电磁场与电磁波习题课共47页文档
习题课 场与波

2.13 (均匀面电荷分布)求电场强度。(求两球壳间电压U)。 解: (1)r < a : E = 0
ρ s1 a 2 ρ s1a 2 a < r < b : 4πr ε 0 Er = 4πa ρ s1 , Er = , E = er 2 ε 0r ε 0r 2
2 2
r > b : 4πr 2ε 0 Er = 4π a 2 ρ s1 + b 2 ρ s 2
r
(
)
8πb 5 Q = ∫ ρdτ = ∫ b − r ⋅ 4πr dr = 0 τ 15 2b 5 2 D2 ⋅ 4πr = Q, D2 = 15r 2 2b 5 2b 5 E2 = , E 2 = er 2 15ε 0 r 15ε 0 r 2
b
(
2
2
)
2
*2.12 (两种媒质分界面)求电场强度、面电荷密度、电容。 解: D1 = D1n = D2 n = D2 = D
I 1 1 U = ∫ Er dr = − a 4πσ a b U σabU Jr = = 1 1 1 2 (b − a )r 2 − r σ a b I 4πσ 4πσab G= = = U 1 1 b−a − a b
b
3、恒定磁场求解(求磁场强度、磁通、磁场能量、电感) 2.31 求磁通。(求互感)。 解: (1)B = µ 0 I , φ = BdS = µ 0 I ∫S 2πx 2π
2.8 (电荷非均匀分布)求球内外任意一点的电场强度。 解:
(1)0 ≤ r ≤ b :
1 1 Q = ∫ ρdτ = ∫ b 2 − r 2 ⋅ 4πr 2 dr = 4π b 2 r 3 − r 5 0 τ 5 3 1 1 D1 ⋅ 4πr 2 = Q, D1 = b 2 r − r 3 3 5 1 1 1 1 1 1 E1 = b 2 r − r 3 , E1 = e r b 2 r − r 3 5 5 ε0 3 ε0 3 (2)r ≥ b :
电磁场与电磁波(第四版)习题解答

(3)
V/m (4)平均坡印廷矢量
rad/m Hz
第6章习题
习题6.2
解: (1)电场的复数形式 由
A/m
(也可用式求解磁场,结果一样)
将其写成瞬时值表达式 A/m
(2)入射到理想导体会产生全反射,反射波的电场为 与其相伴的反射波磁场为 总的电场 总磁场 (3)理想导体上的电流密度为
处的
和
; (2)求在直角坐标中点
处
与矢量
构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, 则 (2)其夹角为
习题1.17在由
、
和
围成的圆柱形区域,对矢量
验证散度定理。 证: 在圆柱坐标系中 所以, 又 则
习题1.21求矢量
沿
平面上的一个边长为
的正方形回路的线积分,此正方形的两边分别与
A/m
习题6.4
解:
反射系数为 透射系数为 故反射波的电场振幅为 透射波的电场振幅为
V/m V/m
习题6.7
解:区域,本征阻抗
透射系数为 相位常数 则 电场: V/m 磁场: A/m
习题6.13
解:电场振幅最大值相距1.0m,则,得 因电场振幅第一最大值距离介质表面0.5m,即处,故反射系数。 由 又 可得到
,可见,矢量是磁场矢量。其源分布 (4)在球坐标系中
,可见,矢量是磁场矢量。其源分布
习题2.26
解: (1)由,得 故 (2)由,得 故 (3) 故 (4)
习题2.30
解: (1)在界面上法线方向的分量为 (2) (3)利用磁场边界条件,得 (4)利用磁场边界条件,得
习题3.3
解: (1) 由可得到
电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为0000()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1 已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。
试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。
解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B ()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zyz yx z y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zyz y x z y xC C C A A A e e e e e e e e e C A x x x x x452102321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。
1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为,位置矢量B 与X 轴的夹角为,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅cos B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1 ,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。
《电磁场与电磁波》课程习题解答(第3版)共85页word资料

电磁场与电磁波课程习题解答(第3版)一章习题解答1.1 给定三个矢量A 、B 和C 如下:求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ; (7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由 cos AB θ===A B A B g ,得 1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A =A cos AB θ==A B B g (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e(8)()⨯⨯=A B C 1014502x yz---=-e e e 2405x y z -+e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
解 (1)三个顶点1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123PP P ∆为一直角三角形。
电磁场与电磁波例题集合

带电体位于真空,计算该带电圆柱内、外的电场强度。
z S1
L y
S
E dS
q
0
E dS
S
S1
EdS E dS 2πrLE
S1
x a
当 r < a 时,则电荷量q 为 q πr 2 L , 求
得电场强度为
r E er 2 0
当 r > a 时,则电荷量q 为 q πa 2 L , 求
功率损耗密度分别为
pl1 1E12 ,
2 pl 2 2 E2
两种特殊情况: 若 1 0 , + U –
d1 d2
1= 0
E2 = 0
则 E2 0
we 2 0 pl 2 0
+ E1 U / d1 U –
d1 E1 = 0 d2 2 = 0
若 2 0, 则 E1 0
1E1 2 E2
边界垂直,求得 又
E1d1 E2d2 U
求出两种介质中的电场强度分别为 2 1 E1 U E2 U d1 2 d 2 1 d1 2 d 2 1
两种介质中电场储能密度分别为
1 we1 1 E12 , 2 1 2 we2 2 E2 2
2I H1 e π r ( 1 2 )
H2 I ( 1 2 ) I e e 2π r 2π r ( 1 2 )
B1 1H1
B2 2 H2
例1 计算无限长直导线与矩形线圈之间的互感。
设线圈与导线平行,周围介质为真空,如图所示。
q 4π 0 r l cos 2 q 4π 0 r
2
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,1q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2cm , 如习题图2-4所示。
试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无限远处缓慢地移至P 点时,外力必须作的功。
解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如习题图2-6所示。
那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场强度的y E 分量,即习题图2-4习题图2-6φπερsin 4d d d 20a lE E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aa e e E 0002008d sin 4ερφφπερπ==⎰2-12 若带电球的内外区域中的电场强度为⎪⎪⎩⎪⎪⎨⎧<>=a r aqr a r r q, ,2r e E试求球内外各点的电位。
电磁场与电磁波习题+问题课(一)

1.16(P32):已知)2()()(222xyz czx z z e by xy e axz x e E z y x -+-++++=,试确定常数a 、b 、c使E为无源场。
(知识点:无散场定义(散度为0的矢量场为无散场);散度计算:zE y E x E E zy x ∂∂+∂∂+∂∂=⋅∇ 。
关键点:无源场就是无散场,这里的源指通量源。
相关拓展:无散场又称无源场,无旋场又称保守场,无旋无散场又称调和场。
)解:zxyz czx z z y by xy x axz x z E y E x E E z y x ∂-+-∂+∂+∂+∂+∂=∂∂+∂∂+∂∂=⋅∇)2()()(222 cxz b az x xyxc z b xy az x +-+++=-+-++++=21222122若E 为无源场,即E无无散场:0=⋅∇E有2,1,201,02,02-=-==⇒=+=-=+c b a b a c因此在2,1,2-=-==c b a 时E为无源场。
)1()2()2(++-++=b z a x c1.18(P32):(1)求矢量32222224z y x e y x e x e A zy x ++=的散度;(2)求A ⋅∇对中心在原点的一个单位立方体的积分;(3)求A对立方体表面的积分,验证散度定理。
(知识点:散度计算zE y E x E E zy x ∂∂+∂∂+∂∂=⋅∇ ;散度定理:V E S E SVd d ⎰⎰⋅∇=⋅;体积分和面积分。
注意:“A对立方体表面的积分”只能积分求得,不能用散度定理来求。
因为题目的要求是要验证散度定理。
)解:(1)矢量A的散度:z A y A x A A z y x ∂∂+∂∂+∂∂=⋅∇ zz y x y y x x x ∂∂+∂∂+∂∂=32222224 22227222z y x y x x ++=(2)A⋅∇对中心在原点的一个单位立方体的积分(3) A对立方体表面的积分241d d d )7222(d )7222(d 21212121212122222222=++=++=⋅∇⎰⎰⎰⎰⎰---zy x z y x y x x V z y x y x x V A VV241d d 21d d 21d d 21d d 21d d )2124d d )2124d d d d d d d 212121212212121212212121212221212121222121212132221212121322=--+--+--=⋅+⋅+⋅+⋅+⋅+⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------------z y z y z x x z x x y x y x y x y x SA S A S A S A S A S A S A S S S S S S S)()()()(((后前右左下上即有V A S A SVd d ⎰⎰⋅∇=⋅,得证散度定理。