风工程实验报告
工程施工调试实验报告(3篇)

第1篇一、实验目的本次实验旨在了解和掌握中央空调系统的安装与调试流程,熟悉各类空调设备的使用方法和调试技巧,提高实际操作能力,确保空调系统安全、稳定、高效运行。
二、实验内容1. 中央空调系统安装(1)根据设计图纸,对现场进行实地测量,确定空调机组安装位置、管道走向、风管尺寸等。
(2)进行空调机组、管道、阀门、风机盘管等设备的安装。
(3)完成电气线路的敷设和接通。
2. 中央空调系统调试(1)对空调系统进行试运行,检查设备运行状况,确保无异常。
(2)进行风量测定与调整,确保各个风口风量符合设计要求。
(3)对空调机组进行单机试运转,检查设备运行状况,确保无异常。
(4)进行系统无生产负荷联合试运转及调试,确保各个设备协调运行。
(5)对空调系统进行带冷(热)源的正常联合试运转,观察系统运行状况,确保系统安全、稳定、高效运行。
三、实验步骤1. 现场准备(1)对现场进行实地测量,确定空调机组安装位置、管道走向、风管尺寸等。
(2)准备好安装工具和材料,如扳手、螺丝刀、切割机、焊接机等。
2. 空调机组安装(1)根据设计图纸,确定空调机组安装位置,确保设备与周围设施的距离符合要求。
(2)进行空调机组、管道、阀门、风机盘管等设备的安装。
3. 电气线路敷设(1)根据设计图纸,进行电气线路的敷设。
(2)完成电气线路的接通,确保线路连接牢固、安全。
4. 系统调试(1)对空调系统进行试运行,检查设备运行状况,确保无异常。
(2)进行风量测定与调整,确保各个风口风量符合设计要求。
(3)对空调机组进行单机试运转,检查设备运行状况,确保无异常。
(4)进行系统无生产负荷联合试运转及调试,确保各个设备协调运行。
(5)对空调系统进行带冷(热)源的正常联合试运转,观察系统运行状况,确保系统安全、稳定、高效运行。
四、实验结果与分析1. 空调机组安装及电气线路敷设符合设计要求,设备运行状况良好。
2. 系统调试过程中,各个设备运行协调,无异常现象。
工程项目风险管理实验报告

工程项目风险管理实验报告一、引言工程项目是一个复杂的系统工程,涉及多个领域和环节,同时也伴随着各种潜在的风险。
风险管理是保障工程项目顺利进行的重要手段之一。
本实验旨在通过对工程项目中的风险进行有效管理,提高项目成功率和降低项目失败风险。
二、实验目的1. 了解工程项目中可能存在的风险类型及特点;2. 掌握风险辨识、评估、应对和监控的方法和工具;3. 运用风险管理知识,通过实际案例进行分析和实践。
三、实验内容1. 风险辨识:通过搜集项目相关资料和与项目相关人员进行讨论,确定工程项目中的潜在风险,包括技术风险、市场风险、资源风险等;2. 风险评估:利用定性和定量分析方法,对辨识到的风险进行评估,确定其影响程度和发生可能性;3. 风险应对:制定针对不同风险的应对策略,包括避免、转移、减轻和接受等;4. 风险监控:建立风险监控机制,不断追踪风险的发展和变化,及时调整应对措施。
四、实验步骤1. 确定实验对象:选择一个实际工程项目作为研究对象,了解项目背景和相关信息;2. 风险辨识:使用头脑风暴、专家访谈等方法,对项目可能存在的风险进行全面、系统地辨识;3. 风险评估:结合风险概率和影响程度,对各项风险进行评分和排序;4. 风险应对:针对不同风险,设计相应的风险应对措施和预案;5. 风险监控:建立风险监控表格,跟踪风险的实际发生情况,及时调整应对策略。
五、实验结果与分析通过以上实验步骤,我们成功对选定工程项目的风险进行了全面的分析和管理。
在实践中,我们发现风险管理的重要性不可忽视,只有通过科学、系统的管理方式,才能有效地预防和降低风险对项目的影响。
六、实验结论本次实验进一步加深了我们对工程项目风险管理的理解,让我们更清晰地认识到风险管理在项目中的重要性。
只有不断学习和实践,才能更好地提高工程项目的成功率,实现项目目标。
七、参考文献1. 《项目管理实践》,作者:某某某,出版社:某某出版社,2019;2. 《风险管理原理与实践》,作者:某某某,出版社:某某出版社,2018。
风机性能曲线实验报告

教学实验泵与风机离心式风机性能实验实验报告班级:学号:姓名:能源与动力工程学院2017年11月离心式风机性能实验台实验指导书一、实验目的1.熟悉风机性能测定装置的结构与基本原理。
2.掌握利用实验装置测定风机特性的实验方法。
3.通过实验得出被测风机的气动性能(P-Q,P st-Q,ηin-Q,ηstin-Q ,N-Q曲线)4.通过计算将测得的风机特性换算成无因次参数特性曲线。
5.将试验结果换算成指定条件下的风机参数。
二、实验装置根据国家关于GB1236《通风机空气动力性能实验方法》标准,设计并制造了本试验装置。
本试验装置采用进气试验方法,风量采用锥形进口集流器方法测量。
装置主要分三部分(见图1)图1 实验装置示意图1.进口集流器2.节流网3.整流栅4.风管5.被测风机6.电动机7.测力矩力臂8.测压管9.测压管试验风管主要由测试管路,节流网、整流栅等组成。
空气流过风管时,利用集流器和风管测出空气流量和进入风机的静压Pest1,整流栅主要是使流入风机的气流均匀。
节流网起流量调节作用。
在此节流网位置上加铜丝网或均匀地加一些小纸片可以改变进入风机的流量。
测功率电机6,用它来测定输入风机的力矩,同时测出电机转速,就可得出输入风机的轴功率。
三、实验步骤1.将压力计(倾斜管压力计)通过联通管与试验风管的测压力孔相连接,在连接前检查测压管路有无漏气现象,应保证无漏气。
2.电动机启动前,在测力矩力臂上配加砝码,使力臂保持水平。
3.装上被测风机,卸下叶轮后,启动测功电机,再加砝码ΔG´使测力矩力臂保持水平,记下空载力矩(一般有指导教师事先做好)。
4.装上叶轮,接好进风口与试验风管,转动联轴节,检查叶轮是否与进风口有刮碰磨擦现象。
5.启动电机,运行10分钟后,在测力臂上加配砝码使力臂保持水平,待工况稳定后记下集流器压力ΔPn,静压Pest1,平衡重量G(全部砝码重量)和转速n。
6.在节流网前加铜丝网或小圆纸片,使流量逐渐减小直到零,来改变风机的工况,一般取十个测量工况(包括全开和全闭工况),每一工况稳定后记下读数。
通风工程实验报告书

通风工程实验报告书小组:第一组姓名: XXXXXX学号: XXXXXX班级:安全工程类101班指导老师: XXXXXX实验时间: 2013年5月24日、25日一、实验目的与要求1.掌握测定大气压和空气湿度的常用仪表构造、原理和使用方法,计算空气密度;2.学习用皮托管及压差计测定通风管道中的某点空气静压、动压和全压,以巩固动静全h h h ±=的概念,同时了解皮托管及压差计的构造,并学习用皮托管及压差计测定通风管道中某断面的平均风速、最大风速和速度场系数K ;3.掌握测定通风阻力、求算风阻、等积孔和绘制风阻特性曲线的方法并测算摩擦阻力系数;4.掌握通风机特性测定方法,深度理解通风机风量和风压、功率与效率关系。
二、实验仪器和设备实验所用的仪器和设备三、实验内容及过程实验按图1所示布置,用调节闸门由全开到全闭调节风机工况8~10点,测定每一工况时的风量、风压和电动机功率,经过计算,绘制该通风机的特性曲线。
在通风机入风侧断面I 处用补偿式微压计测得相对静压1h ,使用前,先将微压计管中的空气排尽,进行水平调节,调节水平调节螺钉使水平泡正好处于中间位置。
然后进行调零,即调整微压计的微调盘,使微调盘与示值刚好对准零刻度。
向观察筒中加水,使其反光镜中看到的观察筒中的水准尖头刚好相接。
后按下式计算风量Q :I S V Q ⋅=Im m 3/s (6-1)Is Iv Kh h V ρρ22Im =⋅= m/s (6-2)式中:Im V ——I 断面的平均风速,m/s ; I S ——I 断面的面积,m 2;ρ——测定时的空气密度,kg/m 3; Is h ——I 断面的相对静压,Pa 。
K ——集流器系数,IsIvh h K =,经标定,本实验所用集流器系数为0.96(二)通风机风压测定用皮托管连接压差计,当皮托管的两个端口均连接仪器时,测量值为该点的动压;当仪器只与皮托管的风速端口连接,测量值为该点的全压;当只有皮托管的与风速垂直的端口与仪器连接,则测量值为该点的静压。
通风实验报告

通风工程实验报告姓名:沈家华学号: 1006300127班级:矿102班学院:资源与冶金学院指导老师:闭历平老师实验一大气压、空气湿度和空气密度测定一、实验目的掌握测定大气压(P)和空气湿度的常用仪表的构造、原理和使用方法,计算空气密度。
二、实验要求(一) 掌握使用气压计、温度湿度计、测定空气的温度、湿度、大气压力。
(二)掌握计算空气密度的方法。
三、实验仪器和设备表1-1 实验所用的仪器和设备四、实验内容1、分别用水银气压机和空盒气压计测大气压。
2、用温度湿度两用计测量空气的相对湿度、华氏温度和摄氏温度。
3、以水银气压计和温度湿度两用计的测定结果计算空气的密度。
五、实验步骤1、大气压测定常用的仪表有水银气压计和空盒气压计。
⑴水银气压计常用的水银气压计有动槽式和定槽式两种。
动槽式水银气压计的主要部件是一根倒置于可动水银槽内的玻璃管,管的上端水银面上是真空的,槽内液面则通向大气,所以玻璃管内水银柱高度就表示了大气压力(毫米汞柱或毫巴)。
⑵空盒气压计如图1-1所示,空盒气压计由一个波纹状金属真空盒和一套杠杆机构组成。
大气压变化时盒面变形值经杠杆机构放大,带动盒面指针转动指出大气压值。
空盒气压计使用前应用水银气压计校正,校正时用小螺丝刀微微拧转盒背面(或侧面)的调节螺丝,使指针所示气压值与水银气压计一致。
测定时,将其水平放置,用手指轻轻敲击盒面数次,消除指针的蠕动现象,等待数分钟后再读值,读值应根据仪器所附检定证进行刻度和温度的补充校正。
例如,某空盒气压计读值为770mmHg ,查取它的刻度校正值为-0.1 mmHg ,温度校正为-0.03(mmHg /℃×15℃)=-0.45 mmHg ,补充校正为+0.6 mmHg ,则实际大气压为770-0.1-0.45+0.6=770.05 mmHg 。
1-金属盒;2-弹簧;3-指针图1-1 空盒气压计⑶使用数字式气压计测定大气压力数字式气压计具有体积小、重量轻、测量参数多、数据准确、读数简便、使用寿命长等特点,目前,在实验室、煤矿井下测量大气压力多用数字式气压。
风量测试实验报告

风量测试实验报告风量测试实验报告引言:风量测试是一项重要的实验,它可以帮助我们了解风的强度、速度和方向等参数,对于建筑设计、空气质量监测以及环境保护等方面具有重要意义。
本报告将详细介绍我们进行的风量测试实验,并分析实验结果。
实验目的:本次实验的主要目的是测量风的流速和风向,以便评估风的强度,并为后续的工程设计和环境监测提供参考数据。
实验仪器和材料:1. 风速计:我们使用了一台高精度的风速计,可以测量风的流速。
2. 风向标:用于指示风的方向。
3. 测量工具:包括尺子、计时器等,用于辅助测量。
实验步骤:1. 实验场地的选择:我们选择了一个开阔的场地进行实验,以确保风的流动不受建筑物和其他障碍物的影响。
2. 安装仪器:我们将风速计和风向标固定在一个平台上,确保它们可以准确地测量风的参数。
3. 测量风速:我们将风速计放置在一定高度的位置,并记录下风的流速。
为了保证测量的准确性,我们进行了多次测量,并取平均值作为最终结果。
4. 测量风向:我们观察风向标的指示,确定风的方向。
同样地,为了确保准确性,我们进行了多次观测,并取平均值。
实验结果:经过多次测量和观察,我们得到了以下实验结果:1. 风速:平均风速为10.5 m/s,最大风速为15.2 m/s,最小风速为7.3 m/s。
2. 风向:风的主要方向为西北偏北,偏离角度约为30度。
结果分析:根据实验结果,我们可以得出以下结论:1. 风的强度:根据测量结果,风的平均速度为10.5 m/s,属于中等强度的风。
最大风速为15.2 m/s,表明在某些时刻风的强度可能较大,需要注意防护措施。
2. 风的方向:风的主要方向为西北偏北,这对于建筑设计和环境监测等方面具有重要意义。
在设计建筑物时,需要考虑风的方向,以便合理布局和防风设计。
实验误差和改进:在实验过程中,我们也面临一些误差和改进的可能性:1. 测量误差:由于实验条件的限制,我们无法完全消除测量误差。
在未来的实验中,我们可以考虑使用更高精度的仪器来提高测量的准确性。
风洞实验报告

风洞实验报告引言:风洞实验作为现代科技研究的重要手段之一,广泛应用于航空航天、汽车工程、建筑结构等领域。
本报告将围绕风洞实验的原理、应用以及相关技术展开探讨,旨在加深对风洞实验的理解和应用。
一、风洞实验的原理风洞实验是通过利用风洞设备产生流速、温度和压力等环境条件,对模型进行真实环境仿真试验的一种方法。
其基本原理是利用气体流动力学的规律,使得实验模型暴露在所需风速的气流中,从而通过测量模型上的各种力和参数来分析其气动性能。
二、风洞实验的应用领域1.航空航天领域风洞实验在航空航天领域有着广泛的应用。
通过风洞实验,可以模拟不同飞行状态下的风载荷,评估飞机、火箭等载体的稳定性和安全性,在设计和改进新型飞行器时提供可靠的数据支撑。
2.汽车工程领域风洞实验在汽车工程领域同样具有重要意义。
通过对汽车模型在高速风场中的测试,可以优化车身外形设计,降低气动阻力,提高燃油效率。
此外,风洞实验还可用于汽车内部气流研究,如车内空调流场、风挡玻璃除雾等。
3.建筑工程领域在建筑工程领域,风洞实验可以帮助研究风荷载对建筑物结构产生的影响,以提高建筑物的抗风性能。
通过模拟真实的气流环境,可以评估建筑物在不同风速下的应力、应变分布情况,为工程设计和结构优化提供依据。
三、风洞实验技术1.气流控制技术气流控制技术是风洞实验中必备的关键技术之一。
通过对风洞内流场进行合理设计和调整,可以实现不同速度、湍流强度和均匀度的气流条件,以保证实验的准确性和可重复性。
2.试验模型制作技术试验模型制作技术对于风洞实验的结果具有重要影响。
模型的准确度和还原程度直接关系到实验数据的可靠性。
现如今,各类先进材料和加工技术的应用,使得模型制作更加精准和高效。
3.数据采集和分析技术风洞实验所得数据的采集和分析是判断实验成果的关键环节。
当前,数字化技术的快速发展为数据采集和分析提供了强有力的支持。
传感器、图像处理等先进技术的应用,使得实验数据获取更为精确和全面。
风洞实验报告

风洞实验报告风洞实验报告一、引言风洞实验是一种重要的工程实验方法,可以模拟大气中的空气流动情况,用于测试和研究各种物体在气流中的性能和特性。
本文将介绍一次针对某飞行器模型的风洞实验,包括实验目的、实验过程、实验结果和结论。
二、实验目的本次实验的目的是通过风洞实验,对某飞行器模型在不同风速下的气动特性进行测试和分析,为飞行器的设计和改进提供参考依据。
具体目标如下:1. 测试飞行器在不同风速下的升力和阻力变化情况,了解其气动性能;2. 研究飞行器在不同风速下的稳定性和操纵性,评估其适航性;3. 分析飞行器在不同风速下的气动力分布,寻找潜在的改进方向。
三、实验过程1. 实验设备准备:在实验室中搭建风洞装置,包括风洞本体、风速控制系统、数据采集系统等。
确保设备正常运行和准确测量。
2. 实验样本制备:根据飞行器模型的设计要求,制作样本并进行必要的校正和调整,确保样本符合实验要求。
3. 实验参数设置:根据实验目的,确定实验参数,包括风速范围、采样频率、测量点位置等。
4. 实验数据采集:将样本放置在风洞中,通过数据采集系统记录风速、升力、阻力、气动力矩等数据,并实时监测飞行器的姿态。
5. 数据处理与分析:对采集到的数据进行处理和分析,得出实验结果,并与理论计算结果进行对比。
四、实验结果1. 升力和阻力变化曲线:通过实验数据的分析,得到了飞行器在不同风速下的升力和阻力变化曲线。
结果显示,在低速风洞实验中,飞行器的升力随着风速的增加而线性增加,而阻力则呈指数增加。
在高速风洞实验中,升力和阻力的增长趋势逐渐趋于平缓。
2. 稳定性和操纵性评估:通过实时监测飞行器的姿态,得到了飞行器在不同风速下的稳定性和操纵性评估结果。
结果显示,在较低风速下,飞行器的稳定性较好,操纵性较强;而在较高风速下,飞行器的稳定性和操纵性受到较大的挑战。
3. 气动力分布分析:通过实验数据的处理,得到了飞行器在不同风速下的气动力分布情况。
结果显示,在低速风洞实验中,飞行器的气动力主要集中在机翼和尾翼上,而在高速风洞实验中,气动力分布更加均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1. 了解眼镜蛇探针(Cobra probe )的原理,掌握使用眼镜蛇探针在亚临近雷诺数范围内对二维圆柱尾流的速度测量
2. 了解二维圆柱尾流的速度分布情况以及圆柱所受阻力
3. 学习使用Origin 处理数据
4. 学会利用实验数据对实验结果的讨论分析以及相关研究
二、实验设备及器材
1. 直流式低速风洞实验室
2. 直径20d mm ≈左右的圆柱
3. 眼镜蛇探针、坐标架、电脑等
三、实验参数
实验在小风洞内进行,小风洞试验段截面450mm 450mm ⨯,长1m 。
风速范围3-42m/s ,自由来流湍流度约0.6%。
实验中采用一根直径d 20mm ≈左右的圆柱,贯穿整个试验段,在试验段内形成近似二维圆柱尾流。
在圆柱中心下游约x = 10d 的位置上,沿y 方向进行测量。
为减小测量工作量,眼镜蛇探针的测量可仅在y ≥ 0的范围内进行。
y 轴向测点坐标,可视时均速度梯度的大小确定,即速度变化快的区域测点可适当加密、速度较均匀的区域,测点可稀疏一些。
在y ≥ 0范围内确保15左右测点即可。
实验中来流风速分为15m/s ,眼镜蛇探针采用频率为2KHz ,每个点上的采样时间为15s 。
实验原理 阻力系数212D F C U d
-=
,其中F 为阻力:()(
)221F U U U u v dy ∞-∞⎡⎤=-+-⎢⎥⎣⎦
⎰ 可得2212
1112d 2d D U U U y v u y C U U d U d ∞
∞
-∞-∞⎛⎫⎛⎫--⎛⎫
⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭⎝⎭⎰⎰,其中1U 为初始风速,U 为每个测点的平均风速,u 和v 为纵向和横向脉动风速,d 为圆柱直径。
四、实验步骤
1. 检查实验设备:
实验开始前应当检查实验设备是否齐全,是否能够正常使用,如发现有缺陷或者损坏,应当进行检修或者调换;
2. 安装实验装置:
①将坐标架安装在小风洞扩散段上端适宜位置;
②小心将眼镜蛇探针各部位连接好,并将探头接在坐标架上,调整探头的方向,使之正对着来流风向,并可以通过坐标架上下调节探头位置;
③将准备好的实验圆柱横向安装在风洞试验段的正中间,保证圆柱与试验段上下板平行,并垂直于左右板,最后要将圆柱两端与左右板的连接处做牢固处理,防止圆柱在风吹过程中出现松动;
3. 启动装置,测量数据
①开启风动电机,将风速调制15m/s ,待风速稳定后,调整坐标架,使探头大致在
距离圆柱中心d/2处,并与圆柱保持适当距离,测量此处的风速分布;
②使用相关软件采集数据并记录,调整坐标架,每次1mm ,记录该点的风速,依
此循环测量直至风速稳定,在稳定后可选取每2mm ,5mm 测量;
③存储好记录的数据,以便后续处理;
4. 关闭风机电源,拆卸实验装置,并放回原处,实验结束。
实验示意图
五、实验数据处理
利用实验的软件可以读取已存储实验数据,实验的原始数据可以得知每个测点的瞬时风速(u 、v 、w ),并且可以观察到个测点的瞬时风速频域图,并且可以得到各个点的平均风速(U 、V 、W ),以及雷诺应力(Ruu 、Rvv 、Rww 、Ruv 、Ruw 、Rvw )。
利用Origin 可以计算出风速的rms 值,在频域图里可以读取二维圆柱尾流的涡脱频率n ,也可以通过公式n t
U S d ∞⋅=(t S 为斯托罗哈数,约为0.2,U ∞为来流风速,15m/s )计算。
阻力系数可由
212D F
C U d -=
,其中F 为阻力:()(
)22
1F U U U u v dy ∞-∞⎡⎤=-+-⎢⎥⎣
⎦
⎰, 可得2212
1112d 2d D U U U y v u y C U U d U d ∞
∞
-∞-∞⎛⎫⎛⎫--⎛⎫
⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭⎝⎭⎰⎰,其中1U 为初始风速,U 为每个测点的平均风速,u 和v 为纵向和横向脉动风速,d 为圆柱直径。
实验中,由于探针和圆柱
尾流速度方向编号不同,在实际计算中w 即为v 。
六、实验结果
速度分布如下图
(U-L图)
4.涡脱频率
根据频域图显示,涡脱频率为:140n Hz =
理论计算:150.2
1500.02
t U S n Hz d ∞⋅⨯=
==
5.阻力系数
由理论公式可得:
2212
111122d d 0.72182667+0.17634055=0.898
D U U U y v u y C U U d U d I I ∞
∞
-∞-∞⎛⎫⎛⎫--⎛⎫
⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭⎝⎭=+=⎰⎰
七、实验总结与讨论
实验通过对圆柱尾流速度的测量,了解圆柱尾流的速度分布,并且依据测量结果计
算出了rms 值,雷诺应力,涡脱落频率以及圆柱的阻力系数。
实验结果大致符合理论值,但也存在误差。
误差产生的原因如下:
1.设备误差:仪器的精密程度不够,或者是在安装仪器时不够准确,例如圆柱可能不在风洞试验段的正中间,眼镜蛇探针的探头没有正对来流风向等等对实验结果造成的影响;
2.实验操作误差:上下调动坐标架时不准确以及读书不准确等对实验结果的影响;。