定量资料的统计描述
第二章--定量资料的统计描述

分类变量(名义变量 分类变量 名义变量) 名义变量 定性变量 有序变量(等级变量 有序变量 等级变量) 等级变量
变量
离散型变量 定量变量 连续型变量 统计描述: 统计描述:用统计图表或计算统计指标的方法表达一个特定群 这个群体可以是总体也可以是样本)的某种现象或特征, 体(这个群体可以是总体也可以是样本)的某种现象或特征, 称为统计描述。 称为统计描述。 统计描述可以使人们对资料有一个大致的了解, 统计描述可以使人们对资料有一个大致的了解,为进一步的统 计分析打下基础。 计分析打下基础。
图2-1 某地96名妇女产前检查次数频率分布 某地96名妇女产前检查次数频率分布 96
30 25 20
频率(%)
15 10 5 0 0 1 2 3 4 产前检查次数 5 >5
横坐标为产前检查 横坐标为产前检查 频率, 次数,纵坐标为频率 次数,纵坐标为频率, 即产前检查k次的妇 即产前检查 次的妇 女在被统计妇女中所 占的比例(%) 占的比例( ) 从表2-1和图 和图2-1可 从表 和图 可 以看出, 以看出,产前检查次 数为4次或 次或5次的孕妇 数为 次或 次的孕妇 数目最多, 数目最多,不检查或 检查次数很多的孕妇 不多, 不多,产前检查很多 次的孕妇也不多。 次的孕妇也不多。
与表2-2相比, 与表 相比,直方图可以更直观 相比 地表达出血清铁数据在各组段的分 布情况。 布情况。
三、频率分布表(图)的用途 频率分布表( (一)揭示资料的分布类型 1、对称分布 集中位置位于中央,左右两侧频数对称。 集中位置位于中央,左右两侧频数对称。
12 10 频 率 密度 (%) 8 6 4 2 0 7 9 11 13 15 17 19 血清铁 21 23 25 27 29
(精选)定量资料统计描述

因此,中位数可用于任何分布的定量资料。 但对于能用算术均数或几何均数描述集中趋势的资料, 应尽量使用算术均数或几何均数。
24
百分位数常用于确定医范围指特定健康人群的解剖、生理、 生化等指标的波动范围。
56.5 58.5
3. 频数分布表的用途 1) 揭示资料的分布类型 2) 反映频数分布的两个重要特征
集中趋势(Central tendency) 离散趋势(Tendency of dispersion)
9
3) 利于发现某些特大或特小的可疑值 4) 便于进一步进行统计分析
10
4. 频数分布图 以观测变量为横轴,频数(或频率)为纵轴
累计频数等于该组段及前面各组段的频数 之和;累计频率等于累计频数除以总例数。 累计频率描述了累计频数在总例数中所占比 重。
6
2. 频数分布的类型
① 对称分布:集中位置在正中,左右两侧大体对称。
② 偏态分布:集中位置偏向一侧,频数分布不对称。
正偏态分布
负偏态分布
频数分布类型不同,统计描述的方法不同。
适用于原始数据分布不对称,但经对数转换后对 称分布的资料;或各观察值之间呈倍数变化(等比关 系)的资料。
Gn X1X2Xn
Glg1(
lgX )
n
18
当资料中有相同观察值时,也可用加权 法计算几何均数
Glg1(
f lgX )
n
19
几何均数的应用 ① 常用于对数正态分布资料或等比资料:
如抗体平均滴度和平均效价、卫生事业 平均发展速度、人口几何增长的资料等。 ② 观察值不能有 0,不等同时有正有负。
定量资料数据的统计描述

f lg X lg f
1
X1,X2…Xn 为各组段的滴度或滴度倒数。 f1,f2…fn分别为各组段的频数。
例2-6 52例慢性迁延性肝炎患者的HBsAg滴度 数据见表2-4,求其平均滴度。
2 1.20412 7 1.50515 ... 7 2.7027 G lg 1 52 lg 1 108.06977/ 52 lg 2.7017 119.74705
①两端的组段应分别包含最小值或 步骤: 最大值; (1) 求全距:(极差) R=29.64-7.42=22.22 ②尽量取较整齐的数值作为组段的 端点,便于对数据进行表述; (2) 定组段数与组距 : 8~15个组段,组距i=全距/组段数 ③组距以相等为宜。 (3) 划组段:以一个稍小于或等于最小值的整数作为第一个
理的各种因素在个体之间都不会完全相同,即个体间存在差
异,因此导致某地18-35岁健康男性居民血清铁含量不会完全 相同,而是呈现或大或小的离散趋势。
一、描述集中趋势的统计指标
平均数:描述一组同质计量资料的集中趋势;反映一组观察值 的平均水平。 常用的平均数有算术均数,几何均数和中位数。 (一)算术均数(mean):简称均数,总体均数用希腊字母µ 表
四、频数分布的类型
对称分布型:指集中位置在正中,左右 两侧频数分布大体对称。
偏态分布型:指集中位置偏向一侧,频数 分布不对称。 正偏态分布:集中位置偏向数值小的一侧。
偏态分布型
频数分布
负偏态分布:集中位置偏向数值大的一侧。
频数表的用途
1. 揭示频数分布的分布特征和分布类型。文献中常 将频数表作为陈述资料的形式。
图中横轴为血清铁含量,纵轴为频率密度,直条面 积等于相应组段的频率。
定量资料的统计描述

•定量资料的统计分析定量资料的统计描述主要内容•频数分布表•集中趋势指标•离散趋势指标•频数/频率分布表(frequency distribution table•频数:将定量资料的变量值进行分组,则某组段所包含的变量值的个数称为频数,以f表示。
频率是频数在总例数中所占的百分比。
•频数表(频率表):表示各组段及它们对应的频数(频率)的表格称为频数表或频数分布表。
频数分布表格•编制频数表的步骤1.求全距(R)。
R=最大值-最小值=84.3-64.3=20(g/L)2.确定组数和组距。
频数表一般设8-15组。
各组段的起点和终点分别称为下限和上限。
组距为相邻两组段的下限差。
组距i=R/组数≈R/10.本例w=20/10=2(g/L)3.确定组段值。
原始数据表第一组段应包含最小值,最末组段应包含最大值并写出其下限和上限值。
4.列出频数表。
采用划记法或计算机汇总。
•编制频数表的意义:•⑴由频数表可以看出频数分布的两个重要特征:集中趋势和离散趋势。
•⑵可以根据频数分布的不同类型,选择适当的统计方法,进行计算与分析。
频数分布的两个特征:①集中趋势(central tendency):变量值集中位置。
②离散(/中)趋势(tendency of dispersion):变量值围绕集中位置的分布情况。
离“中心”位置越远,频数越小;且围绕“中心”左右对称。
频数分布的类型:对称分布例题直方图偏态分布(集中位置偏向小的一侧叫正偏态,偏向大的一侧叫负偏态)。
偏态分布图示频数表的用途:1. 揭示资料的分布特征和分布类型2. 发现特大值和特小值3. 由组中值近似代表原始数据,便于手工计算集中趋势指标与离散趋势指标。
•集中趋势指标•平均数(average)•描述一组性质相同的观察值的集中趋势、中心位置或平均水平的指标•平均数是一组数据典型或有代表性的值。
•常用平均数的种类有:•算术均数•几何均数•中位数• 众数*• 调和均数*• 一、算术均数(arithmetic mean )1.适用资料:算术均数简称为均数(mean ),适用于正态分布或近似正态分布资料。
定量资料的统计描述

例:求下表中血清铁含量的5%、 95%位数
从表2-2可判断出5%位于“10~”这个 组段:
px = L +
i n( x%
fx
f
)
L
= 10 + 21(20×5% 4 =)10.67
6
该组血清铁资料的5%位数为10.67 (μmol/L)。
从表2-2可判断出95%位于“24~”这 个组段:
px = L +
n为奇数时: M = X n + 1
2
n为偶数时:M =
1 2
X
+
n 2
X n+ 1 2
式中X*表示将n例数据按升序排列 后的第i个数据。
上式中n为一组观察值的总个数,
n +1
n
n +1
2
2
2
均为下标,表示有序数列中观察值 的位次。
例:某药厂观察9只小鼠口服高山红 景天醇提物(RSAE)后在乏氧条件 下的生存时间(分钟)如下:
一般设10~15个组段,每个组段的 起点称“下限”,终点称“上限”;第 一组段含最小值,最末组段含最 大值。
(4) 列表
频数分布的类型:
对称分布—集中位置在正中、左右 两侧频数分布大体对称
偏态分布
正偏峰分布-集中位 置偏向数值小的一侧
负偏峰分布-集中位 置偏向数值大的一侧
定量变量的特征数
= 119.75
52例慢性肝炎患者的HBsAg滴度 的平均水平为1:119.75。
3. 中位数(median, M)
将一组观察值从小到大按顺序排 列,位次居中的观察值就称中位数。 用M表示。
中位数适用于任何一种分布的定量 资料,一般多用于描述偏态分布或 数据一端无界资料的集中趋势。
定量资料的统计描述

x i
i 1
N
2
N
S
x X
n i 1 i
2
n 1
xi xi i 1 i 1 n 1
n 2 n
2
n
步骤如下:
R=160.8-129.4=31.4。
组段数=10;组距=R/10=3.14≈30(cm);按要
求确定每一组段上下限。
分组统计每一组段的频数,编制频数表。
计量资料频数分布表
118 例 13 岁女孩身高(cm)资料频数表。 身高组段 (1) 129~ 132~ 135~ 138~ 141~ 144~ 147~ 150~ 153~ 156~ 159~162 合计 频数 (2) 2 2 8 20 26 25 20 9 3 2 1 118 组中值 (3) 130.5 133.5 136.5 139.5 142.5 145.5 148.5 151.5 154.5 157.5 160.5 —
3、方差(variance) 离均差平方和的算术平均数,即为方差。总体方差用 符号σ2(σ读seigama)表示,样本方差用S2表示。计算公 式分别为:
2
x
i 1
N
i
2
N
S2
x X
n i 1 i
2
n 1
4、标准差(standard deviation) 方差的平方根即为标准差。总体标准差用σ表示, 样本标准差用S表示。计算公式分别为:
集中趋势:指频数表中频数分布表现为频数向某一位置集中的趋势 分布特征 离散趋势:指频数虽然向某一位置集中,但频数分布表现为各组段都 有频数分布,而不是所有频数分布在集中位置的趋势。
定量资料的统计描述

编制频数分布表的步骤
第一组段包括最小值,最后 一组段包括最大值,除最后 一组段可同时标出上下限, 其他组段只标出下限。
一般 8- 15 之间 求出极差 确定组段数 确定组距
列出各个组段
确定每一组段频数 选 根据变量值大小 把各观察单位归 入各个组段
极差即最大值 与最小值之差
组距=R/组段数, 但一般取一方便 计算的数字
常用的平均数有: 算术平均数(均数)(mean) 几何平均数(geometric mean)
中位数 (median)与百分位数(percentile)
众数(mode)
一、算术平均数
算术平均数:简称均数(mean)
可用于反映一组呈对称分布的变量值
在数量上的平均水平或者说是集中位置
的指标值。
1、算术平均数的计算方法
M X 9 1 X 5 15
2
பைடு நூலகம்
如果只调查了8家外企,则
2 14 15 2 14.5 M X X 8 8 1 2 2
频数分布表资料的中位数
M 所在组段下限值 (n 50% 至该下限值的累计频数) 组距 所在组段下限值至上限值间的频数 (n 50% f L ) M L i fm
i , fm
下限值L
中位数M
上限值U
例1 频数表中位数的计算
N=∑f
中位数=71+3x[(130x50%-59)/26]=71.69
2、中位数的应用
各种分布类型的资料
特别适合大样本偏态分布资料或者 分布末端无确切数值的资料。
第二节 描述集中趋势的统计指标
统计上使用平均数(average)这一指标体系来描述 一组变量值或观察值的集中位置或平均水平。
定量资料的统计描述

四分位数 间距
方差与标 准差 变异系数
频数分析(Frequencies )
下面我们结合人群的年龄(age)数据学习如何使用SPSS计算统计指 标。
部分中英文对照:
描述统计(Descriptives )
对于近似正态分布的资料,我们还可以通过Descriptives获取统计指 标。这是一组使用某法多次测定某水样中碳酸钙含量的数据,符从正态分 布,下面我们用Descriptives的方法计算这组数据的统计指标。
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差
确定组段数和组距
1.极差:R=95.7≈100
定量资料统计描述
定量变量
定量变量可以分为两种类型: 1.离散型变量:只能取整数值,例如,一个月中的
手术病人数,一年里的新生儿数。
2.连续型变量:可以取实数轴上的任何数值,例如, 血压,身高,体重等。
统计描述
统计描述是通过绘制统计表、统计图 或计算相应的统计指标来说明资料的分布 规律及其数量特征,是进一步统计推断的
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分
1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点掌握 1.频数分布图和频数分布表的制作 2.定量资料统计指标的计算
离散型定量资料
下面我们打开SPSS软件自带的数据demo.sav,找到reside, 这是一组同居人数的资料,我们将结合这组数据学习离散型 定量资料频数分布表和频数分布图的绘制。
变量视图
输出结果
输出结果
连续型定量资料
打开SPSS软件自带的数据demo.sav,找到car,这是一组 私家车价格的资料,我们将结合这组数据学习连续型定量资料 频数分布表和频数分布图的绘制。
变量视图
一般步骤
1.求极差 2.确定组段数和组距 3.根据组距写出组段 4.制作频数表和频数图
求极差
求极差
确定组段数和组距
1.极差:R=95.7≈100 2.确定组段数和组距:i=100/5=20,组段数取5,组距为20
正态QQ图:图中的点代表数据,直线代表理想的正态数据,如果各个点都 落在了直线的周围并且在平均值的部分点的分布比较均匀,这就说明是符 合正态分布的,显然这组年龄数据不符合正态分布
总结
频数分析(Frequencies ):频数分布表、条图和直方图以及 集中趋势和离散趋势的各种统计量。 描述统计(Descriptives ):描述近似正态分布定量变量的集 中趋势和离散趋势的各种统计量,对变量做标准化转换(Z 转换)。 探索分析(Explore ):未知分布类型数据的统计描述,对 数据的分布形态进行检验,功能强大。
频数分析(Frequencies )
下面我们结合人群的年龄(age)数据学习如何使用SPSS计算统计指 标。
ቤተ መጻሕፍቲ ባይዱ
部分中英文对照:
描述统计(Descriptives )
对于近似正态分布的资料,我们还可以通过Descriptives获取统计指 标。这是一组使用某法多次测定某水样中碳酸钙含量的数据,符从正态分 布,下面我们用Descriptives的方法计算这组数据的统计指标。
中位数
各种分布类型的资料,特别是偏峰分布资料; 分布一端或两端无确切数值的资料; 分布类型不明
百分位数 各种分布类型的资料
离散趋势
指标
应用条件
极差
对资料类型没有要求
四分位数 间距
方差与标 准差
变异系数
各种分布类型的资料,特别是偏峰分布资料
对称分布,特别是正态或近似正态分布 观察指标单位不同时变异程度的比较; 均数相差较大时变异程度的比较
End Thanks
输出结果
探索分析(Explore )
探索分析(Explore )主要可以分为两个部分 1.未知分布类型数据的统计描述 2.对数据的分布形态进行检验
探索分析(Explore )
统计指标 正态性检验
正态性检验
探索分析(Explore )
四分位数间距
探索分析(Explore )
探索分析(Explore )
定量资料统计描述
定量变量
定量变量可以分为两种类型: 1.离散型变量:只能取整数值,例如,一个月中的 手术病人数,一年里的新生儿数。 2.连续型变量:可以取实数轴上的任何数值,例如, 血压,身高,体重等。
统计描述
统计描述是通过绘制统计表、统计图 或计算相应的统计指标来说明资料的分布 规律及其数量特征,是进一步统计推断的 基础。
写出组段
输出结果
输出结果
如果只需获得频数分布图,且对组段与组距没有什么特殊要求,可以通过如下操作 来完成。
输出结果
描述性统计指标
集中趋势:描述定量变量的平均水平 离散趋势:描述定量变量的变异情况
集中趋势
指标
应用条件
算术均数 对称分布,特别是正态或近似正态分布
几何均数 对数正态分布 等比数据资料(如抗体滴度资料)