概率论与数理统计之古典概率.
概率论文---古典概型浅析

浅析古典概型1018202班于春旭1101800214经过一学期的概率论与数理统计的学习,从最开始的随机事件与概率到多维随机变量,再到数理统计,参数估计。
对于概率的一些基本知识已经有所掌握。
那么回过头来,让我们去分析一下概率论中最为基础的也是最为贴近平时生活的一种概型,古典概型。
所谓古典概型是一种概率模型。
古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。
若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。
历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。
计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
例如:掷一次硬币的实验(质地均匀的硬币),只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的;如掷一个质地均匀骰子的实验,可能出现的六个点数每个都是等可能的;又如对有限件外形相同的产品进行抽样检验,也属于这个模型。
是概率论中最直观和最简单的模型;概率的许多运算规则,也首先是在这种模型下得到的。
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。
相较于其他概型,古典概型有以下特点:1、实验的样本空间只包括有限个元素;2、实验中每个基本事件发生的可能性相同。
求古典概型的概率的基本步骤:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=m/n,求出P(A)。
古典概率模型是在封闭系统内的模型,一旦系统内的某个事件的概率在其他概率确定前被确定,其他事件概率也会跟着发生改变。
概率论与数理统计总复习知识点归纳

0 x 1 法二 (公式法):注意到被积函数的非零区域G为: 0 z x 1 能否用 f Z ( z ) f X ( x) fY ( z x )dx ?
若Xi ~ N( i,i 2), i=1,2,...n, 相互独立,则对任 何实数a1, a2, …, an, 有
aX1 b ~ N ( a1 b,, a2? 12 ), ?
ai i , ? i2 i2 ) a ai X i ~ N ( ?
i 1 i 1 i 1
(P( A B) B) P3 A / B) 0.3 0054 0.2 P AB) P( 0. ( 0.5 0.5 . . P( A B) P( A) P( B) P( AB) 0.3 0.5 0.2 0.6
P( A B ) P( A B) 1 P( A B) 0.4
于是Y的概率密度为 1 1 1/ 2 fY ( y ) f X ( y ) ( y ) f X ( y ) ( y ) 1/ 2 2 2 1 ( y ) 1/ 2 [ f X ( y ) f X ( y )] , y 0 2
f Y ( y) 0 , y 0
例1 设甲、乙、丙三 人的命中率分别为0.3, 0.2,0.1。现三人独立地 A 1 向目标各射击一次,结果 有两次命中目标,试求丙 没有命中目标的概率。
P(Ai)—— 先验概率
A2
........
An
P(Ai /B ) 后验概率
P(B/Ai) P(B )
大学概率论与数理统计复习资料

知识点:概率的性质事件运算古典概率常用公式(2)P(A BP P(A) P(B)- P(AB)(加法定理)nnP(U A) Y p(A)i d innP(U A)=l-n [1-P(A)]i di d(3) P(B/A)二 P(AB)/P(A) (4)P(AB)二 P(A)P(B/A)二P(B)P(A/B) P(AB)二 P(A)P(B) (A 与B 独立时)P(AB)二0(A,B 互不相容时)(5) P (A- Bp P(ABp P(A)- P(AB)P(A- B)二 P(AB)二 P(A) - P(B)(当B A 时)n(6) P (B)八 P(A i )P(B/A i )(全概率公式)i=1(其中A ,,A 2 A n 为"的一个划分,且P(A i 0)) (7) P (A /B) = nP(A)P(B/A)(逆概率公式)迟 P(A i )P(B/A)事件的独立性条件概率全概率与贝叶斯公式(1)P(Ap r/nP(AP L(A)/L(S)(设A,4…A 两两互斥,有限可加性)(A ,4, A 相互独立时)i =1应用举例1、已知事件A, B 满足P(AB) = P(AB),且P(A) = 0.6 ,贝卩P(B)=()。
2、已知事件A,B 相互独立,P(A) =k, P(B) =0.2, P(0 B)=0.6,贝k - ()。
3、已知事件A,B 互不相容,P(A) =0.3, P(B) = 0.5,则 P(A B)=()。
4、若P(A) =0.3, P(B)=0.4 ,P(AB) = 0.5, P(BA B)=( )。
5、A, B,C是三个随机事件,C B,事件AUC - B与A的关系是6、5张数字卡片上分别写着1, 2, 3, 4, 5,从中任取3张,某日他抛一枚硬币决定乘地铁还是乘汽车。
(1 )试求他在5:40〜5:50到家的概率;(2)结果他是5:47到家的。
试求他是乘地铁回家的概率。
概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
概率论与数理统计—古典概型

2023/8/17
3
3.排列:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素的所有排列的个数,叫做从n个不同元素中
取出m个元素的排列数,记为
Pnm n (n 1) (n m 1)
4.组合:从n个不同元素中(按不放回方式)取出m
(m≤n)个元素并成一组, 叫做从n个不同元素中取出m个
元素的组合数,记为
有m1种不同的方法,在第2类中有m2种不同的方法,…… 在第n类中有mn种不同的方法, 那么完成这件事共有
M m1 m2 mn
2.乘法原理:完成1件事,需要分成n个步骤. 做第1步
有m1种不同的方法, 做第2步有m2种不同的方法,…… 做第n步有mn种不同的方法, 那么完成这件事共有
N m1 m2 mn
P( A) C9153 C52 0.1377 C15
100
2023/8/17
6
例3.袋中有a只白球,b只红球,k个人依次在袋中 取一只球,
(1)作放回抽样;(2)作不放回抽样
求第i(i=1,2,…,)人取到白球(记为事件B)的概率 (设k ≤ a+b).
2023/8/17
7
Cnm
n (n
1)
(n m!
m
1)
2023/8/17
4
例1将. n只球随机地装入N个盒子中去,问每个盒子 至多装一只球的概率(设盒子容量不限,n≤N). 解:设A为每个盒子至多装一只球, n只球随机地装入N个盒子共有 N N N N n 每个盒子至多装一只球,则第一只球共有N种装法,
第二只球有N-1种装法,……,第n只球有N-n+1 种,
故N(A)=NP((NA)-1)N…((NN-n+1)1N),n于(N是 n 1)
概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)eik则有P(A)=k/n,其中n为样本空间中元素的个数。
在概率论中,样本空间和随机事件是基本概念。
如果事件A发生必然导致事件B发生,则称事件B包含事件A,记作A⊂B。
当A和B中至少有一个发生时,称A∪B为事件A和事件B的和事件。
当A和B同时发生时,称A∩B为事件A和事件B的积事件。
当A发生、B不发生时,称A-B为事件A和事件B的差事件。
如果A和B互不相容,即A∩B=∅,则称A和B是互不相容的,或互斥的,基本事件是两两互不相容的。
如果A∪B=S且A∩B=∅,则称事件A和事件B互为逆事件,又称事件A和事件B互为对立事件。
在概率论中,还有一些运算规则。
交换律指A∪B=B∪A,A∩B=B∩A;结合律指(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C);分配律指A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C);德摩根律指A∪B=A∩B,A∩B=A∪B。
频率与概率是概率论的重要概念。
在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数n A称为事件A发生的频数,比值nAn称为事件A发生的频率。
概率指对于随机试验E的每一事件A赋予一个实数P(A),称为事件的概率。
概率P(A)满足非负性,即对于每一个事件A,0≤P(A)≤1;规范性,即对于必然事件S,P(S)=1;可列可加性,即设A1,A2,…,An是两两互不相容的事件,则有P(∪Ai)=∑P(Ai)(n可以取∞)。
概率还有一些重要性质,包括P(∅)=0,P(∪Ai)=∑P(Ai)(n可以取∞),如果A⊂B,则P(B-A)=P(B)-P(A),P(A)≤1,P(A)=1-P(A'),以及P(A∪B)=P(A)+P(B)-P(A∩B)。
等可能概型又称为古典概型,是指试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同。
如果事件A 包含k个基本事件,即A={e1}∪{e2}∪…∪{ek},则有P(A)=k/n,其中n为样本空间中元素的个数。
概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。
在概率论与数理统计的学习中,有许多重要的公式需要掌握。
以下是概率论与数理统计的完整公式。
一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。
4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。
2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。
概率论与数理统计-古典概型_图文

思考题
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
从0,1,2, ,9共十个数字中任意选出三个不同的数字, 试求下列事件的概率:
则有
该式称为等可能概型中事件概率的计算公式.
[例1]
表达方法:
[例 2]
解:(1) 有放回情形 样本空间中基本事件总数:
所包含的基本事件总数: 于是,
(2) 无放回情形 样本空间中基本事件总数:
所包含的基本事件总数:
于是,
[例3](继上题) 将抽样方式改为“一次任取 件样品”,求相应
的概率. 解: 样本空间中基本事件总数为:
解:基本事件总数为:
* 2.几何概型
假设随机试验包含无穷多个基本事件,且每个基本 事件都是等可能的. 定义
小结
1. 古典概型:构建合适的样本空间,正确计算样本 点个数.构建样本空间时,要特别注意样本点的等可能 性.
2. 两个重要的概率模型---无放回抽样(超几何分 布),抽签次序无关性.
3. 几何概型---古典概型的推广:样本空间为无穷 集合.
所包含的基本事件总数为:
于是,
附:不放回依次抽样与一次抽样的等价性
例4 在10张奖券中有2张中奖券,有10人依次逐个 抽取一张奖
[例4] 一批产品共有 件,其中有 件次品.每次从中 任取一件,取出后不放回,接连取 个产品.求第 次取 得次品的概率.
概率论与数理统计-古典概型_图文.ppt
一、古典概型的定义
定义 1。试验的样本空间只包含有限个元素; 2。试验中每个基本事件发生的可能性相同.
等可能概型的试验大量存在, 它在概率论发 展初期是主要研究对象. 等可能概型的一些概念 具有直观、容易理解的特点, 应用非常广泛.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C C p C
k概率公式。
返回主目录
第一章 概率论的基本概念
2) 有放回抽样
等可能概型
从N件产品中有放回地抽取n件产品进行排列, 可能的排列数为 N n 个,将每一排列看作基本 事件,总数为 N n 。
而在 N 件产品 中取 n 件,其中恰有 k件次品 的取法共有
1)取到的两只都是白球的概率; 2)取到的两只球是黑的概率; 3)取到的两只球中至少有一只是白球的概率。
返回主目录
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法(几何概率)
k k Cn D ( N D) nk
于是所求的概率为:
P
k Cn D k ( N D) n k
N
n
k Cn
D k D nk ( ) (1 ) N N
返回主目录
此式即为二项分布的概率公式。
例5(分房问题) 有 n 个人,每个人都以同样的概 率 被分配在 N (n N ) 间房中的每一间中,每个房间 人数不限,试求下列各事件的概率: (1)某指定 n 间房中各有一人 ; (2)恰有 n 间房,其中各有一人; (3) 某指定一间房中恰有 m(m n) 人。
解 先求样本空间中所含样本点的个数。
n N 首先,把 n 个人分到N间房中去共有 种分法,其次 ,求每种情形下事件所含的样本点个数。
(1)某指定n间房中各有一人,所含样本点的个 数,即可能的的分法为 n!; n (2)恰有n间房中各有一人,所有可能的分法为 C N n!; (3)某指定一间房中恰有m人,可能的分法为 Cnm ( N 1) nm .
无限等可能概型(几何概型):
若随机试验满足下述两个条件: (1)无限性: 它的样本空间有无限个样本点,且 全体样本点可用一个有度量的几何区域来表示; (2) 等可能性:每个样本点出现的可能性相同.
几何概率的定义
设几何概型的样本空间可表示为有度量的 区域S,事件A所对应的区域仍用A表示,则定义 A的概率为: A的度量 P( A) S的度量
进而我们可以得到三种情形下事件的概率,其分别为 :
m nm n n n n (1) N . (3) Cn ( N 1) n! N (2) CN n! N
上述分房问题中,若令 N 365, n 30, m 2 则可 演化为生日问题.全班学生30人, (1) 某指定30天,每位学生生日各占一天的概率; (2) 全班学生生日各不相同的概率; (3) 全年某天,恰有二人在这一天同生日的概率。 利用上述结论可得到概率分别为 :
等可能概型
北
A
2
3
4
西 东 南
…
e1
e2
……
ek
…
en
返回主目录
第一章 概率论的基本概念
等可能概型
若事件 A 包含 k 个基本事件,即 A ={e1, e2, …ek }, 则有 :
k A包含的基本事件数 P( A) . n S中基本事件总数
返回主目录
例 1 : 52张扑克取13张,其中取出的结果为5黑桃;3张红心; 3张方块;2张草花的概率。
8 5 1 9 4 6 7 2 3 10
二、古典概率的定义
设试验E是古典概型, 其样本空间S由n个样本 点组成 , 事件A由k个样本点组成 . 则定义事件 A的概率为: A包含的样本点个数 P(A)=k/n= S的样本点总数 称此概率为古典概率.
P13 例1
古典概型的解题步骤:
1.
2. 3.
选取适当的样本空间 S,判断是否为古典概型(有限性、 等可能性).
计算 S 以及感兴趣的事件 A 所包含的样本点数,分别记 作n和m. 计算得 P( A) .mn
备注
• • 放回抽样 取出元素旋即放回,参加下一次抽取, 即每次抽取都是在全体元素中进行. 不放回抽样 某元素一旦被取出就不再参加以后 的抽取,所以每个元素至多被选中一次.
第一章 概率论的基本概念
美国数学家伯格米尼曾经做过一个 别开生面的实验,在一个盛况空前、 人山人海的世界杯足球赛赛场上,他 随机地在某号看台上召唤了 22 个球迷, 请他们分别写下自己的生日,结果竟 发现其中有两人同生日.
等可能概型
例 设有 N 件产品,其中有 D 件次品,今从中任
取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少?
第一章 概率论的基本概念
等可能概型
由乘法原理知:在 N 件产品 中取 n 件,其中恰有 k
件次品的取法共有 C k C n k 种, D N D 于是所求的概率为:
§4
有限等可能概型(古典概型)
一、古典概型的定义
若随机试验满足下述两个条件: (1)有限性: 它的样本空间只有有限个样本点; (2) 等可能性:每个样本点出现的可能性相同. 则称这种试验为有限等可能概型(古典概型).
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
练习3 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率. 解 64 个人生日各不相同的概率为
365 364 ( 365 64 1) p1 36564
故64 个人中至少有2人生日相同的概率为
365 364 ( 365 64 1) 0.997. p 1 64 365
第一章 概率论的基本概念
等可能概型
例 2 一口袋装有 6 只球,其中 4 只白球、2 只 黑球。从袋中取球两次,每次随机的取一只。考 虑两种取球方式: • 放回抽样 第一次取一只球,观察其颜色后放 回袋中, 搅匀后再取一球。 • 不放回抽样 第一次取一球不放回袋中,第二 次从剩余的球 中再取一球。 分别就上面两种方式求:
第一章 概率论的基本概念
等可能概型
例 3 将 15 名新生随机地平均分配到 3 个班中去,这 15 名新生中有 3 名是优秀生。问: (1) 每个班各分配到一 名优秀生的概率是多少? (2) 3 名优秀生分配到同一个班级的概率是多少? 解:15名新生平均分配到 3 个班级中去的分法总数为:
第一章 概率论的基本概念