五年级奥数:加法、乘法原理
五年级下册数学奥数课件3加法原理和乘法原理人教版(27张PPT)

北京
5种
天津
4种
5+4=9(种)
答:有9种不同的走法。
小结
加法原理:
一般地,如果完成一件事需要k类方法, 第一类方法中有m1种不同的方法,第二类方 法中有m2种不同的方法……第k类方法中有mk 种不同的做法,则完成这件事共有
N=m1+m2+…+mk种不同的方法。
即学即练
在一个纸箱内装有5个小球,另一个纸箱内装有9个小球,所 有小球颜色各不相同。从这两个纸箱里任取一个小球,有多少种 不同的取法?
答:有18种不同的选法。
例3:一个口袋内装有3个小球,另一个口袋内装有8个小球, 所有这些小球颜色各不相同。
问:(1)从两个口袋内任取一个小球,有多少种不同的取法?
小球装在两个口袋内相当于分成了两类!
例3:一个口袋内装有3个小球,另一个口袋内装有8个小球, 所有这些小球颜色各不相同。
问:(1)从两个口袋内任取一个小球,有多少种不同的取法?
即学即练
希望小学的歌唱小组由10名男生和8名女生组成。 (1)现在要从这些学生中挑选一名男生和一名女生配成一组去 参加演唱比赛,有多少种不同的搭配方法?
10×8=80(种)
答:有80种不同的搭配方法。
(2)如果要从男生或女生中任选一人去登台领奖,,有多少种 不同的选法?
10+8=18(种)
答:有18种不同的选法。
种不同的选法?
1.探索因数中间或末尾有0的乘法的计算方法及简便写法,进一步认识0在乘法运算中的特殊性,培养迁移类推及概括等能力。
2.妈妈比小明大24岁,而且妈妈今年的年龄是小明的3倍。小明和妈妈今年分别是多少岁?
五年级奥数专题 加法原理和乘法原理综合(学生版)

学科培优数学“加法原理和乘法原理综合”学生姓名授课日期教师姓名授课时长知识定位本讲力求让学生懂得并运用加法乘法原理来解决问题,掌握常见的计数方法,会使用这些方法来解决问题知识梳理乘法原理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理.乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法 ,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.加法原理无论自然界还是学习生活中,事物的组成往往是分门别类的,例如解决一件问题的往往不只一类途径,每一类途径往往又包含多种方法,如果要想知道一共有多少种解决方法,就需要用到加法原理.加法原理:一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法 ,…,第k类方法中有mk种不同的做法,则完成这件事共有N= m1 + m2 +…+mk 种不同的方法.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.例题精讲【试题来源】【题目】从五年级8个班中评选出学习、体育、卫生先进集体,如果要求同一个班级只能得到一个先进集体,那么一共有多少种评选方法?【试题来源】【题目】用5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?【试题来源】【题目】北京到广州之间有10个站,其中只有两个站是大站(不包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票?【试题来源】【题目】7个相同的球放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?【试题来源】【题目】如图所示,沿线段从A 走最短路线到B 有多少种走法?【试题来源】【题目】如果从3本不同的语文书、4本不同的数学书、5本不同的外语书中选取2本不同学科的书阅读,那么共有多少种不同的选择?GD F CE BA106343211111BA【试题来源】【题目】用1,2,3,4这4个数字,组成各位数字互不相同的四位数,例如1234,4321等,求全体这样的四位数之和.【试题来源】【题目】某条铁路线上,包括起点和终点在内原来共有7个车站,现在新增了3个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?【试题来源】【题目】用0~9这十个数字可组成多少个无重复数字的四位数.【试题来源】【题目】12个人围成一圈,从中选出三个人,其中恰有两人相邻,共有多少种不同选法?【试题来源】【题目】A、B、C三个小朋友互相传球,先从A开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A手中,那么不同的传球方式共多少种.【试题来源】【题目】在2000到2999这1000个自然数中,有多少个千位、百位、十位、个位数字中恰有两个相同的数?【试题来源】【题目】将一些数字分别填入下列各表中,要求每个小格中填入一个数字,表中的每横行中从左到右数字由小到大,每一竖列中从上到小数字也由小到大排列。
小学奥数 加乘原理之数字问题(一) 精选例题练习习题(含知识点拨)

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念 生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不...可的..,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 由数字1,2,3 可以组成多少个没有重复数字的数?【考点】加乘原理之综合运用 【难度】2星 【题型】解答【解析】 因为有1,2,3共3个数字,因此组成的数有3类:组成一位数;组成二位数;组成三位数.它们的和就是问题所求.⑴组成一位数:有3个;⑵组成二位数:由于数字可以重复使用,组成二位数分两步完成;第一步排十位数,有3种方法;第二步排个位数也有3种方法,因此由乘法原理,有326⨯=个;⑶组成三位数:与组成二位数道理相同,有326⨯=个三位数;所以,根据加法原理,一共可组成36615++=个数.【答案】15【例 2】 用数字1,2,3可以组成6个没有重复数字的三位数,这6个数的和是 。
小学奥数--加法原理乘法原理

加法原理与乘法原理加法原理:完成一件工作共有N类方法。
在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有mn种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+mn种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。
要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。
乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有mn种方法,那么,完成这件工作共有m1×m2×…×mn种方法。
运用乘法原理计数,关键在于合理分步。
完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。
这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。
计数时要注意区分是分类问题还是分步问题,正确运用两个原理。
灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。
小学阶段只学习两个原理的简单应用。
【题目1】:用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法【解析】:运用加法原理,把组成方法分成三大类:①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。
②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。
(精品)小学奥数7-3-1 加乘原理之综合运用.专项练习及答案解析

1.复习乘法原理和加法原理;2.培养学生综合运用加法原理和乘法原理的能力.3.让学生懂得并运用加法、乘法原理来解决问题,掌握常见的计数方法,会使用这些方法解决问题.在分类讨论中结合分步分析,在分步分析中结合分类讨论;教师应该明确并强调哪些是分类,哪些是分步.并了解与加、乘原理相关的常见题型:数论类问题、染色问题、图形组合.一、加乘原理概念生活中常有这样的情况:在做一件事时,有几类不同的方法,在具体做的时候,只要采用其中某一类中的一种方法就可以完成,并且这几类方法是互不影响的.那么考虑完成这件事所有可能的做法,就要用到加法原理来解决.还有这样的一种情况:就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法.要知道完成这件事情共有多少种方法,就要用到乘法原理来解决.二、加乘原理应用应用加法原理和乘法原理时要注意下面几点:⑴加法原理是把完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,所以完成任务的不同方法数等于各类方法数之和.⑵乘法原理是把一件事分几步完成,这几步缺一不可,所以完成任务的不同方法数等于各步方法数的乘积.⑶在很多题目中,加法原理和乘法原理都不是单独出现的,这就需要我们能够熟练的运用好这两大原理,综合分析,正确作出分类和分步.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”.【例 1】 商店里有2种巧克力糖:牛奶味、榛仁味;有2种水果糖:苹果味、梨味、橙味.小明想买一些糖送给他的小朋友.⑴如果小明只买一种糖,他有几种选法?⑵如果小明想买水果糖、巧克力糖各1种,他有几种选法?教学目标例题精讲知识要点7-3-1.加乘原理之综合运用【考点】加乘原理之综合运用 【难度】1星 【题型】解答【解析】 ⑴小明只买一种糖,完成这件事一步即可完成,有两类办法:第一类是从2种巧克力糖中选一种有2种办法;第二类是从3种水果糖中选一种,有3种办法.因此,小明有235+=种选糖的方法.⑵小明完成这件事要分两步,每步分别有2种、3种方法,因此有326⨯=种方法.【答案】⑴5 ⑵6【例 2】 从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。
五年级奥数:加法、乘法原理

五年级奥数:加法、乘法原理加法原理在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总和。
即N = m1 + m2+ … + mn(N代表完成一件工作的方法的总和,m1,m2, … m n表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例题与方法:例1 书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?例3、4 x 4的方格图中(如下图),共有多少个正方形?例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?练习与思考:从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火1.车有4班,甲城到乙城共有()种不同的走法。
一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2.备____种不同的车票。
3.下面图形中共有____个正方形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
乘法原理和加法原理(小学奥数5年级)

加法原理和乘法原理知识方法一、分类计数原理(加法原理)1、完成一件事情,有n类方法,在第1类方法中有m1种不同的方法,在第2类方法中有m2种不同的方法,……在第n类方法中有mn种不同的方法,则完成这件事有N=m1+m2+……+m n 种不同的方法2、分类计数原理的特点:针对的是“分类”问题,各类方法是相互独立的。
二、分步计数原理(乘法原理)1、完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有有m2种不同的方法,……做第n步有mn种不同的方法,则完成这件事有N=m1×m2×……×m n 种不同的方法2、分不计数原理的特点:针对的是“分步”问题,各类方法是相互依存的。
例1:从资阳到成都可乘火车,也可乘汽车,一天中,火车有3列,汽车有12辆,一天中乘坐这些交通工具从资阳到成都有多少种不同的方法?例2:陈老师从资阳到美国,第1天,乘高铁到成都有3辆,次日,从成都乘飞机到美国有5班,陈老师从资阳到美国有多少种不同的乘车方法?变式:一个盒子里装有5个小球。
另一个盒子里装有9个小球。
所有这些小球的颜色各不相同。
(1)从两个盒子中任取一个小球,有多少种不同的取法?(2)从两个盒子中各取一个球,有多少种不同的取法?例3:4个数字3、5、6、8可以组成多少个没有重复数字的四位数?变式:有7、3、6三个数字卡片,能组成几个不同的三位数?(每个数字只能用1次)例4、用4种不同颜色给下面的图形涂色。
使相邻两个长方形颜色不相同,有多少种不同的涂法?变式:在A 、B 、C 、D 四个长方形区域中涂上红黄蓝黑这4种不同颜色,使相邻两个长方形颜色不相同,有多少种不同的涂法?例5、南京与上海的动车组特快列车,中途只停靠常州,无锡,苏州三个火车站。
共要准备多少种不同的车票?(考虑往返)变式:北京到广州的火车中间要停靠8个大站。
火车站要准备多少种不同的车票?有多少种不同的票价?(考虑往返)练习题1、小军小蓝和小红三个朋友排成一排照相,有多少种不同的排法?2、书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书,如果从中各取一本科技书,一本故事书和一本英语书,那么总共有多少种取法?3、有8、0、2、4、6五个数字,可以组成几个不同的五位数?4、五一前夕,学校举行亲子活动。
五年级下学期奥数班第11讲 加乘法原理

加乘法原理月日姓名【知识要点】1.加法原理:如果完成某一种工作可以有几类方法,一类方法中又有若干种不同的方法,那么,完成这件工作方法的总数就等于各类完成这件工作的方法的总和。
2.乘法原理:做一件事如果要分成几步,每步又各有若干种方法,把每一步可能的方法连乘,得到的积就是不同搭配方法的总数。
【精典例题】例1 书架上层放有7种不同的故事书,中层有6本不同的科技书,下层有4种不同的画册,如果从书架上任取1本书,有多少种不同的取法?如果从每一层各取1本,有多少种不同的取法?例2 由1、2、3、4这四个数字组成许多四位数:(1)共有多少个没有重复数字的四位数?(2)共有几个四位数?将它们从小到大排列起来,那么4231是第几个?例3 A、B、C、D、E、F六人排成一排照相:(1)如果C必须站在中间,那么共有多少种排法?(2)如果A、B 两人必须站在两端,那么一共有多少种不同的排法?例4 如右图,正方形ACEF 的边界上共有6个点,A 、B 、C 、D 、E 、F ,其中B 、D 分别在边AC 、CE 上,那么,以这6个点中的三个点为顶点,组成的不同的三角形的个数是多少?例5 从学校到少年宫有4条东西的马路和3条南北的马路相通(如图)。
福娃从学校出发,步行到少年宫(只许向东或向南行进),最多有多少种不同的行走路线?随堂小测姓 名 成 绩1.动物园里有3只猴子去坐5把不同的椅子(每只猴子只能坐一把),有多少种不同的坐法?2.A 、B 、C 、D 、E 、F 六个人排成一排照相: (1)如果A 、B 两人必须相邻,共有多少种排法? (2)如果A 不在两端,那么共有多少种排法?少年宫北3.某铁路线上,在起点和终点之间有7个车站(包括起点和终点站),现在新增加了3个车站,铁路上两站之间往返的车票不一样,这样需要增加多少种不同的车票?4.由数字1、2、3、4、5可以组成多少个没有重复数字且比40000小的自然数?(提示:要考虑1位,2位,3位,4位,5位的自然数)5.这是一个棋盘(如图),将一个白子和一个黑子放在棋盘线的交叉点上,但不能在同一条棋盘线上,共有多少种不同的放法?课后作业姓名家长签名成绩1.“IMO”是国际数学奥林匹克的缩写,要求把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加法原理
在日常生活与实践中,我们经常会遇到分组、计数的问题。
解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。
熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。
什么叫做加法原理呢?我们先来看这样一个问题:
从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。
假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。
那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法?
我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。
因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。
我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总
和。
即N = m
1 + m
2
+ … + m
n
(N代表完成一件工作的方法的总和,m1,m2, … m n
表示每一类完成工作的方法的种数)。
这个规律就乘做加法原理。
例题与方法:
例1 书架上有10本故事书,3本历史书,12本科普读物。
志远任意从书架上取一本书,有多少种不同的取法?
例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?
例3、4 x 4的方格图中(如下图),共有多少个正方形?
例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法?
练习与思考:
从甲城到乙城,可乘汽车,火车或飞机。
已知一天中汽车有2班,火1.
车有4班,甲城到乙城共有()种不同的走法。
一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2.
备____种不同的车票。
3.下面图形中共有____个正方形。
4.图中共有_____个角。
5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。
如果从书架上任取一本书,有____种不同的取法。
6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。
7.图中共有_____个三角形。
8.图中共有____个正方形.
9.从2,3,5,7,11,13,这六个数中,每次取出两个数分别作为一个分数的分子和分母,一共可以组成_____个真分数.
10.某铁路局从A站到F站共有6个火车站(包括A站和F站)铁路局要为在A站到F站之间运行的火车准备_____种不同的车票,其中票价不相同的火车票有_____种。
乘法原理
上一讲我们学习了用“加法原理”计数,这一讲我们学习“乘法原理”。
什么是乘法原理呢?我们来看这样一个问题:
从甲地到乙地有3条不同的道路,从乙地到丙地有4条不同的道路。
从甲地经过乙地到丙地,共有多少种走法?
我们这样思考:从甲地到乙地的3条道路中任意选一条都可以从甲地到乙地,再从乙地大丙地的4条道路中任意选一条都可以从乙地到丙地,那么,从甲地到乙地的3条道地第一条到达乙地后,可以走从乙地到丙地的任意一条路,这样就有了4种不同的走法。
从甲地到乙地的第二条、第三条路到达乙地后,仍可以从乙地到丙地的4条路中任选一条到丙地,如图所示:
从图中可以看出,从甲地到丙地共有3 X 4 =12(种)走法。
如果完成一件事情需要几个步,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…那么,完成这件工作共有N =m1 x m2 x m3 x … x m n 种不同的方法。
这就是乘法原理。
例题与方法:
例1 书架上有4本故事书,7本科普书,志远从书架上任取一本故事书和一本科普书,共有多少种不同的取法?
例2 从2、3、5、7、11这五个数字中每次取出2个数字,分别作为一个分数的分子和分母,一共可以组从多少个分数?其中有多少个真分数?
例3 用9、8、7、6这四个数可以组成多少个没有重复数字的三位数?这些位数的和是多少?
例4 如图,A、B 、C、D四个区域分别用红、黄、蓝、白四种颜色中的某一种染色。
若要求相邻的区域染不同的颜色,问:共有多少种不同的染色方法?
练习与思考:
1.从甲地到乙地有两条河,从乙地到丙地有3条路可走,从甲地经乙地到丙地共有
种走法。
2.书架的上、中、下层各有3本、5本、、4本故事书。
若要从每层书架上任取一个本书,共有种不同的取法。
3.有1,2,3,三数字,一共可以组成个没有重复数字的三位数。
4.两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛场。
5.从5,7,11,13这四个数中每次取2个数组成分数,一共可以组成个分数,其中真分数有个。
6.图中一共有个不同的长方形。
7.一个口袋里装有5个小球,另7一个口袋里装有4个小球。
这些小球的颜色互不相同。
(1)从两个口袋里任意取一个小球,有种不同的取法。
(2)从两个口袋内各取一个小球,有种不同的取法。
8.某信号兵用红、黄、蓝三面棋从上到下挂在旗杆上的三个位置表示信号。
每次可挂一面、二面或三面,并且不同的顺序、不同的位置表示不同的信号。
一共可以表示种不同的信号。