《解比例》PPT教学课件

合集下载

六年级解比例ppt课件

六年级解比例ppt课件

检验解的正确性
总结词
验证解是否符合原比例关系。
详细描述
在得到解之后,我们需要验证这个解是否符合原比例关系。例如,如果原比例关 系是“a:b=3:2”,那么我们可以将得到的解代入比例式中,检查是否满足这个 比例关系。
实际应用
总结词
将解比例的方法应用于实际问题中。
详细描述
解比例的方法不仅可用于解决数学问题,还可以应用于解决实际问题。例如,在解决工程问题、化学问题、经济 问题等领域中,我们都可以使用解比例的方法来找到最优的解决方案。
THANKS
感谢观看
05
解比例的注意事项与易错点
注意事项
单位统一
在解比例问题时,需 要确保所有的单位都 是统一的,以便进行
正确的计算。
交叉相乘
在解比例时,需要遵 循交叉相乘的规则,
即a:b=c:d,则 a×d=b×c。
注意正负号
在解比例问题时,需 要注意正负号的处理 ,特别是在处理小数
和分数时。
验证答案
解完比例问题后,需 要验证答案的正确性 ,可以通过将答案代 入原比例进行验证。
解比例是指通过已知的比例关系,找出未知数的过程。
性质
01 反身性
即a:b=b:a,也就是说比例关系具有反身性。
02 对称性
如果a:b=c:d,那么b:a=d:c,也就是说比例关系 具有对称性。
03 传递性
如果a:b=c:d且b:a=d:c,那么a:b=c:d,也就是说 比例关系具有传递性。
解比例的意义
巩固基础,掌握解比 例的基本方法
题目1
小红买了3支铅笔,用 了6元,每支铅笔多少 元?
题目2
一个长方形长是12厘 米,宽是长的2倍,求 长方形的面积。

解比例PPT教学课件

解比例PPT教学课件

2
= ( x 1)2
(3)原式=[a
a
2
2
4
a2 4a 4
a
=[aa
2 2
(a
2)2 a
3]
a
a
4
]÷(
4a )
a
=( a2 4 3a ) a = (a 4)(a 1) a
a
(a 4)
a
4a
= (a 1) = a 1
➢ 典型例题解析
【例4】 (2002年·山西省)化简求值:
解:(3) 4 – 6x2 = 3x – 6x2
3x = 4 x= 4 3
解:(4)(a + 1)2 x = (a – 3)(a + 1)(a – 2)(a + 1)
x = a2 – 5a + 6
练习:书P38
例2、把下列各式按要求写成比例式:
(1)
x
2 ab
(x为第四比例项)
(2) m2 nx (x为第三比例项)
2.分式的混和运算应注意运算的顺序,同时要 掌握通分、约分等法则,灵活运用分式的基本 性质,注意因式分解、符号变换和运算的技巧, 尤其在通分及变号这两个方面极易出错,要小心 谨慎!
➢ 课时训练
1. (2004年·上海)函数 y
x x1
的定义域是
x>-1
.
2.(2004 年·重庆)若分式 的值为
x2 9 x2 4x 3
解:(2) x m mn
m:n x:m
例2、把下列各式按要求写成比例式:
(3)4ab
x
解:(3) 2a
1 xy 2
2b
1y 2
(x为第二比例项)

解比例ppt 课件

解比例ppt 课件

比例的应用
解释比例在日常生活中的 应用,例如时间、速度和 距离之间的关系,并给出 一些练习题。
几何练习题
面积的比例
解释如何使用比例来比较两个图形的面积,并给出一些练习题,例如:“如果 一个矩形的长是 x,宽是 y,另一个矩形的长是 a,宽是 b,那么这两个矩形 的面积之间的比例是多少?”
体积的比例
解释如何使用比例来比较两个物体的体积,并给出一些练习题。
三角练习题
角度的比例
解释如何使用比例来比较两个角度的大小,并给出一些练习题,例如:“如果一 个角度是 x 度,另一个角度是 y 度,那么这两个角度之间的比例是多少?”
三角函数的应用
解释如何使用三角函数来解决实际问题,例如计算一个物体的长度或高度,并给 出一些练习题。
致谢
01
感谢所有参与制作和解比例ppt课 件的人员,他们的辛勤工作和付 出让这个课件得以成功制作和发 布。
02
感谢广大观众和用户的支持和关 注,我们将一如既往地为您提供 更好的服务和内容。
THANKS
感谢观看
REPORTING
解比例ppt 课件
REPORTING
• 解比例的定义和性质 • 解比例的解题方法 • 解比例的例题解析 • 解比例的练习题 • 解比例的总结与展望 • 参考资料和致谢
目录
PART 01
解比例的定义和性质
REPORTING
解比例的定义
解比例是指根据比例的相等关系 ,通过已知的比例值求解未知的
比例值的过程。
解比例的应用
在工程、技术、商业等领域中,解比例 的应用非常广泛。例如,在工程中,可 以通过解比例来计算尺寸、距离、速度 等;在商业中,可以通过解比例来计算

六年级下册数学课件-解比例-人教版 (共20张PPT)

六年级下册数学课件-解比例-人教版  (共20张PPT)
—— 华罗庚

10×
1 4
÷
1 3
X

7
1 2
解比例的方法:
含未知项的比例就是一种特殊的方 程,不论在书写格式还是验算方法上,它 与方程都是相同的。解比例时,可以先根 据比例的基本性质把比例转化为方程,再 按解方程的方法来求未知项x。
学习名言
在寻求真理的长河中,唯有学习, 不断地学习,勤奋地学习,有创造性地 学习,才能越重山跨峻岭。
第3课时 解比例
新课导入
上节课我们学习了比例的知识, 谁能说一说什么叫做比例? 比例的基本性质是什么?你认为 应用比例的基本性质可以做什么?
2︰80 80︰2 5︰200 200︰5


谁能很快说出下面比例中缺 少的项各是几?
14︰21 =2︰( 3 )
5︰ ( 8 ) = 2.5︰4
根据比例的基本性质,如果 已知比例中的任何三项,就可以 求出另外一个未知项。
X ( 2.4)×( 3 )

( 12)
X=( 0.6 )
解比例:
8︰12=X︰45 解: 12X=8×45
X=—8×—4—5
12
X=30
解比例:
0.4︰X=1.2︰2 解: 1.2X=0.4×2
X=—0.—4×—2
1.2
X= 23ຫໍສະໝຸດ 解比例:X︰10 =
1 4

1 3
解:
1 3
X

10×
1 4
X
求比例中的未知项,叫做解比例。
艾菲尔铁塔高320米, 它不仅是一座吸引游 人观光的纪念塔,还 是巴黎这座具有悠久 历史的美丽城市的象 征。
法国巴黎的埃菲尔 铁塔高320米,北京 的“世界公园”里 有一座埃菲尔铁塔 的模型,它的高度与 原塔高度的比是 1:10。这座模型高 多少米?

(公开课课件)六年级下册数学《解比例 》(共14张PPT)

(公开课课件)六年级下册数学《解比例 》(共14张PPT)
温馨提示:别忘了检验!
我会解:
(1) 8︰12=X︰45
(2) 0.4︰X=1.2︰2
(3) X︰10 = 1 ︰ 1
43
(4) 1—2 =
2.4
—3X
我会做:
餐馆给餐具消毒,要用100ml消毒 液配成消毒水,如果消毒液与水的比 是1:150,应加入水多少毫升?
分析:
消毒液 :水 = 1 :150

13、生气是拿别人做错的事来惩罚自 己。2021/5/32021/5/32021/5/32021/5/35/3/2021

14、抱最大的希望,作最大的努力。2021年5月3日 星期一2021/5/32021/5/32021/5/3

15、一个人炫耀什么,说明他内心缺 少什么 。。2021年5月 2021/5/32021/5/32021/5/35/3/2021
100 : X = 1 :150
侦探柯南之神秘脚印:
一个月黑风高的夜晚,一家珠宝店失 窃了。第二天早上,小侦探柯南经过仔 细勘察,在案发现场发现了一枚犯罪嫌 疑人留下的脚印,根据这枚脚印,柯南 很快判断出了犯罪嫌疑人的身高,你们 知道,他是怎样判断的吗?
侦探柯南之神秘脚印:
科学研究表明:人体身高与脚长的比大 约是7:1,柯南在案发现场测得犯罪嫌疑 人的脚印长 25 厘米,请你帮忙算一算: 这个犯罪嫌疑人的身高约是多少?
解:设罪犯的身高为 X 厘米,
身高:脚长 = 7:1
X :25 = 7 :1
X=25×7
X=175
答:罪犯的身高约是175cm.
课堂总结:
通过这节课的 学习,你有哪 些新的收获?
同学们,你们能想办法测量出我们 学校旗杆的高度吗,课下,和你的 小间被决定 。2021/5/32021/5/3Monday, May 03, 2021

《解比例》课件PPT

《解比例》课件PPT
它不仅是一座吸引游 人观光的纪念塔,还 是巴黎这座具有悠久 历史的美丽城市的象 征。
问题一:
法国巴黎的埃菲尔 铁塔高320米,北京 的“世界公园”里 有一座埃菲尔铁塔 的模型,它的高度与 原塔高度的比是 1:10.这座模型高多 少米?
小试牛刀:
解比例: 8︰12=X︰45 解: 12X=8×45 8×45 X=———
放飞思维
解比例
学习目标
知道什么叫解比例,会根据比例的性质解比 例,能够运用解比例的知识解决生活中的实 际问题,培养学生综合运用知识的能力。 经历解比例的过程,体验知识间的内在联系 和广泛应用。 感受数学知识的内在联系,体验应用知识解 决问题的乐趣。

比例的基本性质是什么?
在比例里,两个外项的积等于两个 内项的积.
例:把下面的照片 按比例放大后,宽应该 是多少?
两张照 4cm 片长的比和 宽的比能组 成比例。
?
x
解:设放大后照片的宽是
6cm
x 厘米。
13.5cm
这一步计算的 13.5 :6 = x : 4 依据么? 6 x =13.5 x 4 6 x =54 x = 9 答:放大后照片的宽是54厘米。
知识拓展

请写出这样一个比例:两个内项都是5,两个 比的比值都是4的比例。
解比例
一概念:求比例中的未知项, 叫做解比例。 二依据:比例的基本性质 三方法:一化(把“比”转化为 “积” )
二 解(求这个方程的“解”)
作业:

练习六:7,8,11题
谢谢
千帆竞发,帆帆顺风; 万树争春,树树参天。
依照下面的条件列出比例,并且解比例.
x=
2
9 × 0.8
x
9 × 0.8 = 4.5

《解比例》课件PPT

《解比例》课件PPT

X= 7
1 2
解比例: 0.4︰X=1.2︰2 解: 1.2X=0.4×2
0.4 × 2 X=——— 1.2 2 X= 3
解比例: 12 3 — = — X 2.4 3 解: 12 X=( 2.4 )×( ) (2.4 )×( 3 ) X= ( 12 ) X=( 0.6 )
解比例: 8︰12=X︰45 解: 12X=8×45 8 × 45 X=———
放飞思维
一 什么叫做比例? 表示两个比相等的式子叫做比例. 二 比例的基本性质是什么? 在比例里,两个外项的积 等于两个内项的积.
三 下列比例中,根据比例的基 本性质,将下列各比例转化成 乘法算式.
3∶8 = 15∶40 3 × 40 = 8 × 15
9 .6
4 . 5 = 0 .8
9 ×0.8=1.6×4.5
例2:法国巴黎 的埃菲尔铁塔高 320米,北京的 “世界公园”里 有一座埃菲尔铁 塔的模型,它的高 度与原塔高度的 比是1:10.这座模 型高多少米?
解:设这座模型高X米.
X : 320 = 1 : 10 10X = 320×1 X= X =32
320×1 10
答:这座模型高 32米.
例3:解比例:
作业:
课本练习八第8题
12
X=( 10 )
4、餐馆给餐具消毒,需要100ml消毒 液配成消毒水,如果消毒液与水的比 是1:150,应该加入水多少毫升?
解:设应该加入X毫升.
100:x = 1:150 X = 100×150 X =15000 答:应该加入水15000毫升
侦探柯南之神秘脚印:
一个月黑风高的夜晚,一家珠宝 店失窃了。第二天早上,小侦探柯南 经过仔细勘察,在案发现场发现了一 枚犯罪嫌疑人留下的脚印,根据这枚 脚印,柯南很快判断出了犯罪嫌疑人 的身高,你们知道,他是怎样判断的 吗?

解比例ppt 课件

解比例ppt 课件
换算方法
掌握常用的单位换算关系,例如1米=100厘米,1吨=1000千克等。对于不常用 的单位,可以查阅相关换算表或使用在线换算工具进行转换。
近似值计算
近似值概念
在解比例计算中,有时无法得到精确 的数值解,这时需要采用近似值。近 似值是指一个数值接近真实值的估计 值。
近似值计算方法
掌握常用的近似值计算方法,例如四 舍五入、向上取整、向下取整等。根 据实际情况选择合适的近似值计算方 法,以获得相对准确的结果。
通过分析三角函数的性质和比例关系 ,利用三角函数的诱导公式、倍角公 式等知识求解比例问题。
解析
根据三角函数的性质,我们知道 tan(A) = sin(A)/cos(A),所以 tan(A) = 2/3。
04
解比例的注意事项
单位换算
单位换算
在进行解比例计算时,需要注意不同单位之间的换算。例如,将厘米转换为米 ,或者将千克转换为吨。确保使用统一的单位进行计算,以避免出现误差。
题目
如果5x=8y,那么x:y=():()。
进阶练习题
答案:8:5
题目:如果7x=4y,那么3x:y=():()。
进阶练习题
答案:4:7
答案:2:3
题目:如果9x=2y,那么3x:y=():()。
高阶练习题
题目:如果 4x=9y,那 么2x:3y=():() 。
答案:9:4
答案:14:5
题目:如果 6x=8y,那 么3x:4y=():() 。
在实际生活中的应用
金融领域
在金融领域中,解比例的方法常用于计算投 资回报率、利率等财务指标。通过解比例, 可以更好地理解金融产品的收益和风险,为 投资决策提供依据。PPT课件可以用来展示 解比例在金融领域中的应用实例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档