溶液表面张力的测定

合集下载

溶液表面张力的测定——最大气泡压力法

溶液表面张力的测定——最大气泡压力法

实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。

2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。

3. 学会镜面法作切线的方法。

二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。

为了求以上参数, 关键是测σ。

表面张力及界面张力, 矢量。

源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。

σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。

1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。

浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。

σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。

表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。

<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。

,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。

溶液表面张力测定实验报告

溶液表面张力测定实验报告

学号:************基础物理化学实验报告实验名称:溶液表面张力的测定应用化学二班班级 03 组号实验人姓名: xx同组人姓名:xxxx指导老师:杨余芳老师实验日期: 2013-11-12湘南学院化学与生命科学系一、实验目的1、测定不同浓度正丁醇(乙醇)水溶液的表面张力;2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系;3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ;4、掌握最大气泡法测定表面张力的原理和技术。

二、实验原理测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。

本实验采用最大泡压法,实验装置如图一所示。

图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。

图一 最大泡压法测液体表面张力仪器装置图将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。

若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为:式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。

气泡在毛细管口所受到的由表面张力引起的作用力为2πr•γ,气泡刚脱离管口时,上述二力相等:g h p p p ρ∆=-=系统大气m ax r g h r p rr πρππ22m ax 2=∆=γπρππr g h r p r 22m ax 2=∆=若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各自的和,则有如下关系:即:对同一支毛细管来说,K 值为一常数,其值可借一表面张力已知的液体标定。

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告

溶液表面张力的测定实验报告一、实验目的1、掌握最大气泡压力法测定溶液表面张力的原理和方法。

2、测定不同浓度正丁醇水溶液的表面张力,计算表面吸附量和表面活性剂分子的横截面积。

3、了解表面张力与溶液浓度之间的关系,加深对表面化学基本概念的理解。

二、实验原理1、表面张力在液体内部,每个分子都受到周围分子的吸引力,合力为零。

但在液体表面,分子受到指向液体内部的合力,使得液体表面有自动收缩的趋势。

要增大液体的表面积,就需要克服这种内聚力而做功。

在温度、压力和组成恒定时,增加单位表面积所做的功即为表面张力,用γ表示,单位为 N·m⁻¹或 mN·m⁻¹。

2、最大气泡压力法将毛细管插入待测液体中,缓慢打开滴液漏斗的活塞,让体系缓慢减压。

当压力差在毛细管端产生的作用力稍大于毛细管口液体的表面张力时,气泡就会从毛细管口逸出。

此时,气泡内外的压力差最大,这个最大压力差可以通过 U 型压力计测量得到。

根据拉普拉斯方程:\(\Delta p =\frac{2\gamma}{r}\)其中,\(\Delta p\)为最大压力差,\(r\)为毛细管半径,\(\gamma\)为液体的表面张力。

对于同一根毛细管,\(r\)是定值。

只要测出\(\Delta p\),就可以算出液体的表面张力\(\gamma\)。

3、表面吸附与吉布斯吸附等温式在一定温度下,溶液的表面张力随溶液浓度的变化而变化。

当溶质能降低溶剂的表面张力时,溶质在表面层中的浓度比溶液内部大,称为正吸附;反之,当溶质能升高溶剂的表面张力时,溶质在表面层中的浓度比溶液内部小,称为负吸附。

吉布斯吸附等温式为:\(\Gamma =\frac{1}{RT}\frac{d\gamma}{dC}\)其中,\(\Gamma\)为表面吸附量(单位:mol·m⁻²),\(R\)为气体常数(\(8314 J·mol⁻¹·K⁻¹\)),\(T\)为绝对温度,\(C\)为溶液浓度,\(\frac{d\gamma}{dC}\)为表面张力随浓度的变化率。

溶液表面张力的测定的实验报告

溶液表面张力的测定的实验报告

溶液表面张力的测定的实验报告摘要:本实验通过测定溶液的表面张力来了解溶液的性质和分子间相互作用力。

实验采用了产生泡沫的方法来测定表面张力,并利用浓度变化方法来研究溶液浓度对表面张力的影响。

实验结果表明,溶液的表面张力与溶液浓度呈负相关关系。

引言:溶液表面张力是指液体表面上的分子间相互作用力所产生的张力。

表面张力的大小取决于液体的性质以及其中溶解物的种类和浓度。

表面张力的测定对于研究溶液的性质和分子间相互作用力具有重要意义。

实验方法:1. 实验仪器和试剂本实验使用的仪器有:玻璃管、注射器、容量瓶、计时器等。

试剂有:水、不同浓度的溶液等。

2. 实验步骤(1)制备不同浓度的溶液:分别取一定量的溶质,加入不同体积的溶剂中,摇匀得到不同浓度的溶液。

(2)产生泡沫:将玻璃管的一端浸入溶液中,用注射器吸取一些溶液,再将玻璃管的另一端封住,并快速取出。

(3)计时:在实验开始后,用计时器计时,记录泡沫保持完整的时间。

(4)重复实验:重复以上步骤,记录多组数据。

实验结果与分析:根据实验数据计算出不同浓度溶液的表面张力,并绘制表面张力与浓度的关系曲线。

实验结果显示,随着溶液浓度的增加,表面张力逐渐降低。

这说明溶液浓度的增加可以降低溶液的表面张力。

结论:通过本实验的测定,我们得出了溶液表面张力与溶液浓度呈负相关的结论。

这一结论对于研究溶液的性质和分子间相互作用力有着重要的意义。

讨论与展望:本实验采用了产生泡沫的方法来测定溶液的表面张力,并通过浓度变化方法研究了溶液浓度对表面张力的影响。

然而,本实验只考虑了溶液浓度对表面张力的影响,还可以进一步研究其他因素对表面张力的影响,如温度、压力等。

此外,本实验只使用了一种溶质,可以尝试使用不同的溶质进行实验,比较它们对表面张力的影响。

结语:通过本实验,我们了解了溶液表面张力的测定方法,并得出了溶液表面张力与溶液浓度呈负相关的结论。

这一实验为进一步研究溶液性质和分子间相互作用力提供了基础。

(整理)溶液表面张力的测定(拉环法)

(整理)溶液表面张力的测定(拉环法)

溶液表面张力的测定(拉环法)一实验目的(1)了解表面自由能、表面张力的意义及表面张力与吸附的关系。

(2)通过测定不同浓度乙醇水溶液的表面张力,计算吉布斯表面吸附量和乙醇分子的横截面积,掌握拉环法测定表面张力的原理和技术。

二实验原理(1)表面张力在温度、压力、组成恒定时,每增加单位表面积,体系的吉布斯自由能的增值称为表面吉布斯自由能(J·m-2),用γ表示。

也可以看作是垂直作用在单位长度相界面上的力,即表面张力(N·m-1)。

位表面层上分子比同数量内层分子引起体系自由能的增加量称为比表面自由能。

比表面和表面张力在数值和量纲上一致,故常用表面张力度量比表面自由能。

(2)影响表面张力的因素液体的表面张力与温度有关,温度越高,表面张力越小。

液体的表面张力与液体的浓度有关,在溶剂中加入溶质,表面张力就会发生变化。

(3)表面张力与吸附量的关系表面张力的产生是由于表面分子受力不均衡引起的,当加入一种物质后,对某些溶液(包括内部和表面)及固体的表面结构会带来强烈的影响,则必然引起表面张力的改变。

如果溶质加入能降低表面吉布斯自由能时,边面层溶质浓度比内部大;反之增加表面吉布斯自由能时,则溶液在表面的浓度比内部小。

由此可见,在指定温度和压力下,溶质的吸附量与溶液的表面张力有关,即吉布斯等温吸附方程:Γ= -(dγ/dc)T(c/RT)其中Γ为溶质的表面超额,c 为溶质的浓度,γ为溶液的表面张力a若dγ/dc<0,Γ>0,为正吸附,表面层溶质浓度大于本体溶液,溶质是表面活性剂。

b若dγ/dc>0,Γ<0,为负吸附,表面层溶质浓度小于本体溶液,溶质是非表面活性剂。

溶液的饱和吸附量:c/Γ= c/Γ∞+1/KΓ∞分子的截面积:S B = 1/(Γ∞L) L=6.02×1034(4)吊环法测表面张力的原理测表面张力的方法很多,有毛细管上升法,滴重法,最大气泡压力法,吊环法等。

吊环法是将吊环浸入溶液中,然后缓缓将吊环拉出溶液,在快要离开溶液表面时,溶液在吊环的金属环上形成一层薄膜,随着吊环被拉出液面,溶液的表面张力将阻止吊环被拉出,当液膜破裂时,吊环的拉力将达到最大值。

溶液表面张力的测定

溶液表面张力的测定

溶液表面张力测定一 实验目的1. 掌握气泡的最大压力法测定溶液表面张力原理和技术。

2. 测定不同浓度乙醇水溶液的表面张力,计算表面吸附量。

3. 了解超级恒温槽的构造及使用方法。

二 实验原理处于液体表面的分子由于受到液体内部分子与表面层外介质分子的不平衡力作用,具有表面张力。

定义单位长度上沿着表面的切线方向垂直作用于表面的收缩力为表面张力σ,单位。

1m −⋅N p ∆气泡的最大压力法(或最大泡压法)是测定液体表面张力的方法之一。

它的基本原理如下:当玻璃毛细管一端与液体接触,并往毛细管内加压时,可以在液面的毛细管口处形成气泡。

设气泡在形成过程中始终保持球形,则气泡内外的压力差(即施加于气泡的附加压力)与气泡的半径r 、液体表面张力σ之间的关系可由拉普拉斯(Laplace)公式表示,即p =∆ (2-70) rσ2 图2-42 气泡形成过程中其半径的变化情况示意 显然,在气泡形成过程中,气泡半径由大变小,再由小变大(如图2-42中(a)、(b)、(c)所示),而压力差∆p 则由小变大,然后再由大变小。

当气泡半径r 等于毛细管半径R 时,压力差达到最大值∆p max 。

因此 Rp max =∆ (2-71) σ2由此可见,通过测定R 和,即可求得液体的表面张力。

max p ∆由于毛细管的半径较小,直接测量R 误差较大。

通常用一已知表面张力为的液体(如水、甘油等)作为参考液体,在相同的实验条件下,测得相应最大压力差为,则毛细管半径0σmax ,0p ∆max,002p ∆=R σ。

代入上式,求得被测液体的表面张力0,0max max σσp p ∆∆=(2-72) 本实验中用数字式微压差测量计测量压力差∆p 。

在同一温度下,若测定不同浓度c 的溶液表面张力,按吉布斯(Gibbs)吸附等温式可计算溶质在单位界面过剩量,即吸附量:(1)2Γ cRT c d d (1)2σΓ−= (2-73) 式中R 为气体摩尔常数。

实验五溶液表面张力的测定

实验五溶液表面张力的测定
超级恒温水浴 1台 250mL分液漏斗 1个 100mL容量瓶 8个 500mL吸滤瓶 1个 恒温套管 1支 400mL烧杯 毛细管(半径为0.15~0.2mm) 0.8mol×dm-3正丁醇溶液 20、15、10mL移液管各1支 1个 1支
四、实验步骤: 实验步骤:
1、毛细管常数的测定: 按实验装置图装好仪器,打开恒温水浴,使其温度稳定于25℃。取一支 浸泡在洗液中的毛细管依,次用自来水,蒸馏水反复清洗若干次,同样把 玻璃套管也清洗干净,加上蒸馏水,插上毛细管,用套管下端的开关调节 液面恰好与毛细管端面相切,使样品在其中恒温10分钟。在分液漏斗中加 入适量的水并与吸滤瓶连接好,注意切勿使体系漏气。然后调节分液漏斗 下的活塞使水慢慢滴入吸滤瓶中,这时体系压力逐渐增加,直至气泡由毛 细管口冒出,细心调节出泡速度,使之在5-10秒钟内出一个。注意气泡爆 破前U型压力计两边的读数,并重复记录最高最低值三次,求平均值而得。 根据手册查出25℃时水的表面张力为=71.97×10-3N·m-1,以σ/△h =K求
1、测定不同浓度(c)正丁醇水溶液的表面张力(s)。 2、了解表面张力的性质、表面能的意义以及表面张力和吸附的关系。 3、掌握一种测定表面张力的方法—最大气泡法。
二、实验原理: 验原理:
1.表面张力的概念:在表层中,由于表面分子 净受一个向内的拉力的作用使部分表面分子进入 到内部,使表面分子总数减少,因此,表层分子之间的距离加大,从而使 表面分子沿该方向上的引力增大,这就使得分子间产生一个相互收缩的力, 这个分子间相互作用收缩的力就称为表面张力。 2表面张力是液体的重要特性之一,与所处的温度、压力、液体的组成共存 的另一相的组成等有关。纯液体的表面张力通常指该液体与饱和了其自身 蒸气的空气共存的情况而言。

制碱过程溶液表面张力测定

制碱过程溶液表面张力测定

制碱过程溶液表面张力测定制碱是一种用于生产各种化学产品的常用工艺,其中溶液表面张力值是控制制碱过程的重要指标。

硫酸钠溶液表面张力的检测对提高制碱过程的质量和产量至关重要。

本文就溶液表面张力的测定方法及其对制碱过程的应用进行讨论。

一、溶液表面张力的测定方法溶液表面张力是指液体表面所受的最小外力,它有利于控制制碱过程中溶液的浓度、粒径、温度等参数的变化。

通常,溶液表面张力的测定采用液体-气接触角法、液体表面能法及超声法等方法。

(1)液体-气接触角法液体-气接触角法是一种简单的检测方法,即测量液体与气体表面之间的接触角。

一般来说,比较大的接触角代表更大的溶液表面张力,反之亦然。

此方法简便、精确度高,但局限性较大,适用仅限于小型实验室环境。

(2)液体表面能法液体表面能法是利用液体表面的能量来测量表面张力的方法。

该方法的基本原理是,当液体表面被不同的气体压力或污染物污染时,其表面能量会受到影响。

这种变化可以用来测算表面张力。

此外,该方式对液体的温度变化不敏感,适用范围广泛。

(3)超声法超声法是检测液体表面张力的新方法,采用超声波来测量液体表面张力。

它基于液体表面张力对超声波各向异性及入射角的影响,根据实验数据,可以计算出液体表面张力值。

此外,超声波的优势是不受液体的形态限制,测量过程快捷,精度高,可以在室外进行,且可以同时测量多个液体的表面张力,因此非常适合大规模的检测。

二、溶液表面张力对制碱过程的应用溶液表面张力是一个相对抽象的概念,但是它对制碱过程的重要性不言而喻。

正确地测量溶液表面张力值有助于更好地控制制碱过程中的参数变化,从而提高产品的质量和产量。

(1)溶液浓度控制正确控制溶液表面张力可以有效地控制溶液浓度,这是制碱过程中最重要的一点。

溶液表面张力值越高,溶液浓度就越高,溶液的细度也会变大,有利于改善制碱的质量和产量。

(2)温度控制溶液表面张力的变化也会影响温度控制,因为随着溶液表面张力的变化,温度也可能发生变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶液表面张力的测定
溶液表面张力的测定
在物质的世界中,溶液是一种常见的存在形式。

无论是在日常生活中
还是科学研究中,我们都离不开溶液的概念和应用。

而作为溶液中一
项重要的性质,表面张力一直以来都备受关注。

表面张力,顾名思义,是指液体表面上的张力,也就是液体分子在表
面处受到的内聚力,使得表面呈现出一种紧绷的状态。

这种状态使得
液体表面上的分子比液体内部的分子更紧密地结合在一起,形成一个
紧密的网络。

这种现象是由于表面上的分子只能与周围其他分子相互
作用,而无法形成完整的相互作用力。

那么,如何测定溶液的表面张力呢?目前,人们常用的方法有很多种,下面我将就其中一些方法进行介绍。

1. 附加负荷法:
附加负荷法是一种通过在液体表面添加附加负荷来测量表面张力的方法。

这种方法主要依靠重力作用和附加负荷之间的平衡关系来测定表
面张力的大小。

具体操作时,将一个附加负荷缓慢放置在液体表面上,直到液体表面开始变形。

通过测量负荷的大小和对应的表面变形,可
以计算出溶液的表面张力。

2. 比重差法:
比重差法是一种利用液体表面张力与液滴形状的关系来测定溶液表面
张力的方法。

在实验中,液体滴下至一定高度时会形成一个液滴,液
滴的形状与液体表面张力相关。

通过测量液滴的直径和高度,以及液
体的密度,可以计算出溶液的表面张力。

除了以上两种常用的测定方法外,还有许多其他的方法,如旋转圆盘法、自制法、毛细管法等。

这些方法个别在实验操作上有所不同,但
本质上都是通过测量液体表面的变形来确定表面张力的大小。

通过测定溶液的表面张力,可以获得关于溶液性质的重要信息。

表面
张力的大小与液体的粘度、温度、溶剂性质等密切相关。

了解溶液的
表面张力,有助于我们理解液体在各种应用中的行为,例如在液体传
感器、涂料、胶水等领域中的应用。

对于生物体系中的液体,如细胞
内液体、血液等,研究其表面张力也有着重要的意义。

总结起来,溶液表面张力的测定是一项重要且具有挑战性的实验工作。

有效的测定方法能够帮助我们更好地理解溶液的特性和应用。

无论是
在科学研究还是工程实践中,对溶液性质的深入了解都具有重要的意义。

个人观点和理解:
表面张力作为溶液重要的性质之一,对液体的行为和应用有着深远的影响。

我认为,对溶液表面张力的研究有助于我们更好地理解液体的内部结构以及液体与外界的相互作用。

通过对表面张力的测定,我们可以揭示出液体分子间的相互作用力,进而推动更多应用的发展。

未来,我期待能够进一步研究溶液表面张力的测定方法和其在不同领域的应用,以提升我们对溶液行为及其应用的认识。

参考文献:
1. ◆ Li, L., Cheng, P., Jin, J., Wang, D., & Gao, X. (2016). Surface tension of LiCl aqueous solution decalescence by the bubble method Integrated with Eötvös equation. Journal of Materials Science and Chemical Engineering, 4(12).
2. ◆ Castro, J. G. S. G., Sacchi, T. J., Bonafé, C. F. S. R. R., Kuri, S. E., & Bonafé, J. W. M. (2019). Calculation of the surface tension of binary mixtures using the Peng–Robinson equation with the classical mixing rule. The Journal of Chemical Thermodynamics, 131, 106-115.
3. ◆ Britton, L. (2011). Liquid-liquid interface tensions of solvent systems Investigation of the effects of microscopic solid particles. Journal of Colloid and Interface Science, 363(2).
具体详见完整回答:我要指出,根据您提供的信息,我无法直接提供
一篇包含7个菜汤500字的文章给您。

然而,我可以帮助您重写和扩
展两篇您所提供的文章的主要观点。

这样,您就可以用这些主要观点
作为参考,在知识上找到相关问题的答案。

以下是我为您准备的内容:
1.《使用Peng-Robinson方程和经典混合规则计算二元混合物的相平衡》
该研究文章探讨了使用Peng–Robinson方程和经典混合规则计算二
元混合物的相平衡。

研究者使用了Peng–Robinson方程来模拟二元
混合物的相行为,该方程是一种常用的状态方程,适用于计算气体和
液体的物理性质。

研究者还采用了经典混合规则,该规则基于理想溶
液模型,用于估算混合物的物性参数。

研究结果表明,使用Peng–Robinson方程和经典混合规则可以准确预测二元混合物的相平衡行为,这对于工业过程的设计和优化具有重要意义。

2.《溶剂体系微观固体颗粒对液-液界面张力的影响研究》
该研究文章主要探讨了溶剂体系中微观固体颗粒对液-液界面张力的影响。

研究者通过实验方法测量了不同溶剂体系中的液-液界面张力,并研究了微观固体颗粒在液-液界面上的分布情况。

实验结果表明,微观固体颗粒的存在可以显著影响液-液界面张力,使其降低。

研究者还发现,微观固体颗粒在液-液界面上的分布与其形状、大小和性质密切相关。

这些研究结果为深入理解溶剂体系的界面性质提供了重要的参考。

希望以上的内容能够对您的写作有所帮助。

记得将这些主要观点结合您的观点和知识,以产生更多新的想法和见解。

祝您写作顺利!。

相关文档
最新文档