浙大版概率论与数理统计答案---第七章
概率论与数理统计及其应用课后答案第二版浙大版4-7章

第4章 正态分布1,(1)设)1,0(~N Z ,求}24.1{≤Z P ,}37.224.1{≤<Z P ,}24.137.2{-≤<-Z P ; (2)设)1,0(~N Z ,且9147.0}{=≤a Z P ,0526.0}{=≥b Z P ,求b a ,。
解:(1)8925.0)24.1(}24.1{=Φ=≤Z P ,0986.08925.09911.0)24.1()37.2(}24.1{}37.2{}37.224.1{=-=Φ-Φ=≤-≤=≤<Z P Z P Z P 0986.0)]37.2(1[)]24.1(1[)37.2()24.1(}24.137.2{=Φ--Φ-=-Φ--Φ=-≤<-Z P(2))37.1(9147.0}{Φ==≤a Z P ,所以37.1=a ;}{10526.0}{b Z P b Z P <-==≥,所以)62.1(9474.0}{Φ==<b Z P ,即62.1=b 。
2,设)16,3(~N X ,求}84{≤<X P ,}50{≤≤X P 。
解:因为)16,3(~N X ,所以)1,0(~43N X -。
2957.05987.08944.0)25.0()25.1(}43843434{}84{=-=Φ-Φ=-≤-<-=≤<X P X P 4649.0)7734.01(6915.0)430()435(}50{=--=-Φ--Φ=≤≤X P 。
3,(1)设)36,25(~N X ,试确定C ,使得9544.0}25{=≤-C X P 。
(2)设)4,3(~N X ,试确定C ,使得95.0}{≥>C X P 。
解:(1)因为1)6(2)6()6(}25{}25{-Φ=-Φ-Φ=≤-≤-=≤-C C CC X C P C X P所以得到9772.0)6(=ΦC ,即0.26=C,0.12=C 。
浙大版数理统计第七章

例 某种木材横纹抗压力的实验值 服从正态分布,对10个试件作横纹 抗压力试验,得数据如下(单位: 公斤/ 平方厘米): 482,493,457,471,510, 446,435,418,394,469 试例对P7该4例木1材平均横纹抗压力
进行区间估计( 0.05).
解 2未知,用区间
( X t /2 (n 1)
其中 1,试分别用矩估计法
0 其他
f
(
x)
(
1)x
,0
(
x 1
0)
例 设总体X的概率密度为
得的矩估计量为ˆ
1 2X
X。 1
令E( X
)
A1,即
2 1
X
,
0 1
(1
)
x
dx
1
2 1
,
E( X ) xf (x; )dx
解
d 1 i1 ln xi ,令 d 0
d ln L n
2
2
2
2
n i1
n
1 E(X ) 1 n E(X )
n
n i1
n i1
(2)E( X ) E( 1 X i ) 1 E( X i )
n
n
解 (1)E( X i ) E( X ) .
设
1( X1, X2 ,..., Xn ),2 ( X1, X2 ,..., Xn )
均为参数的无偏估计,如 果对于任意 ,有
2
2
(2) X是的无偏估计( );
(1) X i是的无偏√估√ 计(对 );
判断:
对
X的样本,E( X ) , D(否X ) 2
例 设X 1, X 2 ,...,X n是来否自总体
浙江大学概率论与数理统计第七章

点估计
一、点估计问题的提法
二、估计量的求法 三、小结
一、点估计问题的提法
设总体 X 的分布函数形式已知, 但它的一个 或多个参数为未知, 借助于总体 X 的一个样本来 估计总体未知参数的值的问题称为点估计问题. 例1
在某炸药制造厂, 一天中发生着火现象的
次数 X 是一个随机变量 , 假设它服从以 0 为参 数的泊松分布, 参数 为未知, 设有以下的样本值 , 试估计参数 .
n
(二) 取对数
n i 1
ln L( ) ln p( xi ; ) 或 ln L( ) ln f ( xi ; );
i 1
n
d ln L( ) d ln L( ) 对数似 (三) 对 求导 , 并令 0,然方程 d d ˆ. 解方程即得未知参数 的最大似然估计值
a b 2 A1 , 即 2 b a 12( A2 A1 ) .
解方程组得到a, b的矩估计量分别为
3 n 2 ( X X ) , ˆ A1 3( A2 A1 ) X a i n i 1
2
n 3 2 2 ˆ X ( X X ) . b A1 3( A2 A1 ) i n i 1
i 1 n
L( ) L( x1 , x2 ,, xn ; ) f ( xi ; ),
n
L( )称为样本的似然函数 . ˆ ) max L( x1 , x2 , , xn ; ). 若 L( x1 , x2 , , xn ;
i 1
ˆ ( x1 , x2 ,, xn ) 参数 的最大似然估计值 , ˆ ( X 1 , X 2 ,, X n ) 参数 的最大似然估计量 .
概率论与数理统计(浙大版)第七章第八章课件

用样本矩作为总体矩的估计,即令: 2 1,2, ,k A2
k 1,2, ,k Ak
解此方程即得1,2, ,k 的一个矩估计量 1, 2, ,ˆk
, Xn,
例1:设总体X的均值和方差 2都存在,且 2 0,, 2均未知,
(1) f ( x) 0, ln[ f ( x)]单调性相同,从而最大值 点相同.
n
(2) L( ) p( xi; ) n项连乘, 求导麻烦
i1
ln[L( )] n项相加,求导简单 对数似然函数
从而,
求的 L( ) 最大值点就转为求ln[ L( )]的最大值点
方法二:
解方程
d
i 1
f
( X i ; )
i 1
X
i
1(0
Xi
1)
n ( X1 X 2 X n ) 1 1 i n
取对数
n
ln L( ) n ln ( 1) ln Xi i 1
求导并令其为0
d ln L( ) n n
d
ln
i 1
pˆ
1 n
n i 1
Xi
说明:p的极大似然估计值为:
pˆ 1 n n i1
xi
例2: 设(X1,X2,…Xn )是来自总体X的一个样本,
X
~
f
(
x
;
)
x 1 0,
,
0
x 其它
1 ,
其中 0未知 ,
求θ的极大似然估计量.
解: θ的似然函数为:
n
《概率论与数理统计》习题及答案 第七章

《概率论与数理统计》习题及答案第 七 章1.对某一距离进行5次测量,结果如下:2781,2836,2807,2765,2858(米). 已知测量结果服从2(,)N μσ,求参数μ和2σ的矩估计.解 μ的矩估计为ˆX μ=,2σ的矩估计为22*211ˆ()ni i X X S n σ==-=∑ 1(27812836280727652858)2809.05X =++++=,*215854.01170.845S =⨯=所以2ˆ2809,1170.8μσ== 2.设12,,,n X X X 是来自对数级数分布1(),(01,1,2,)(1)kp P X k p k lu p k==-<<=-的一个样本,求p 的矩估计.解 111111ln(1)ln(1)ln(1)1k kk k p p p p p p p μ∞∞==-==-=-⋅----∑∑ (1) 因为p 很难解出来,所以再求总体的二阶原点矩121111ln(1)ln(1)ln(1)kk k x pk k k p p kp kp x p p p μ∞∞∞-===='-⎛⎫==-=- ⎪---⎝⎭∑∑∑ 21ln(1)1ln(1)(1)x pp x p p x p p ='⎡⎤=-=-⋅⎢⎥----⎣⎦ (2) (1)÷(2)得 121p μμ=- 所以 212p μμμ-= 所以得p 的矩估计21221111n i i n i i X X X n p X n α==-==-∑∑3.设总体X 服从参数为N 和p 的二项分布,12,,,n X X X 为取自X 的样本,试求参数N 和p 的矩估计 解 122,(1)()Np Np p Np μμ⎧=⎪⎨=-+⎪⎩ 解之得1/N p μ=, 21(1)p Np μμ-+=, 即1N pμ=,22111p μμμ-=-,所以 N 和p 的矩估计为ˆX N p=,*21S p X =-. 4.设总体X 具有密度11(1)1,,(;)0,.Cx x C f x θθθθ-+⎧>⎪=⎨⎪⎩其他其中参数01,C θ<<为已知常数,且0C >,从中抽得一个样本,12,,,n X X X ,求θ的矩估计解11111111111CCEX C x dx C xθθθθμθθθ+∞--+∞===-⎰111()11C C C C θθθθ-=-⋅=--, 解出θ得11,Cθμ=-92 于是θ的矩估计为 1C Xθ=-. 5.设总体的密度为(1),01,(;)0,.x x f x ααα⎧+<<⎪=⎨⎪⎩其他试用样本12,,,n X X X 求参数α的矩估计和极大似然估计.解 先求矩估计:111210011(1),22EX x dx x ααααμααα++++==+==++⎰解出α得 1112,1μαμ-=- 所以α的矩估计为 121XX α-=-. 再求极大似然估计: 1121(,,;)(1)(1)()nn n i n i L X X x x x x ααααα==+=+∏,1ln ln(1)ln nii L n xαα==++∑,1ln ln 01nii d L nx d αα==++∑,解得α的极大似然估计: 1(1)ln nii nxα==-+∑.6.已知总体X 在12[,]θθ上服从均匀分布,1n X X 是取自X 的样本,求12,θθ的矩估计和极大似然估计.解 先求矩估计: 1212EX θθμ+==,22222211211222()()1243EX θθθθθθθθμ-+++==+=解方程组121221122223θθμθθθθμ⎧+=⎪⎪⎨++⎪=⎪⎩得11θμ=±2123(θμμμ=-注意到12θθ<,得12,θθ的矩估计为*1X θ=-,*2X θ=.再求极大似然估计 1121212111(,,;,)()nn ni L X X θθθθθθ===--∏,1122,,,n x x x θθ≤≤,由极大似然估计的定义知,12,θθ的极大似然估计为11(1)min(,,)n X X X θ==;21()max(,,)n n X X X θ==.7.设总体的密度函数如下,试利用样本12,,,n x x x ,求参数θ的极大似然估计.(1)1(),0,(;)0,.x x e x f x αθαθαθα--⎧>⎪=⎨⎪⎩其它;已知(2)||1(;),,2x f x e x θθθ--=-∞<<+∞-∞<<+∞. 解 (1)111111(,,;)()()ni i i nx x n nn i n i L X X x ex x eααθθααθθαθα=----=∑==∏111ln (;)ln ln (1)ln nnn i i i i L X X n n x x αθθααθ===++--∑∑1ln 0ni i d L nx d αθθ==-∑解似然方程1ni i nx αθ==∑,得θ的极大似然估计94 1.ni i nx αθ==∑(2)1||||1111(;)22ni i i n x x n n i L X X e eθθθ=----=∑==∏由极大似然估计的定义得θ的极大似然估计为样本中位数,即1()2()(1)22,1(),.2n n n X n X X n θ++⎧⎪⎪=⎨⎪+⎪⎩为奇数,为偶数8.设总体X 服从指数分布(),,(;)0,.x ex f x θθθ--⎧≥⎪=⎨⎪⎩其他试利用样本12,,,n X X X 求参数θ的极大似然估计.解 1()11(,,;),,1,2,,.ni i i nx n x n i i L X X eex i n θθθθ=-+--=∑==≥=∏1ln nii L n Xθ==-∑ln 0d Ln d θ=≠ 由极大似然估计的定义,θ的极大似然估计为(1)x θ= 9.设12,,,n X X X 来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,试求未知参数p 的极大似然估计. 解 1111(,,;)(1)(1)ni i i nx nx n n i L x x p p p p p =--=∑=-=-∏,1ln ln ()ln(1),nii L n p Xn p ==+--∑1ln 0,1ni i X nd L n dp p p=-=--∑解似然方程11nii n X n p p=-+=-∑, 得p 的极大似然估计1p X=。
《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计课后习题答案第7章习题详解

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
浙大版概率论与数理统计答案---第七章

第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--,11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p的矩估计量为^p ==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂p p L ,求得到θ的极大似然估计值:nn n n p 22210^++= 6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--,11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p的矩估计量为^p ==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂p p L ,求得到θ的极大似然估计值:nn n n p 22210^++= 6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。
()()()111,01,,,0,nn ni i i i x x L f x θθθλθ==⎧+∏<<⎪=∏=⎨⎪⎩其他。
()()()1ln 1ln ,01,,ln ,0,n i i n x x l L θθθλθλ=⎧++<<⎪==⎨⎪⎩∑其他。
令()1ln 01ni i l nx θθθ=∂=+=∂+∑得1ˆ1ln nii nxθ==--∑,所以θ的极大似然估计为11ln nii nx=--∑。
(2)()120,EX xf x dx e θθ==⎰,令ˆ2e X θ=得ˆ2ln X θ=为θ的矩估计量。
()()()()21ln 21211,,2ni i x ni n n i ii L f x ex θθλθπθ=-==∑=∏=∏,()()()()211ln ,ln ,ln 2ln 22ni ni i i x nl L x θλθλπθθ====---∑∑令()()212ln 022ni i x l n θθθθ=∂=-+=∂∑得()211ˆln n i i x n θ==∑为θ的极大似然估计。
(3)()22,1EX xf x dx θθθ==+⎰, 令ˆ2ˆ1X θθ=+得ˆ2X X θ=-为θ的矩估计量。
()()1112,02,,0,n n n ni i i i x x L f x θθθθθ--==⎧∏<<⎪=∏=⎨⎪⎩其他。
()()()1ln ln 21ln ,02,ln 0,n i i n n x x l L θθθθθ=⎧-+-<<⎪==⎨⎪⎩∑其他。
令()1ln 2ln 0ni i l nn x θθθ=∂=-+=∂∑得,1ˆln 2ln nii n n x θ==-∑为θ的极大似然估计。
(4)()100100,2EX xf x dx θθθ+==⎰,令ˆ1002X θ+=得ˆ2100X θ=-为θ的矩估计量。
()()()11,100ni ni L f x θθθ==∏=-,因0100θ<<,要使()L θ最大,则θ应取最大。
又θ不能大于{}1min ,,n x x ,故θ的极大似然估计为{}1ˆmin ,,n X X θ=(5)(),0EX xf x dx θ∞-∞==⎰,故0X =。
22var 2X EX θ==,由()2221111ˆ2n n i i i i X X X n n θ===-=∑∑和0θ>得ˆθ=为θ的矩估计量。
()()111,,,20,nii X ni n n i ex L f x θθθθ=-=⎧∑⎪⎪-∞<<∞=∏=⎨⎪⎪⎩其他。
则()()11ln 2ln ,,ln 0,n i i n n x x l L θθθθ=⎧----∞<<∞⎪==⎨⎪⎩∑其他。
令()120nii x l n θθθθ=∂=-+=∂∑得11ˆn i i x n θ==∑为θ的极大似然估计。
7、解 (1)记}4{<=X P p ,由题意有}4{}4{}4{-≤-<=<=X P X P X P p 根据极大似然估计的不变性可得概率}4{<=X P p 的极大似然估计为:4484.05.0)64()64(5.0)25/2444()25/2444(22^=-Φ=-Φ-=--Φ--Φ=s s p (2)由题意得:)624()25/244(}{}{105.012-Φ=-Φ=≤=>-=-A s A A X P A X P ,于是经查表可求得A 的极大似然估计为0588.12^=A8、(1)X μ=,()()()222221111112n n n i i i i i i i E X E X EX EX n n n μμμμσ===-=-=-+=∑∑∑(2)()()()()1222221111111221n n ni i i i i i i i i i i E k X X k E X X k EX EX EX EX n k σ-++++===⎡⎤-=-=-+=-⎢⎥⎣⎦∑∑∑则()121k n =-即为所求。
9、解 由题意得μμμμ=-=-=∑∑==78)()(81159^1i i i i X X E E及μμμμ=-=-=∑∑==2)7141()(81159^2i i i i X X E E所以^1μ和^2μ都是μ的无偏估计量又:22281159^178)()(σσσμ=-=-=∑∑==i i i i X X D D以及22281159^2145497168)7141()(σσσμ=-=-=∑∑==i i i i X X D D有)()(^2^1μμD D >,说明2^μ更有效。
10、(1)依题,i X ,j Y 与l Z 相互独立,()2222123ET aES bES cES a b c σ=++=++故T 是2σ的无偏估计的充要条件为1a b c ++=(2)记n 个样本的方差为2S ,则()()22211n S n χσ--,()4221D S n σ=- 故()2412D S σ=,()242D S σ=,()24323D S σ=故2222222224123223b c DT a DS b DS c DS a σ⎛⎫=++=++ ⎪⎝⎭要使T 为最有效估计,只须使22223b c a ++在1a b c ++=的条件下取最小值即可。
令()222123b c L a a b c λ=++-++- 由20,0,20,3 1.La a Lb b Lc c a b c λλλ∂⎧=-=⎪∂⎪∂⎪=-=⎪∂⎨⎪∂=-=⎪∂⎪⎪++=⎩得1,61,31.2a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩即为所求。
11、解 由题意可以求出:θθ2);()(022==⎰∞dx x f x X E 。
建立建立关于θ的似然函数:)()(212θθθi X in i eX L -=∏=,于是有:∑∑∑==-=--==ni i i n i X in i Xn X eX L i 121212ln )ln()ln()(ln 2θθθθθ令02)(ln 122=+-=∂∂∑=ni i X nL θθθθ,得到θ的极大似然估计值:nXni i212^∑==θ。
又:θθθ====∑=22)2()2()(2112^X E n XE E ni i,无偏的。
12、()22,0,,0,xx f x θθθ⎧≤<⎪=⎨⎪⎩其他。
,0θ>,()2,3EX xf x dx θθ∞-∞==⎰故3ˆ2X θ=为θ的矩估计量,且为无偏估计。
()()2112,0,,0,n n n in i i i x x L f x θθθθ==⎧∏≤<⎪=∏=⎨⎪⎩其他。
显然()L θ关于θ单调递减。
故θ取最小值时()L θ最大。
又θ不小于{}1max ,,n X X ,故(){}21ˆmax ,,n n X X X θ==为θ的极大似然估计。
又()()2122,0,,0,n n n X n x x f x θθθ-⎧≤<⎪=⎨⎪⎩其他。
,故()2202221n n nnnEX x dx n θθθ==+⎰即()22ˆ21n nE EX n θθ==+故2ˆθ为θ的有偏估计。
13、解 43);()(0θθθ==⎰dx x xf X E ,于是得θ的矩估计量为:34^X =θ。
建立建立关于θ的似然函数:)3()(321θθin i X L =∏=()i X >θ,若使其似然函数最大,于是可以求出θ的极大似然估计值:),,,max (21^n X X X =θ。
(2)由)(32211X X T +=,可计算θ=+=)]()([32)(211X E X E T E 。
设),m ax (21X X Z =,那么)()(),()),(m ax (}{212121t X P t X P t X t X P t X X P t Z P <<=<<=<=<,当0<t 时,0)),(m ax (}{21=<=<t X X P t Z P ,于是()767)1())(1())(1(02330θθθθθ=-=⎪⎪⎭⎫ ⎝⎛-=<-=-=⎰⎰⎰∞∞dt t dt t Z P dt t F Z E Z 从而:θ===)),(max(67)),max(67()(21212X X E X X E T E因此1T 和2T 都是θ的无偏估计量。