高中数学《排列》教案设计
高中数学排列的教案

高中数学排列的教案教学目标:1. 了解排列的定义和性质。
2. 掌握排列的计算方法。
3. 能够应用排列解决实际问题。
教学重点:1. 排列的定义。
2. 排列的计算公式。
3. 排列的实际应用。
教学难点:1. 排列的组合计算。
2. 排列的应用题解决。
教学过程:一、导入教学(5分钟)通过一个生活中的例子引入排列的概念,让学生了解排列是指一组事物按照一定规律排列的方式。
二、讲解排列的定义和性质(15分钟)1. 讲解排列的定义:排列是指从一组事物中选择若干个事物按照一定的顺序排列的方式。
2. 性质:包括排列的计算公式和性质,如排列的计算方法和排列的性质等。
三、示范排列的计算方法(20分钟)1. 讲解排列的计算方法:根据排列的性质,介绍排列的计算方法,例如使用排列公式计算排列数量。
2. 给出几个简单的排列题目,让学生通过实际计算来理解排列的计算过程。
四、练习与讨论(15分钟)1. 给学生几道排列计算题目进行练习,帮助学生掌握排列的计算方法。
2. 利用实际生活中的问题,让学生应用排列解决实际问题,提高学生的应用能力。
五、总结与拓展(5分钟)1. 总结本节课的内容,强调排列的重要性和应用。
2. 展示排列在实际生活中的应用,拓展学生对排列的理解和应用。
六、课堂作业(5分钟)布置相关的排列计算的作业,巩固学生的学习成果。
教学反思:通过本节课的教学,让学生对排列的概念和计算方法有了一定的了解,但仍需通过更多的练习和实践来加深对排列的理解和应用。
在以后的教学中,可以结合更多实际生活中的问题,让学生更好地理解排列的应用。
高中数学排列教案设计意图

高中数学排列教案设计意图
教学目标:
1. 了解排列的概念,掌握排列的基本性质;
2. 掌握计算排列的方法和技巧;
3. 能够应用排列的知识解决实际问题。
教学重点:
1. 排列的定义和基本性质;
2. 排列的计算方法;
3. 排列的应用问题解决。
教学内容:
1. 排列的概念和基本性质;
2. 排列的计算方法:排列的个数公式、有重复元素的排列、有限元素的排列、环排列等;
3. 排列的应用:排列和密码、排列和组合、排列和概率等。
教学方法:
1. 讲授法:讲解排列的定义、性质和计算方法;
2. 案例法:通过案例分析,引导学生掌握排列的应用;
3. 培养学生的逻辑思维能力和问题解决能力。
教学过程:
1. 导入:介绍排列的概念和应用;
2. 讲解:讲解排列的基本性质和计算方法;
3. 练习:让学生进行相关排列问题的练习;
4. 引导:引导学生探讨排列的应用问题;
5. 总结:总结本节课的内容,强化学生对排列知识的理解和掌握。
教学评价:
1. 对学生的课堂参与度进行评价;
2. 对学生的练习题答题情况进行评价;
3. 对学生对排列知识的理解和应用能力进行评价。
高中数学排列微课教案

高中数学排列微课教案
一、教学目标
1. 知道排列的定义和常见符号;
2. 掌握计算排列的方法;
3. 理解排列的性质和应用。
二、教学重点和难点
1. 排列的定义和性质;
2. 排列的计算方法。
三、教学准备
1. 教材:高中数学教材;
2. 课件:包含排列的定义、性质和计算方法的课件;
3. 教具:黑板、彩色粉笔。
四、教学过程
1. 引入(5分钟)
介绍排列的概念和作用,引发学生对排列的兴趣。
2. 讲解(15分钟)
(1)排列的定义:从n个不同元素中取出m个元素按一定顺序排成一列,称为排列,记作P(n, m)。
(2)排列的计算方法:公式计算和实际例题演练。
3. 练习(15分钟)
让学生做几道排列的练习题,检验他们对排列的理解和掌握程度。
4. 拓展(10分钟)
讲解排列的性质和应用,如排列的计算公式、排列与组合的关系等。
5. 总结(5分钟)
对本节课所讲的内容进行总结,并提醒学生课后复习。
五、课堂反馈
1. 学生提出问题进行解答;
2. 老师布置作业,让学生继续巩固所学内容。
六、板书设计
排列的定义:P(n, m) = n!/(n-m)!
基本性质:P(n, m) = n!/(n-m)!, P(n, m) = n!/(n-m)!
七、教学反思
本微课主要针对排列的基本概念和性质进行讲解和练习,通过实际例题帮助学生理解和掌
握排列的计算方法。
在教学过程中,要注重引导学生思考和提出问题,加深对排列的理解,并在课后加强练习,巩固所学内容。
高中数学排列数教案

高中数学排列数教案教学内容:排列数
教学目标:
1. 理解排列数的概念,能够正确地进行排列数的计算;
2. 掌握排列数的性质和相关公式;
3. 能够灵活运用排列数解决实际问题。
教学重点:
1. 排列数的定义和性质;
2. 排列数的计算方法;
3. 排列数在实际问题中的应用。
教学难点:
1. 排列数的计算过程;
2. 排列数的应用题解决方法。
教学方法:
讲授、示范、练习、讨论。
教学准备:
1. 教材《高中数学》第三册;
2. 教学投影仪及相关教学软件;
3. 排列数练习题;
4. 讲义、笔记及教学课件。
教学流程:
一、导入 (5分钟)
1. 引入概念:什么是排列数?
2. 通过举例子让学生理解排列数的定义。
二、讲解排列数的性质和公式 (15分钟)
1. 排列数的性质:无重复排列数、有重复排列数;
2. 讲解排列数的计算方法和相关公式,如nPm和An的计算公式。
三、示范和练习 (20分钟)
1. 示范排列数的计算方法;
2. 让学生进行排列数的练习,加深理解和巩固知识。
四、讨论和总结 (10分钟)
1. 分享学生答案,讨论排列数的解题思路;
2. 总结排列数的重点和难点。
五、课堂作业 (5分钟)
布置排列数相关的练习作业,巩固知识。
教学反思:
通过本节课的教学,学生基本掌握了排列数的计算方法和应用,但在实际问题中还需要继续加强练习。
下节课将继续拓展排列数的应用,并引导学生解决更复杂的排列数问题。
高中数学排列问题教案模板

高中数学排列问题教案模板
一、教学目标:
1. 理解排列的概念;
2. 能够解决简单的排列问题;
3. 能够掌握排列的计算方法;
4. 能够应用排列知识解决实际问题。
二、教学内容:
1. 排列的概念和性质;
2. 排列的计算方法;
3. 排列的应用问题。
三、教学重点和难点:
1. 排列的计算方法;
2. 排列的应用问题。
四、教学准备:
1. 讲义;
2. 教学PPT;
3. 习题及解答;
4. 实例练习题。
五、教学步骤:
1. 引入:通过举例引入排列的概念;
2. 讲解排列的概念和性质;
3. 讲解排列的计算方法;
4. 示例讲解排列的应用问题;
5. 学生练习:让学生进行练习;
6. 检查与讨论:检查学生练习的情况,并讨论解题方法;
7. 总结:对排列知识进行总结。
六、教学评价:
1. 课堂表现:学生是否积极参与互动,是否主动思考并提出问题;
2. 习题练习:学生是否能够独立解决习题;
3. 实际问题应用:学生是否能够将排列知识应用到实际问题中解决。
七、教学反思:
1. 教学过程中是否存在不足之处;
2. 学生表现情况如何,有哪些可以改进之处;
3. 下一堂课的备课注意事项。
高中组合排列数学教案全册

高中组合排列数学教案全册教案一:组合排列的基本概念一、教学内容:1. 组合排列的基本概念2. 组合排列的计算公式3. 组合排列的数学应用二、教学目标:1. 了解组合排列的基本概念2. 熟练掌握组合排列的计算方法3. 能够运用组合排列解决实际问题三、教学重点:1. 组合排列的定义和计算方法2. 组合排列的数学应用四、教学难点:1. 组合排列的计算公式的推导和运用2. 组合排列在实际问题中的应用五、教学准备:1. 教材《高中数学》2. 讲义和练习册3. 板书和彩色粉笔4. 实物道具(例如彩球)教学过程:1. 开场导入(5分钟)教师出示一个含有几个不同颜色的球的容器,让学生思考有多少种排列方式,引出组合排列的概念。
2. 讲解组合排列的基本概念(10分钟)教师讲解组合排列的定义和区别,引导学生理解排列是有序的,而组合是无序的。
3. 计算组合排列的方法(15分钟)教师通过几个实例演示如何计算组合排列,引导学生注意排列中元素的不同位置对结果的影响。
4. 练习和讨论(20分钟)学生分组完成练习册上的一些练习题,教师巡视指导,并就学生遇到的问题展开讨论。
5. 实际问题解决(15分钟)教师出示一些实际问题,让学生尝试用组合排列的方法进行解决,培养学生的应用能力。
6. 总结归纳(5分钟)教师针对本节课的内容进行总结,概括组合排列的基本概念和计算方法,强调学生在学习中的重点。
7. 作业布置(5分钟)布置相关练习题目作业,让学生巩固本节课的内容。
教案二:组合排列的高级应用一、教学内容:1. 多重组合排列的计算2. 排列组合在概率中的应用3. 排列组合在几何中的应用二、教学目标:1. 熟练掌握多重组合排列的计算方法2. 理解排列组合在概率和几何中的应用3. 能够运用排列组合解决实际问题三、教学重点:1. 多重组合排列的计算方法2. 排列组合在概率中的应用3. 排列组合在几何中的应用四、教学难点:1. 排列组合在概率和几何中的高级应用2. 如何将排列组合应用到实际问题中五、教学准备:1. 教材《高中数学》2. 讲义和练习册3. 板书和彩色粉笔4. 实物道具(例如扑克牌)教学过程:1. 开场导入(5分钟)教师出示一些扑克牌,让学生思考有多少种不同花色和数字组合的方式,引出多重组合排列的概念。
(完整版)高中数学《排列组合》教学设计

高中数学《排列组合》教案设计【教案目标】1.知识目标(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;(4)进一步增强分析、解决排列、组合应用题的能力。
2.能力目标认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。
3.德育目标(1)用联系的观点看问题;(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。
【教案重点】:排列数与组合数公式的应用【教案难点】:解题思路的分析【教案策略】:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
【媒体选用】:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究.【教案过程】一、知识要点精析(一)基本原理1.分类计数原理2。
分步计数原理3。
两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点:①“斥”——互斥独立事件;②模式:“做事”——“分类”——“加法”③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。
(2)对于乘法原理有以下三点:①“联”——相依事件;②模式:“做事”—-“分步”——“乘法"③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立.(二)排列1.排列定义2.排列数定义3.排列数公式(三)组合1.组合定义2.组合数定义3.组合数公式4.组合数的两个性质(四)排列与组合的应用1。
排列的应用问题(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法"求解。
2.组合的应用问题(1)无限制条件的简单组合应用问题,可直接用公式求解.(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法"求解.3.排列、组合的综合问题排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
高中数学排列二的教案

高中数学排列二的教案
年级:高中
课时:1课时
一、教学目标
1. 了解排列与组合的基本概念与性质。
2. 掌握排列与组合的计算方法。
3. 能够运用排列与组合的知识解决实际问题。
二、教学重点与难点
重点:排列与组合的基本概念及计算方法。
难点:灵活运用排列与组合知识解决实际问题。
三、教学准备
1. 教材:高中数学教材《数学排列与组合》相关章节内容。
2. 教具:黑板、彩色粉笔、教学PPT、习题练习册等。
四、教学步骤
步骤一:导入(5分钟)
教师通过引入现实生活中的例子来引起学生的兴趣,如:排队买餐、选班干部等。
然后引入排列和组合的概念。
步骤二:概念讲解(15分钟)
1. 讲解排列与组合的定义及区别。
2. 介绍排列与组合的计算公式并通过示例进行说明。
3. 教师讲解排列组合知识要点,引导学生掌握。
步骤三:练习与讨论(20分钟)
1. 按照课本上的排列与组合的练习题进行训练。
2. 学生自主讨论解题思路,并解析答案。
3. 老师针对难点继续讲解。
步骤四:总结与作业布置(10分钟)
1. 整理本节课的重点知识点与难题。
2. 布置相关作业,要求学生查漏补缺,巩固提高。
五、课后反思
通过教学实施,评估学生对排列与组合的理解程度和能力,为下节课教学提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案设计
高中数学《排列》
【教学目标】
知识与技能:
理解排列数的意义,掌握排列数公式及推导方法,并能利用排列和排列数公式解决简单的计数问题。
过程与方法:
经历排列数公式的推导过程以及将简单的计数问题划归为排列问题的过程,从中体会“化归” 的数学思想。
情感、态度与价值观:
能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力。
【重点难点】
教学重点:排列、排列数的概念。
教学难点:排列数公式的推导,利用排列和排列数公式解决简单的计数问题。
【教学过程】
一.复习回顾
提出问题 1:前面我们学习了分类加法计数原理和分步乘法计数原理,请同学们回顾两个原理的内容,并谈一谈两个计数原理的区别和联系。
活动成果:
1.分类加法计数原理:如果完成一件事情有 k类方案,由第 1类方案有 n1种方法可以完成,由第2类方案有n2种方法可以完成,……由第k类方案有nk种方法可以完成。
那么,完成这件工作共有n1+n2+……+nk种不同的方法。
2.分步乘法计数原理:如果完成一件事情可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有nK种不同的方法。
那么,完成这件工作共有n1×n2×……×nk种不同方法.
3.相同点:都是探究“完成一件事情所用不同方法总数”的计数原理。
不同点:强调分类(不重不漏),类与类之间相互独立,每一类中的每一种方法都能独立的完成这件事。
强调分步(步骤完整,前一步方法的选择不能影响到后一步方法的选择),步与步之间相互关联,只有每一步依次完成后才能完成这件事。
设计意图:复习两个原理,为新知识的学习奠定基础。
二.探究新知
提出问题2:下面三个问题有什么共同的特点?能否给这一类计数问题找到一种简便的计数方法呢?(可利用已学习的计数原理解决)
1.从安丰中学高三(18)班甲、乙、丙3名同学中选2名,一名担任班长,一名担任副班长 ,则共有多少种不同的选法?
2.从1,2,3,4这4个数字中,每次取3个排成一个三位数,共可得到多少个不同的三位数?
3.从a 、b 、c 、d 、e 5个字母中,任取4个按顺序排成一列,共有多少种不同的排法?活动成果:从n 个不同的元素中,任取m (m≤n,m,n N *
∈)个元素(被取的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。
(板书课题)
【师】123和321是同一个排列吗?两个相同的排列需要具备哪些条件?
【生】一、元素完全相同 二、元素的排列顺序也相同
【师】排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m
n A 表示排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的...顺序..
排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m
n A 只表示排列数,而不表示具体的排列. 设计意图:引导学生通过具体实例总结概括出排列和排列数的概念,培养学生的抽象概括能力。
【师】由以上两个问题我们发现 , ,你能否得出2n A ,3,m n n A A (m n ≤)的意义和数值呢?
活动成果:2(1)n A n n =-,3
(1)(2)n A n n n =--,
(1)(2)(1)(,,)m n A n n n n m m n N m n *=---+∈≤23326A =⨯=3
443224A =⨯⨯=
(说明公式的特点和最后一个因数的由来)
设计意图:由特殊到一般,引导学生逐步推导出排列数公式。
【师】板书排列数公式(1)(2)(1)(,,)m n A n n n n m m n N m n *=---+∈≤L ,特别地,n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,这时公式中的m=n,即有(1)(2)21n n A n n n n =--⋅=L !
(叫做n 的阶乘),另外我们规定0!=1,所以
(1)(2)(1)m n
A n n n n m =---+L =()!!n n m -=n n n m n m A A --(结合课本例1让同学感受猜想-证明的数学思维过程,让同学概括公式的特点,进一步熟悉公式的结构)
三、理解新知
提出问题3:分析下列问题是不是排列问题,如果是,求出排列数,如果不是,请说明理由?
(1)从1,2,3,4四个数字中,任选两个做加法,其不同的结果有多少种?
(2)从1,2,3,4四个数字中,任选两个做除法,其不同的结果有多少种?
活动成果:(1)不是 (2)是
设计意图:加深对排列和排列数的理解。
四、应用新知
【例1】(1)若17161554m
n A =⨯⨯⨯⨯⨯L ,则n=______,m=_______
(2) ,5569,-n n N n *∈<<L 若且则(55)(56-n)(68-n)(69-n)用排列数符号表示为___________
活动成果:(1)17
14 (2) 1569-n A 【例2】解方程299
6x x A A -=活动成果:8(解方程或不等式,一定要注意x 的范围)
【巩固练习】不等式299
6x x A A ->的解集为_______________________ 答案:{}
3,4,5,6,7五、课堂小结
1.知识收获:排列概念、排列数公式
2.方法收获:化归
3.思维收获:分类讨论、化归思想
六、布置作业
七、板书设计。