无机非金属材料导论3章陶瓷
6无机非金属材料学课件-第三章第四节-陶瓷基本特征

无机非金属材料学
小结
总体来说,陶瓷材料的弹性模量与组成相 的种类和分布、气孔率及温度等的关系密 切,而与材料中各相的晶粒大小及表面状 态的关系不大,结构敏感性较小。
无机非金属材料学
➢ 陶瓷材料的机械强度
材料在外力作用下抵抗其破坏的能力。
无机非金属材料学
➢ 陶瓷的强度
陶瓷材料的强度,特别是用作高温结构材料的强度是材 料力学性能的重要表征。
E = E1V1 + E2V2+ 这里Vi代表各相占据的体积分数。 2)复合材料: 通常有 E > E1V1 + E2V2+ 这里Vi代表各相占据的体积分数。
无机非金属材料学
影响陶瓷材料弹性模量的几个因素
3)材料的组成相及显微结构: 随着气孔率的增加,陶瓷的弹性模量急剧下降。
4)弹性模量的数值与温度关系: 随温度的升高,原子间距增大,相互作用力减小,陶瓷 材料的弹性模量值降低, 但对某些材料也有例外,石英等材料随温度升高,弹性 模量值也随之增加。
αl=(dl/l)(1/dT)
l代表线度
➢如果将线度l换成体积V,就得到体膨胀系数
αV=(dV/VdT)
V代表体积
说明:对于各向异性的材料,需要在三个方向上的热膨胀系数 分量进行描述,如单晶;对于立方晶体和各向同性的材料,则 只需要一个量描述热膨胀系数,并且有:
α=3αl
无机非金属材料学
热膨胀
材料的热膨胀系数可正可负,与原子振动有关,亦即原子间排斥能 的变化大于吸引能时,原子间的平均距离增大,晶体体积增加,热 膨胀系数大于0,反之,热膨胀系数小于0.
无机非金属材料学
热应力
➢热应力是指在加热和冷却过程中,材料的热膨胀和收缩受 阻而产生的一种内应力,其本质是材料内部热膨胀不均匀。
无机非金属材料范文

无机非金属材料范文
陶瓷材料是一种由氧化物、氮化物、碳化物和硼化物等无机非金属材
料组成的材料。
它们具有高硬度、高耐磨性、高耐温性和低热膨胀系数等
优点。
陶瓷材料通常用于制造陶瓷器、陶瓷砖、陶瓷瓷砖、陶瓷齿科材料、陶瓷陶瓷产品、电子陶瓷和结构陶瓷等产品。
玻璃材料是由硅酸盐和其他无机氧化物组成的材料,具有透明、透光、非晶态和不导电的特点。
玻璃是一种重要的建筑材料,用于制造窗户、门、玻璃幕墙和玻璃瓶。
玻璃材料也用于制造光学设备、电子器件和光纤等产品。
高分子材料也是一种无机非金属材料,是由高聚物组成的。
它们具有
高韧性、高耐热性和高绝缘性能。
高分子材料广泛用于制造塑料、橡胶、
纤维和胶粘剂等产品。
高分子材料通常用于制造食品包装材料、可降解材料、医疗器械和工业零件等产品。
复合材料是由两种或多种不同类型的材料组成的材料。
它们结合了各
种材料的优点,具有高强度、耐磨性、耐腐蚀性和低重量等优点。
复合材
料广泛应用于航空航天、汽车制造、建筑和体育器材等领域。
常见的复合
材料有碳纤维复合材料、玻璃纤维复合材料和金属基复合材料等。
石料材料是一种由石英、方解石和长石等矿石组成的材料。
它们具有
高硬度、高耐磨性和高耐火性。
石料材料广泛用于建筑、道路、铁路和桥
梁等建筑工程中。
常见的石料材料有花岗岩、大理石、石英石和石灰岩等。
无机非金属材料工学陶瓷

以 Fe2O3计算赤铁矿(Fe2O3),多为黏土带入。
2
以TiO2计算金红石(TiO2),多为黏土带入。
3
剩余的SiO2为石英。
4
二、示性矿物的计算
三、根据矿物组成计算配方
主要是要考虑黏土中的长石、石英。计算黏土含量时应扣除其中的长石、石英,而计算长石、石英时应考虑黏土已经存在的量。
四、由化学组成计算配方
收缩性, 干燥收缩和焙烧收缩;
烧结温度与烧结范围
四、粘土的工艺性质
五、陶瓷中粘土的作用
粘土在陶瓷中起粘结作用。
第二节 石英
单击此处添加文本具体内容
PART.04
性质:以SiO2为主,其他杂质很少。
02
种类:脉石英、石英砂岩、石英岩(变质)、石英砂;
01
一、种类和性质
二、石英的相变
加快干燥;
原料的预处理和精选;(石英预烧、清洗等,注意:书P245,β-石英是错误的)
原料的粉碎;
泥浆的筛分、除铁、搅拌;
三、工艺要点
泥浆的脱水;
陈腐,即将泥料在一定温度、湿度的环境下储存一定时间,使泥料中的水分分布更加均匀,黏土颗粒充分水化和产生离子交换,细菌使有机物分解为腐殖酸,从而提高泥料的可塑性;
3
二、示性矿物的计算
二、示性矿物的计算
以Al2O3的含量总量减去长石中的Al2O3的含量,剩余的Al2O3计算高岭石(Kao:Al2O3·2 SiO2·2H2O)或蒙脱石(Mt:CaO·Al2O3·4 SiO2·nH2O)伊利石(I:K2O·3Al2O3·6 SiO2·2H2O)。
以MgO计算菱镁矿(MgCO3)或滑石(3MgO·4 SiO2· H2O)。
无机非金属材料导论复习

第三章陶瓷1 陶瓷是由粉状原料成型后在高温下作用硬化而成的制品,是多晶、多相的聚集体。
2 分为传统陶瓷和新型陶瓷。
新型陶瓷根据功能分类包括:1力学功能陶瓷(叶片、转子)2热功能陶瓷(高温用坩埚、导弹)3电子功能陶瓷(大容量电容器、红外检测元件)4磁功能陶瓷(记忆运算元件、磁蕊)5光功能陶瓷(窗口材料、胃照相机)6化学功能陶瓷(传感器、催化剂)7放射性功能陶瓷(核燃料、减速剂)8吸声功能陶瓷(吸声板)9生物功能陶瓷(人造骨、生物陶瓷)。
3 陶瓷的制备工艺: 1原料的制备(天然原料,合成原料);2胚料的成形和干燥(可塑成形,注浆成形,压制成形);3烧结或烧成。
烧结方法:粉末在室温下加压成形后再进行烧结的传统方法、热等静压、水热烧结、热挤压烧结、电火花烧结、爆炸烧结、等离子体烧结等。
自蔓延高温合成法:利用金属与硅、硼、碳、氮等相互作用的强烈放热效应,不采取外部加热源,而利用元素内部潜在的化学能将原始粉末在几秒到几十秒的极短时间内转化成化合物或致密烧结体。
优点:不需要高温炉,过程简单,几乎不消耗电能,制得的产品纯净,能获得复杂相和亚稳相。
缺点:不易获得高密度材料,不易严格控制制品的性能,易燃,有毒。
4 陶瓷的典型组织结构:晶相,玻璃相,气相。
晶相是陶瓷的主要组成成分,数量较大,对性能影响较大。
它的结构、数量、形态和分布,决定了陶瓷的主要特点和应用。
玻璃相作用(1)将晶相颗粒粘结起来,填充晶相之间的空隙,提高材料的致密度;(2)降低烧成温度,加速烧成过程;(3)阻止晶体转变,抑制晶体长大;(4)获得一定程度的玻璃特性,如透光性及光泽等。
玻璃相对陶瓷的机械强度、介电性能、耐火性等是不利的,因此不能成为陶瓷的主导组成成分,一般含量为20%-40%.气相是指陶瓷组织内部残留下来未排除的气体,通常以气孔形式出现。
根据气孔含量可将陶瓷分为致密陶瓷、无开孔陶瓷和多孔陶瓷。
除多孔陶瓷外,气孔都是不利的,它降低了陶瓷的强度和导热性能,也常常是造成裂纹的根源。
无机非金属材料工学陶瓷部分复习资料

⽆机⾮⾦属材料⼯学陶瓷部分复习资料陶瓷复习⼀、1、什么是陶瓷:陶瓷的狭义定义—以粘⼟为主要原料,经⾼温烧制的制品。
陶瓷的⼴义定义—经⾼温烧制的⽆机⾮⾦属材料的总称精确定义—⽤天然原料或⼈⼯合成的粉状化合物,经成形和⾼温烧结制成的,由⾦属和⾮⾦属元素构成的多晶固体材料。
2、⽆机⾮⾦属材料:⽆机⾮⾦属材料指某些元素的氧化物、碳化物、氮化物、硼化物、硫系化合物(包括硫化物、硒化物及碲化物)和硅酸盐、钛酸盐、铝酸盐、磷酸盐等含氧酸盐为主要组成的⽆机材料。
3、陶瓷的分类:陶器与瓷器的区别⼆、原料1、粘⼟:粘⼟是⾃然界中硅酸盐岩⽯(主要是长⽯)经过长期风化作⽤⽽形成的⼀种疏松的或呈胶状致密的⼟状或致密块状矿物,是多种微细矿物和杂质的混合体。
特征:⾃然界的粘⼟呈⽩、黄、红、⿊、灰等多种颜⾊,颗粒微细,多数均⼩于2µm,晶体有⽚状、管状、球状及六⾓鳞⽚状等。
将其与⽔拌和能塑成各类形状,⼲后形状不变,且有⼀定机械强度,煅烧后坚硬如⽯。
性质:(1)可塑性:当粘⼟与适量的⽔混练后形成泥团,此泥团在外⼒作⽤下产⽣变形但不开裂,当外⼒去掉以后,仍能保持其形状不变,粘⼟的这种性质称为可塑性。
常⽤“可塑性限度(塑限)”、“液性限度(液限)”、“可塑性指数”、“可塑性指标”和相应含⽔率等参数来表⽰粘⼟可塑性的⼤⼩。
(2)结合性:粘⼟的结合性是指粘⼟能够结合⾮塑性原料⽽形成良好的可塑泥团,并且有⼀定⼲燥强度的能⼒。
粘⼟的结合性由其结合瘠性料的结合⼒的⼤⼩来衡量,⽽结合⼒的⼤⼩⼜与粘⼟矿物的种类、结构等因素有关。
⼀般⽽⾔,可塑性强的粘⼟其结合⼒也⼤。
(3)离⼦交换性:粘⼟颗粒带有电荷,其来源是[SiO4]四⾯体中的Si4+被Al3+取代⽽出现负电荷,为了保持粘⼟颗粒表⾯的电价平衡,粘⼟颗粒在⽔系统中则吸附其他异电荷离⼦。
然⽽,被吸附的离⼦⼜会被其他同性电荷的离⼦置换,发⽣离⼦交换。
(4)触变性:粘⼟泥浆或可塑泥团受到振动或搅拌时,粘度会降低,泥浆的流动性会增加,静置后恢复原状。
材料化学-无机非金属材料(结构)_OK

硅酸盐的基本结构单元为 (SiO4)4- 四面体。其中, 四面体的顶角上有四个O2-,四面体的中间间隙 位置上有一个Si4+。将四面体连接在一起的力包 含离子键和共价键;因此,四面体的结合很牢固。 但是,不论是离子键或共价键机制,每个四面体 的氧原子外层只有7个电子而不是8个。
14
(b)刚玉(Al2O3)结构
• 这种结构的氧离子具有密排六方的排列, 阳离子占据八面体间隙的三分之二。具有 这种结构的氧化物有Al2O3、Fe2O3、Cr2O3、 Ti2O3、V2O3、Ga2O3、Rh2O3等。
15
3、硅酸盐化合物
• 许多陶瓷材料都包含硅酸盐,一方面是因为硅酸 盐丰富和便宜,另一方面则是因为它们具有在工 程上有用的某些独特性能。
• 这类结构原子排列比较复杂,形成的陶瓷 材料很硬很脆。属于闪锌矿型结构的陶瓷 材料有ZnS、BeO、SiC等;属于非立方型 结构的陶瓷材料有FeS、MnTe、ZnO、 NiAs等。
13
(2) p型陶瓷晶体
(a)萤石(CaF2)型结构与逆萤石 型结构
• 这类结构中金属原子具有面心立方点阵,非金 属原子占据所有的四面体间隙位置。萤石结构 的氧化物有CeO2、PrO2、UO2、ZrO2、NpO2、 PuO2、AmO2等。它们的特点是金属离子半径 大于氧离子半径,所以金属离子呈面心立方或 密排六方结构,而小的氧离子则填充间隙。
4
无机非金属材料的基本属性
• 化学健主要是离子键、共价健以及它们的混合 键;
• 硬而脆、韧性低、抗压不抗拉、对缺陷敏感; • 熔点高,具有优良的耐高温和化学稳定性; • 一般自由电子数目少、导热性和导电性较小; • 耐化学腐蚀性好; • 耐磨损。
材料学导论-陶瓷

2020/8/12
7
古代各种陶制品
2020/8/12
8
各种瓷器
2020/8/12
9
传统的陶瓷如日用陶瓷、建筑陶瓷等是用粘土类及 其它天然矿物原料经粉碎加工、成型、烧成等过程 而得的器皿。这类陶瓷可称为传统陶瓷。
随着生产和科学技术的发展,对陶瓷制品的性能与 应用提出了新的要求,因而制成了许多新品种,它 们的生产过程虽然还是原料处理、成型、烧成等这 种传统的方式,但采用的原料已扩大到高度精选的 天然原料或人工合成原料,使用高度可控的生产工 艺,因而往往具有一些特殊的性能,相对于传统陶 瓷,这类陶瓷制品称为特种陶瓷。
2020/8/12
32
(1)原料精选
• 普通陶瓷中必不可少的三组分是石英、粘土和长石。
① 石英 石英具有耐热、抗蚀、高硬度等性质,在 普通陶瓷中,石英构成了陶瓷制品的骨架,赋予制 品耐热、耐蚀等特性。
石英的粘性很低,属非可塑性原料,无法做成制品 的形状,为了使其具有成型性,需掺入粘土。
可塑性:在陶瓷工业中,可塑性是指泥料在外力作用下能被塑造成各种形 状,在外力除去后,仍能保持这种形状的性能。
26
(3)介电损耗
当电介质在电场作用下,单位时间内因发热而消耗的能 量称为电介质的损耗功率或简称为介质损耗,用损耗角 正切tan表示。
介质损耗是所有应用于交流电场中电介质的重要指标之 一。介质损耗不但消耗了电能,而且由于温度上升可能 影响元器件的正常工作;介质损耗严重时,甚至会引起 介质的过热而破坏绝缘性质。
(4)硬度
陶瓷、矿物材料常用莫氏硬度和维氏硬度来衡量材料抵抗 破坏的能力。莫氏硬度是以陶瓷、矿物之间相互刻划能否 产生划痕来确定,只能表示材料硬度的相对大小。一般陶 瓷的硬度较大。
无机非金属材料导论

1、陶瓷的烧结方法:烧结方法有多种,除粉末在室温下加压成形后再进行烧结的传统方法外,还有热等静压、水热烧结、热挤压烧结、电火花烧结、爆炸烧结、等离子体烧结、自蔓延高温合成等方法。
这些方法各有优缺点。
如自蔓延高温合成是利用金属与硅、硼、碳、氮等互相作用的强烈放热效应,不采用外部加热源,而利用元素内部潜在的化学能将原始粉末在几秒到几十秒的极短时间内转化成化合物或致密烧结体。
这种方法的主要优点是:不需要高温炉,过程简单,几乎不消耗电能,制得的产品纯净,能获得复杂相和亚稳相等。
主要缺点是:不易获得高密度材料,不易严格控制制品性能,所用原料往往易燃及有毒,存在一定的安全隐患。
2、陶瓷的性能:(力学性能)刚度、硬度、强度、塑性、韧性或脆性;(热学性能)热膨胀、导热性、热稳定性;(其他性能)导电性、耐火性及化学稳定性。
归纳一下,陶瓷材料的性能特点是:具有不可燃烧性、高耐热性、高化学稳定性、高的硬度和良好的抗压能力,但脆性很高,热稳定性差,抗拉强度较差。
3、玻璃的广义定义:是具有转变温度Tg的非晶态材料,非晶态材料是指其原子排列在近程有序而远程无序,原子排列不具有平移周期性关系;当温度连续升高(或降低)时,在某个温度范围内发生明显结构变化,导致热膨胀系数、比热容等性质发生突变。
非晶态材料包括无机玻璃、金属玻璃、有机玻璃等。
玻璃的通性:各向同性、介稳性、无固定熔点、物理化学性质的渐变性4、玻璃的形成方法:熔体冷却法(最常用)、气相冷却技术、固态方法、溶胶—凝胶法5、硅酸盐水泥的概念:凡以适当成分的生料烧至部分熔融得到的以硅酸钙为主要成分的硅酸盐水泥熟料,加以适量的石膏,磨细制成的水硬性胶凝材料,称为硅酸盐水泥,也称为纯熟料水泥,又名波特兰水泥。
6、水泥的制备工艺:“两磨一烧”,即生料的配制与磨细。
将生料煅烧使之部分熔融形成以硅酸钙为主要成分的熟料矿物;将熟料与适量的石膏或适量混合材料共同磨细为水泥。
7、硅酸盐水泥的技术性能:细度、需水量、泌水性、凝结时间、强度与标号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)天然原料-粘土类原料
粘土(clay)是一种颜色多样、细分散的多种含水铝硅酸盐矿物的混合 体,其矿物粒径一般小于2 µm,主要由粘土矿物以及其它一些杂质矿物组 成。
(一)粘土的成因:
1. 风化残积型
2. 热液蚀变型 3. 沉积型黏土矿床
(三)粘土在陶瓷生产中的作用
1.粘土的可塑性是陶瓷坯泥赖以成型的基础。 2.粘土使注浆泥料与釉料具有悬浮性与稳定性。 3.粘土一般呈细分散颗粒,同时具有结合性。 4.粘土是陶瓷坯体烧结时的主体。 5.粘土是形成陶器主体结构和瓷器中莫来石晶体 的主要来源。
(1)天然原料-石英类原料
(一)石英矿石的类型
(二)粘土的组成
粘土的性能取决于粘土的组成,包括粘土的矿物组成、化学组 成和颗粒组成。
1、粘土的化学组成(key point)
主要化学成分为SiO2、A12O3和结晶水(H2O)。 含有少量的 碱金属氧化物K2O、Na2O, 碱土金属氧化物CaO、MgO, 以及着色氧化物Fe2O3、TiO2等。
风化残积型粘土(一次粘土)矿床一般SiO2含量高, 而A12O3含量低。
二氧化硅(SiO2)在地壳中的丰度约为60%。含二氧化硅的 矿物种类很多,一部分以硅酸盐化合物的状态存在,构成各种矿 物、岩石。另一部分则以独立状态存在,成为单独的矿物实体, 其中结晶态二氧化硅统称为 石英。由于经历的地质作用及成矿条 件不同,石英呈现多种状态,并有不同的纯度。
a.水晶 b.脉石英 c.砂岩 d.石英岩 e.石英砂
(5) H2O、有机质:可提高可塑性,但收缩大。
2.粘土的矿物组成 粘土很少由单一矿物组成,而是多种微细矿物的混合体。
粘土矿物主要为高岭石类(包括高岭石、多水高岭石等)、蒙脱石类 (包括蒙脱石、叶蜡石等)和伊利石类(也称水云母)等等。
高岭石
叶腊石
伊利石
a.高岭石类(Kaolinite) 高岭石族矿物包括高岭石、地开石、珍珠陶土和多水高岭石等。高岭石
钛酸钡、氧化锌、氧化锡、氧化钒、氧化锆等过滤金 属元素氧化物系材料等 钇铝石榴石激光材料,氧化铝、氧化钇透明材料和石 英系或多组分玻璃的光导纤维等 高温氧化物、碳化物、氮化物及硼化物等难熔化合物
碳化钛、人造金刚石和立方氮化硼等
铝酸锂、钽酸锂、砷化镓、氟金云母等
长石质齿材、氧化铝、磷酸盐骨材和酶的载体材料等
新型陶瓷
品种 绝缘材料
铁电和压电材料 磁性材料
导体陶瓷 半导体陶瓷
光学材料
高温结构陶瓷 超硬材料 人工晶体 生物陶瓷 无机复合材料
品种示例
氧化铝、氧化铍、滑石、镁橄榄石质陶瓷、石英玻璃 和微晶玻璃等
钛酸钡系、锆钛酸铅系材料等
锰—锌、镍—锌、锰—镁、锂—锰等铁氧体、磁记录 和磁泡材料等 钠、锂、氧离子的快离子导体和碳化硅等
玻璃幕墙 导电玻璃
2、按性能和用途分类 可将陶瓷材料分为结构陶
瓷和功能陶瓷两类。陶瓷零 件3、按习惯分 (或原料) 可将陶瓷材料分为传统陶瓷和新型陶瓷两类。 A.传统陶瓷 又称为普通陶瓷,主要是指硅酸盐陶瓷材料,
因其中占主导地位的化学组成氧化硅是以黏土 矿物原料引入的,所以也称为黏土陶瓷。 B.新型陶瓷 又称为特种陶瓷,指一些具有特殊物理或化学 性能和特殊功能的陶瓷。
是粘土中常见的粘土矿物,主要由高岭石组成的粘土称为高岭土。
b.蒙脱石类 蒙脱石(Montmorillonite)也是一种常见的粘土矿物,以蒙脱石为主要
组成矿物的粘土称为膨润土(bentonite),一般呈白色、灰白色、粉红色 或淡黄色,被杂质污染时呈现其它颜色。
c .伊利石类 伊利石是白云母经强烈的化学风化作用而转变为蒙脱石或高岭石过程中的 中间产物。 组成成分与白云母相似,但伊利石比正常的白云母多SiO2和H2O而少K2O。 与高岭石比较,伊利石含K2O较多而含H2O较少。
3.3 传统陶瓷材料 一、不致密陶瓷材料 二、致密陶瓷材料 三、传统陶瓷的用途 3.4 新型陶瓷 一、氧化物陶瓷 二、非氧化物陶瓷 三、氮化物陶瓷
3.1 陶瓷的分类及制备工艺
一、陶瓷材料的分类 1、按化学成分分类 可将陶瓷材料分为氧化物陶瓷、碳化物陶瓷、氮化物陶
瓷及其它化合物陶瓷。
化学组成在一定程度上反映其工艺性质。
(1)SiO2 :若以石英状态存在的SiO2多时,粘土可塑性降低,但是干 燥后烧成收缩小。
(2)Al2O3 :含量多,耐火度增高,难烧结。 (3)Fe2O3<1% ,TiO2 <0.5% :瓷制品呈白色;含量过高,颜色变深, 还影响电绝缘性。
(4)CaO、MgO、K2O、Na2O:降低烧结温度,缩小烧结范围。
陶瓷基、金属基、碳素基的复合材料
传统陶瓷烧制工艺:
3.1.2 陶瓷的制备工艺
陶瓷的制备工艺比较复杂,但基本工艺包括: 原材料的制备、坯料的成型、坯料的干燥和制 品的烧成等4大步骤。
粉末制备
预处理
成型
烧结
热成型
加工
成品
1.原料的制备
传统的陶瓷所用的原料大部分为天然原料。开采后, 一般要经过筛选、风选、淘洗、研磨以及磁选等, 分离出适当颗粒度的所需矿物组分。
第三章 陶瓷
陶瓷是由粉状原料成形后在高温作用下硬化而 形成的制品,是多晶、多相的聚集体。
陶瓷材料是无机非金属材料中的一个重要部分, 具有耐高温、耐腐蚀、高强度、多功能等性能。
随着现代科技的发展,出现了许多性能优良的新型 陶瓷。
3.1 陶瓷的分类及制备工艺 一、陶瓷材料的分类 二、陶瓷材料的制备工艺 3.2 陶瓷的组织结构与性能 一、陶瓷的组织结构 二、陶瓷的性能
传统陶瓷
品种 水泥等胶凝材料 陶瓷 耐火材料 玻璃 搪瓷 铸石 研磨材料 多孔材料 碳素材料 非金属矿
品种示例 硅酸盐水泥、铝酸盐水泥、石灰、石膏等 粘土质、长石质、滑石质和骨灰质陶瓷等 硅质、硅酸铝质、高铝质、镁质、铬镁质等 硅酸盐 钢片、铸铁、铝和铜胎等 辉绿岩、玄武岩、铸石等 氧化锆、氧化铝、碳化硅等 硅藻土、蛭石、沸石、多孔硅酸盐和硅酸铝等 石墨、焦炭和各种碳素制品等 粘土、石棉、石膏、云母、大理石、水晶和金刚石 等