【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8388种可能,因此共有种军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有A不同的结果。
五年级数学数字的排列组合

五年级数学数字的排列组合数字的排列组合是数学中一个重要的概念和技巧。
在五年级的数学学习中,学生开始接触和学习排列组合的基本概念和方法。
本文将介绍五年级数学中数字的排列组合,包括排列、组合、全排列和重复排列等内容。
一、排列排列是指在给定的元素中,选取一部分进行重新排列的过程。
在排列中,元素的顺序是重要的,即不同顺序的排列被视为不同的排列。
例如,给定数字1、2、3,我们可以从中选取两个数字进行排列,可能的排列如下:1、2;1、3;2、1;2、3;3、1;3、2。
从上述排列可以看出,只要数字的顺序发生改变,就会得到不同的排列。
在数学中,我们可以使用排列公式来计算排列的数量。
对于n个元素中选取r个元素进行排列,排列的数量可以用公式P(n,r)表示,其中n和r分别代表元素的总数和选取的元素数量。
排列的计算公式为:P(n,r) = n! / (n-r)!注意,符号“!”表示阶乘,即n!表示n的阶乘。
二、组合组合是指在给定的元素中,选取一部分元素形成的集合。
在组合中,元素的顺序不重要,即相同元素组成的不同顺序的组合被视为相同的组合。
例如,给定数字1、2、3,我们可以从中选取两个数字进行组合,可能的组合如下:1、2;1、3;2、3。
从上述组合可以看出,只要相同的元素组合在一起,就被视为相同的组合。
在数学中,我们可以使用组合公式来计算组合的数量。
对于n 个元素中选取r个元素进行组合,组合的数量可以用公式C(n,r)表示,其中n和r分别代表元素的总数和选取的元素数量。
组合的计算公式为:C(n,r) = n! / (r! * (n-r)!)三、全排列全排列是指对给定的元素进行全面的排列,即将所有可能的排列都考虑进去。
例如,给定数字1、2、3,全排列的结果如下:1、2、3;1、3、2;2、1、3;2、3、1;3、1、2;3、2、1。
从上述全排列可以看出,对于给定的元素,将所有可能的排列都考虑进去,得到的结果就是全排列。
五年级奥数排列组合

五年级奥数排列组合排列组合知识框架一、排列问题在实际生活中,我们经常需要将一些事物排列在一起,计算有多少种排法,这就是排列问题。
排列问题不仅与参与排列的事物有关,还与各事物所在的先后顺序有关。
一般地,从n个不同的元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
根据排列的定义,两个排列相同指的是两个排列的元素完全相同,并且元素的排列顺序也相同。
如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列。
排列的基本问题是计算排列的总个数。
从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同的元素的排列中取出m 个元素的排列数,我们把它记做Pn,m。
根据排列的定义,做一个m元素的排列由m个步骤完成:步骤1:从n个不同的元素中任取一个元素排在第一位,有n种方法;步骤2:从剩下的(n-1)个元素中任取一个元素排在第二位,有(n-1)种方法;步骤m:从剩下的[n-(m-1)]个元素中任取一个元素排在第m个位置,有n-(m-1)=n-m+1(种)方法;由乘法原理,从n个不同元素中取出m个元素的排列数是n(n-1)…(n-m+1),即Pn,m=(n)(n-1)…(n-m+1),这里,m≤n,且等号右边从n开始,后面每个因数比前一个因数小1,共有m个因数相乘。
二、排列数一般地,对于m=n的情况,排列数公式变为Pn,n=n。
表示从n个不同元素中取n个元素排成一列所构成排列的排列数。
这种n个排列全部取出的排列,叫做n个不同元素的全排列。
式子右边是从n开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为n。
读做n的阶乘。
因此,Pn,n还可以写为Pn,n=n。
在排列问题中,有时候会要求某些物体或元素必须相邻。
求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算。
三、组合问题日常生活中经常需要进行“分组”,例如在体育比赛中将参赛队分为几组,或从全班同学中选出几人参加某项活动等等。
小学奥数排列组合

小学奥数排列组合.本文介绍了排列组合的应用。
通过举例,让学生理解排列、组合的意义,并掌握计算公式和技巧。
在解决问题时,需要注意特殊情况,先考虑特殊情况再进行全排列。
例如,在小新、阿呆等七个同学照像的问题中,要根据具体的要求写出符合要求的排列或组合。
最后,还提供了一个练题,让学生灵活运用计数方法进行计数。
文章中没有明显的格式错误和问题段落。
对于第一段,可以稍微改写为:我们可以用1、2、3、4、5这五个数字组成不同位数的数字。
对于一位数,只有1个数字可选;对于两位数,第一位有5种选择,第二位有4种选择,共有5×4=20种选择;对于三位数,第一位有5种选择,第二位有4种选择,第三位有3种选择,共有5×4×3=60种选择;对于四位数,可由1、2、4、5这四个数字组成,有24种不同的选择;对于五位数,可由1、2、3、4、5这五个数字组成,共有120种不同的选择。
由加法原理,一共有177个能被3整除的数,即3的倍数。
对于第二段,可以稍微改写为:我们可以用1、2、3、4、5、6这六张数字卡片组成不同的三位数,且要组成偶数。
个位上的数应从2、4、6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有20种选法。
由乘法原理,一共可以组成3×20=60个不同的偶数。
对于第三段,可以稍微改写为:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是9.我们可以列出所有符合条件的组合,包括1、1、1、6;1、1、2、5;1、1、3、4;1、2、2、4;1、2、3、3;2、2、2、3这六种。
对于每种组合,我们可以计算出可以组成多少个密码。
最后,由加法原理,一共可以组成56个不同的四位数,即确保能打开保险柜至少要试56次。
对于最后一段,可以稍微改写为:两对三胞胎围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,共有6个人。
第一个位置在6个人中任选一个,有6种选法;第二个位置在另一胞胎的3个人中任选一个,有3种选法;同理,第3、4、5、6个位置依次有2、2、3人中任选一个,有1种选法。