线性规划与单纯形法

合集下载

单纯形法与线性规划问题

单纯形法与线性规划问题

单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。

这种问题在工业、商业、农业和社会等领域有着广泛的应用。

在解决线性规划问题时,单纯形法是一种经典和常用的算法。

本文将介绍单纯形法和其在线性规划问题中的应用。

一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。

单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。

单纯形法的步骤如下:1. 构造首行,确定初始基向量。

2. 选择离目标函数最远并且为正的变量,称为入基变量。

3. 选择离约束最近的基变量,称为出基变量。

4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。

5. 重复步骤 2-4 直至无法选择入基变量为止。

6. 找到目标函数的最优解。

二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。

三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。

标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。

第二章线性规划及单纯形法总结

第二章线性规划及单纯形法总结

第一章
工厂需要的原棉存放在三个仓库中,现将原棉运往工 厂以满足工厂生产的需求。已知原棉运到各个工厂的单位 运费如表所示。问使总运费最小的运输方案?
仓库\工厂
1 2 3 需求
1
2 2 3 40
2
1 2 4 15
3
3 4 2 35
库存
50 30 10
2.线性规划数学模型
解:设xij为i 仓库运到 j工厂的原棉数量(i =1,2,3
1.线性规划介绍
第一章
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
第一章
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
第一章
j =1,2,3)
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33 x11 +x12+x13 x21+x22+x23 x31+x32+x33 50 30 10 40
st.
x11 +x21+x31 =
x12 +x22+x32 =
x13 +x23+x33 = xij 0
15
35
2.线性规划数学模型
第一章
练习4 连续投资10万元 A:从第1年到第4年每年初投资,次年末回收本利1.15; B:第3年初投资,到第5年末回收本利1.25,最大投资4万元; C:第2年初投资,到第5年末回收本利1.40,最大投资3万元; D:每年初投资,每年末回收本利1.11。 求:使5年末总资本最大的投资方案。 分析: A 1 x1A 2 x2A x2C x1D x2D x3D x4D x5D 3 x3A 4 x4A 5

第一章 线性规划及单纯形法

第一章 线性规划及单纯形法
37
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;

线性规划与单纯形法

线性规划与单纯形法

线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。

而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。

本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。

一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。

其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。

目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。

二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。

其基本思想是通过逐步迭代改进当前解,直至达到最优解。

三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。

2. 初始化:确定初始可行解。

通常使用人工变量法来获得一个初始可行解。

3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。

否则,进入下一步。

4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。

5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。

若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。

四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。

第1章线性规划及单纯形法

第1章线性规划及单纯形法

表1-17
原料 甲


A ≥60% ≥3%
B C ≤20% ≤50% ≤60 加工费 0.50 0.40 0.30 (元/kg) 售价 3.4 2.85 2.25 (元/kg)
原料成本 每月限 (元/kg) 制用量
(kg)
2.00 2000
1.50 2500
1.00 1200
(二) 产品计划问题
Min z= 13x1 +9x2 +10x3 +11x4 +12x5 +8x6
s.t.
x1 +x4 =300
x2 +x5 =500
x3 +x6 =400
0.4x1 +1.1x2
+x3 ≤700
0.5x4 +1.2x5 +1.3x6 ≤800
xj ≥0 (j=1, 2, …, 6)
例3:某昼夜服务的公共交通系统每天各时间段 ( 每4小时为一个时间段)所需的值班人数如下表, 这些值班人员在某一时段开始上班后要连续工作8个 小时 ( 包括轮流用膳时间在内),问该公交系统至
少需多少名工作人员才能满足值班的需要。
班次
时间段
所需人数
1
6:00—10:00
60
2
10:00—14:00
70
3
14:00—18:00
60
4
18:00—22:00
50
5
22:00—2:00
20
6
2:00—6:00
30
设xi为第i个时段开始上班的人员数,由此可得数 学模型如下:
Min z= x1 +x2
+x3 +x4 +x5 +x6

运筹学线性规划与单纯形法

运筹学线性规划与单纯形法

整理课件
16
Max Z= x1-2x2+3x3' -3x3" + 0x4 +0x5 s.t. x1+x2+ x3' - x3" +x4 =7
x1-x2+ x3' - x3" -x5=2
-3x1+x2+2x3' -2x3" =5 x1, x2,x3',x3", x4,x5 0
第一节小结:建立模型;三个组成要素;四种形式; 化为标准形(4个条件5点)
.
9x1+4x2 ≤ 360
90 80 60 40 20
4x1+5x2 ≤200
B C
HI G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
整理课件
30
二、解的几种可能情况
1.唯一最优解。目标函数直线与凸多边形只有 一个切点; 2.无穷多最优解,目标函数图形与某个约束条 件平行。 3.无界解(无最优解)----可行域无界。一般是 漏了一些约束条件。 4.无可行解----可行域为空。

Ⅱ 计划期可用能力
2
2
12
1
2
8
4
0
16
0
4
12
2
3
问:应如何安排生产计划,才能使总利润最大?
整理课件
3
解:用数学的语言进行描述:
1.决策变量:设产品I、II的产量分别为 x1、x2 2.目标函数:问题要求获取利润最大,该公司获取
利润为2 x1 + 3 x2,令z = 2 x1 + 3 x2,则max z = 2 x1 + 3 x2, max z 是该公司获取利润的目标 值,它是变量x1、 x2的函数,称为目标函数。

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

第一章线性规划及单纯形法

第一章线性规划及单纯形法

第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。

②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3步 --表示约束条件
4x1+3x2 120(木工工时限制) 2x1+x2 50 (油漆工工时限制) x1,x2≥0 (变量取非负值限制)
该计划的数学模型 max Z=50x1+30x2 4x1+3x2 120 2x1+ x2 50 x1, x2 0
s.t.
线性函数 +
线性等式 线性不等式
如:10X1+12X2≥18 令X4=10X1+12X2-18则有10X1+12X2-X4 =18
为了使添加松驰变量不影响原来的目标,添加松驰变量在目标函数中的系数为0。
(3) 若约束条件右面的某一常数项 bi<0, 这时只要在 bi 相对应的约束方程两边乘 1。
(4) 若变量 xj 无非负限制 引进两个非负变量 xj’ xj” 0 令 xj= xj’ xj ” (可正可负)
第1工厂投污水的水: 质 (2要x1)求 2 500 1000
第2工厂投污水的水: 质要求
[0.8(1000
数学模型
目标函数 约束条件
min z 1000 x1 800 x2 x1 1
0.8 x1 x2 1.6 x1 2 x2 1.4 x1 , x2 0
• 这两个工厂都需各自处理一部分工业污水。第一化工厂处理工业污水的成本是1000元/万立方米。第二 化工厂处理工业污水的成本是800元/万立方米。
• 现在要问在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂总的处理工业污水费 用最小。
建模型之前的分析和计算
设: 第一化工厂每天处理工业污水量为x1万立方米, 第二化工厂每天处理工业污水量为x2万立方米
a11 a12 …. a1n A = a21 a22 …. a2n
……………………………
am1 am2 …. amn
b1 b = b2
……….
bm
c1 c2 C=
… cn
x1 x2 X=
… xn
0 0 0= ... 0
线性规划问题的标准形式 max Z = c1x1+c2x2+…..+cnxn s.t. a11x1+a12x2+….+a1nxn = b1
任何形式的线性规划总可以化成标准型
例1.3 将下列问题化成标准型:
min Z = x1+ 2x2 3x3 s.t. x1+ x2 + x3 7
x1 x2 + x3 2 3x1 + x2 + 2x3 = 5 x1 0, x2 0, x3 无限制
线性规划
例1.2 简化的环境保护问题 靠近某河流有两个化工厂(见下图),流经第一化工厂的河流流量为每天500万立方米,在两个工厂之
间有一条流量为每天200万立方米的支流。
• 第一化工厂每天排放含有某种有害物质的工业污水2万立方米,第二化工厂每天排放这种工业污水1.4 万立方米。从第一化工厂排出的工业污水流到第二化工厂以前,有20%可自然净化。根据环保要求, 河流中工业污水的含量应不大于0.2%。
线性规划与单纯形法
1、问题的提出
例1.1 生产计划问题(资源利用问题) 某家具厂生产桌子和椅子两种家具。 桌子售价50元/个,椅子销售价格30元/个。 需要木工和油漆工两种工种。 生产一个桌子需要木工4小时,油漆工2小时。 生产一个椅子需要木工3小时,油漆工1小时。 该厂每个月可用木工工时为120小时, 油漆工工时为50小时。 问如何组织生产才能使每月的销售收入最大?
注意: 因为 min Z = max(Z ) 所以变换后的最优解不变,最优值变号。
(2) 若约束条件是不等式 1)若约束条件是“ ” 不等式, 则不等式左边 “加上” 非负的松驰变量; 如:2X1+2X2≤12 令X3=12-2X1-2X2 则有2X1+2X2+X3=12
2)若约束条件是“ ” 不等式, 则不等式左边 “减去” 非负的松驰变量。
a21x1+a22x2+….+a2nxn = b2 …………………. am1x1+am2x2+….+amnxn = bm x1, x2, …., xn 0
其中:bi 0, i=1, 2,…., m.
将一般线性规划化成标准型
四点要求: ➢ 求max ➢ 等式约束 ➢ bi 0 ➢ xi 0
(1) 若目标函数是求最小值: min Z = CTX 令 Z’ = Z, 则化成 max Z’= CTX
线性规模解决的问题
• 给定一定数量的人力、物力、财力等资源,研究如何充分利用,以发挥其最大效果 • 已给定计划任务,研究如何统筹安排,用最少的人力、物力、财力去完成
2、线性规划问题的数学模型 线性规划数学模型三要素: 决策变量、目标函数、约束条件
➢ 每一个线性规划问题都有一组决策变量 (x1, x2, ……, xn) , 这组决策变量的值就代表 一个具体方案。
• 第1步 -确定决策变量
•设
x 1 ——桌子的产量
——椅子的产量
x——利润 2
z
是问题中要确定的未知量,表明规划中的用 数量表示的方案、措施,可由决策者决定和 控制。
x1
x2
第2步 --定义目标函数 Max Z = 50 x1 + 30 x2
第2步 --定义目标函数 Max Z = 50 x1 + 30 x2
➢ 有一个要达到的目标,是决策变量的线性函数,实现最大化或最小化。
➢ 有使用各种资源的约束条件,用等式或不等式表示。
线性规划模型的表示形式 • 一般形式 • 简写形式 • 矩阵形式 • 标准形式 • 将一般线性规划化成标准形
线性规划问题的一般形式
max(min) Z = c1x1+c2x2+…..+cnxn a11x1+a12x2+….+a1nxn (=, )b1 a21x1+a22x2+….+a2nxn (=, )b2 …………………. am1x1+am2x2+….+amnxn (=, )bm
s.t. x1, x2, …., xn 0
线性规划问题的简写形式
n
max Z c j x j j 1
n
a ij x j b i j1
x
j
0
i 1,2,... m j 1,2,..., n
线性规划的矩阵形式
max Z = CTX s.t. AX=b X0
C—价值向量 b—资源向量 X—决策变量向量
相关文档
最新文档