溅射薄膜制备技术

合集下载

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜材料磁控溅射法制备薄膜材料的步骤如下:1.靶材选择:选择可以溅射制备薄膜的材料作为溅射靶材。

这些材料通常是单质金属、合金或化合物,如金、银、铜、铝、氧化物等。

2.基底处理:将制备薄膜的基底进行清洗和表面处理,以保证薄膜的附着力和质量。

3.靶材安装:将靶材安装在溅射器的靶架上。

4.真空抽气:将溅射室进行抽气,以建立良好的真空环境。

这可以防止杂质、气体和水分对薄膜质量的影响。

5.溅射气体调节:调节溅射气体(通常是氩气)的流量和压力,以维持合适的工作气氛。

6.加热基底:通过加热基底,可以提高薄膜附着力和晶体质量。

7.确定溅射条件:根据需要制备的薄膜材料,调节溅射功率、工作气氛和溅射时间等参数,以保持溅射过程的稳定和合适的溅射速率。

8.溅射过程:通过加大靶架上的电流,激发高能粒子与靶材相互作用,使靶材表面的原子蒸发并沉积在基底上。

9.薄膜测量:制备完成后,进行薄膜的物理、化学性质的测试和表征,如薄膜的厚度、表面形貌、晶体结构、成分等。

磁控溅射法制备薄膜材料具有以下优点:1.良好的控制性:可以通过调节溅射参数(如功率、压力等)来控制薄膜的结构和性质。

2.高纯度材料:由于溅射过程中没有反应,制备的薄膜材料具有高度的化学纯度。

3.多种材料选择:不仅可以制备金属薄膜,还可以制备合金、氧化物、硅等其他材料的薄膜。

4.优异的附着性:磁控溅射法制备的薄膜与基底之间具有较好的附着性,可以在多种基底上制备。

5.溅射速率高:与其他制备薄膜的方法相比,磁控溅射的溅射速率较高,制备时间较短。

磁控溅射法制备薄膜材料的应用非常广泛。

例如,浮法玻璃制备中使用的氧化物和金属薄膜、电子器件制造中的金属和半导体薄膜、太阳能电池中的透明导电膜、光学镀膜中的金属和二氧化硅薄膜等。

此外,磁控溅射法还可以用于制备多层薄膜、纳米结构薄膜以及复合薄膜等特殊结构的材料。

总结起来,实验磁控溅射法制备薄膜材料是一种简便、可控性强且应用广泛的方法。

磁控溅射薄膜制备技术方法对比

磁控溅射薄膜制备技术方法对比

磁控溅射薄膜制备技术方法对比磁控溅射薄膜制备技术是一种常用于制备各种薄膜的方法,广泛应用于电子、光学、材料等领域。

在磁控溅射薄膜制备技术中,有多种不同的方法可以选择,每种方法都有其特点和适用范围。

本文将对常见的几种磁控溅射薄膜制备技术进行比较,以帮助读者选择最适合自己需求的方法。

1. 直流磁控溅射(DC-Sputtering)直流磁控溅射是最常见的磁控溅射薄膜制备技术之一。

在直流磁控溅射中,使用直流电源将功率加到靶材上,使靶材表面形成等离子体,然后将目标材料通过离子碰撞浸镀到基底上。

这种方法简单、成本较低,适用于制备一般性能要求的薄膜,但由于溅射粒子能量较低,无法制备高密度、高结晶度的薄膜。

2. 射频磁控溅射(RF-Sputtering)射频磁控溅射利用射频电源产生高频电场,在磁场的控制下,使靶材表面形成等离子体,并通过离子碰撞将薄膜材料沉积在基底上。

与直流磁控溅射相比,射频磁控溅射能够加速溅射粒子,使其具有更高的能量和速度,从而制备出更高质量的薄膜。

此外,射频磁控溅射还可以实现多种材料的共溅射,用于制备复合薄膜。

3. 高功率脉冲磁控溅射(HPPS)高功率脉冲磁控溅射是一种利用高功率脉冲源产生脉冲电流的溅射技术。

与传统的直流或射频溅射相比,HPPS具有更高的功率密度和更短的脉冲宽度。

这种溅射技术可以在非常短的时间内提供巨大的能量,使得溅射过程更高效,并且能够在更宽的条件下实现薄膜的沉积,例如沉积高熔点材料或快速沉积薄膜。

然而,该技术成本较高,且对设备要求较高。

4. 磁控溅射离子束沉积(IBAD)磁控溅射离子束沉积是利用磁场和离子束技术结合的一种溅射技术。

在这种方法中,离子束进行溅射并沿着特定方向沉积到基底上,形成具有优异晶体结构和较高致密度的薄膜。

通过调节磁场和离子束参数,可以实现对薄膜成分和微观结构的精确控制。

然而,磁控溅射离子束沉积设备复杂,投资成本高。

综上所述,磁控溅射薄膜制备技术有不同的方法可供选择。

薄膜的制备及其特性测试

薄膜的制备及其特性测试

图1 双靶反应磁控溅射原理图 如图,双靶法同时安装两块靶材互为阴阳极进行轮回溅射镀膜 如图,
1.4、射频反应磁控溅射 1.4、
在一定气压下,在阴阳极之间施加交流电压,当其频率 增高到射频频率时即可产生稳定的射频辉光放电。射频辉光 放电在辉光放电空间中电子震荡足以产生电离碰撞的能量, 所以减小了放电对二次电子的依赖,并且能有效降低击穿电 压。射频电压可以穿过任何种类的阻抗,所以电极就不再要 求是导电体,可以溅射任何材料,因此射频辉光放电广泛用 于介质的溅射。频率在5~30MHz都称为射频频率。
透光率是透明薄膜的一项非常重要的光学性能指标, 透光率是透明薄膜的一项非常重要的光学性能指标,透光 率是指以透过材料的光通量与入射的光通量之比的百分数表示, 率是指以透过材料的光通量与入射的光通量之比的百分数表示,在 测试中采用相对测量原理,将通过透明薄膜的光通量记为T2 T2, 测试中采用相对测量原理,将通过透明薄膜的光通量记为T2,在没 有放入透明薄膜的光通量记为T1 那么薄膜的透光率为: T1, 有放入透明薄膜的光通量记为T1,那么薄膜的透光率为: Tt =T2/T1⊆ 其中,T1,T2均为测量相对值 均为测量相对值) =T2/T1⊆100% (其中,T1,T2均为测量相对值) 一般用来测量透过率的仪器有透过率雾度测试仪和分光光 度计法, 度计法,其原理图分别如下
1.5、化学气相沉积(CVD)法 (CVD) 1.5、化学气相沉积(CVD)法
化学气相沉积是一种化学气相生长法,简称CVD(Chemical V apor Deposition)技术。这种技术是把含有构成薄膜元素的一种 或几种化合物质气体供给基片,利用加热等离子体、紫外光乃至 激光等能源,借助气体在基片表面的化学反应(热分解或化学合 成)生成要求的薄膜。例如下图是利用化学气相沉淀法制备ITO的 原理结构图

磁控溅射法制备薄膜材料实验报告

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料一、实验目的1、详细掌握磁控溅射制备薄膜的原理和实验程序;2、制备出一种金属膜,如金属铜膜;3、测量制备金属膜的电学性能和光学性能;4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。

二、实验仪器磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。

三、实验原理1、磁控溅射镀膜原理(1)辉光放电溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。

辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。

图 5-1 气体直流辉光放电的形成当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。

随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。

一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。

进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。

当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。

随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。

(2)溅射通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。

氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。

3 薄膜制备技术(PVD)(溅射)

3   薄膜制备技术(PVD)(溅射)

直流溅射的基本原理:
在对系统抽真空后,充入一定压力的惰性气体,如氩气。在正负电极 间外加电压的作用下,电极间的气体原子将被大量电离,产生氩离 子和可以独立运动的电子,电子在电场作用下飞向阳极,氩离子则 在电场作用下加速飞向阴极—靶材料,高速撞击靶材料,使大量的 靶材料表面原子获得相当高的能量而脱离靶材料的束缚飞向衬底。
射频溅射装臵示意图
射频电场对于靶材的自偏压效应: 由于电子的运动速度比离子的速度大得多,因而相对于等离子体来说,等离 子体近旁的任何部位都处于负电位。 设想一个电极上开始并没有任何电荷积累。在射频电压的驱动下,它既可作 为阳极接受电子,又可作为阴极接受离子。在一个正半周期中,电极将接受大 量电子,并使其自身带有负电荷。在紧接着的负半周期中,它又将接受少量运 动速度较慢的离子,使其所带负电荷被中和一部分。经过这样几个周期后,电 极上将带有一定数量的负电荷而对等离子体呈现一定的负电位,此负电位对电 子产生排斥作用。 设等离子电位为Vp(为正值),则接地的真空室(包含衬底)电极(电位为 0)对等离子的电位差为-Vp,设靶电极的电位为Vc(是一个负值),则靶电 极相对于等离子体的电位差为Vc-Vp。 |Vc-Vp|幅值要远大于| -Vp|。因此,这 一较大的电位差使靶电极实际上处在一个负偏压之下,它驱使等离子体在加速 后撞击靶电极,从而对靶材形成持续的溅射。
.DISTANCE(Torr-cm)
辉光放电的巴邢曲线
等离子体鞘层
辉光放电等离子体中电离粒子的密度和平均能量均较低, 而放电的电压则较高,此时质量较大的离子、中性原子和 原子团的能量远远小于质量极小的电子的能量,这是因为 电子由于质量小极易在电场中加速而获得能量。 不同粒子还具有不同的平均速度
电子速度:9.5*105ms-1, Ar离子和Ar原子:5*102ms-1

薄膜磁控溅射实验报告(3篇)

薄膜磁控溅射实验报告(3篇)

第1篇一、实验目的本次实验旨在通过磁控溅射技术制备不同材料薄膜,研究其制备过程中的工艺参数对薄膜质量的影响,并对薄膜的表面形貌、晶体结构、成分及性能进行分析。

二、实验原理磁控溅射技术是一种物理气相沉积方法,通过将靶材加热至一定温度,使其表面产生自由电子,然后在电场的作用下,自由电子与气体分子发生碰撞,产生等离子体,等离子体中的离子和电子被加速并轰击靶材表面,使靶材表面原子蒸发并沉积在衬底上形成薄膜。

三、实验设备与材料1. 实验设备:- 磁控溅射系统- 扫描电子显微镜(SEM)- X射线衍射仪(XRD)- X射线光电子能谱仪(XPS)- 红外光谱仪(IR)- 薄膜厚度测量仪2. 实验材料:- 靶材:Al、TiO2、ZnO等- 衬底:玻璃、硅等- 氩气、氮气等惰性气体四、实验步骤1. 清洗衬底:使用丙酮、乙醇、蒸馏水等清洗剂对衬底进行清洗,并在烘箱中干燥。

2. 装置准备:将靶材安装在磁控溅射系统上,设置靶材与衬底的距离、溅射气压、溅射时间等参数。

3. 磁控溅射:启动磁控溅射系统,进行溅射实验,制备薄膜。

4. 薄膜性能测试:使用SEM、XRD、XPS、IR等设备对薄膜的表面形貌、晶体结构、成分及性能进行分析。

五、实验结果与分析1. 薄膜表面形貌:SEM结果表明,Al、TiO2、ZnO等薄膜表面均匀,无明显缺陷。

2. 晶体结构:XRD分析表明,薄膜具有良好的晶体结构,晶粒尺寸较小。

3. 成分分析:XPS结果表明,薄膜中各元素含量符合预期。

4. 薄膜性能:- 硬度:Al、TiO2、ZnO等薄膜的硬度较高,具有良好的耐磨性能。

- 导电性:Al薄膜具有良好的导电性,适用于电子器件。

- 介电性能:TiO2、ZnO等薄膜具有良好的介电性能,适用于电容器等器件。

六、实验讨论1. 溅射气压对薄膜质量的影响:溅射气压越高,薄膜密度越大,晶粒尺寸越小,但溅射气压过高会导致薄膜表面出现缺陷。

2. 溅射时间对薄膜质量的影响:溅射时间越长,薄膜厚度越大,但溅射时间过长会导致薄膜内部应力增大,影响薄膜性能。

rpd溅射原理

rpd溅射原理

rpd溅射原理RPD溅射原理引言:RPD溅射(Reactive Pulsed Deposition)是一种薄膜制备技术,通过高能量离子束轰击靶材表面,使靶材表面原子释放出来并沉积在基底上形成薄膜。

本文将介绍RPD溅射原理及其应用。

一、RPD溅射原理1. 离子束轰击RPD溅射中,使用离子束轰击靶材表面。

离子束是由离子源产生的,通过加速器加速到一定能量后轰击靶材表面。

离子束的能量决定了靶材表面原子的释放程度。

2. 靶材原子释放当离子束轰击靶材表面时,靶材表面原子会受到离子束的冲击而释放出来。

这些释放的原子会以高能量的形式沉积在基底上。

离子束的轰击使得靶材表面原子与基底原子发生碰撞并结合。

3. 薄膜沉积释放的原子沉积在基底上,形成一层薄膜。

这些原子在基底表面扩散并结合,形成致密的薄膜结构。

薄膜的性质取决于靶材的成分和离子束的能量。

二、RPD溅射的应用1. 防护膜由于RPD溅射制备的薄膜具有致密的结构和优异的附着力,可以用于制备防护膜。

防护膜可以在金属表面形成一层保护层,防止金属表面受到氧化、腐蚀等因素的侵蚀。

2. 光学薄膜RPD溅射可以制备高质量的光学薄膜。

通过控制离子束的能量和靶材的成分,可以制备出具有特定折射率、透过率和反射率的光学薄膜。

这些薄膜在光学器件和光学仪器中有着广泛的应用。

3. 硬质涂层RPD溅射制备的薄膜具有高硬度和耐磨性,可以用于制备硬质涂层。

硬质涂层可以提高材料的抗磨损性能,延长材料的使用寿命。

因此,RPD溅射在汽车、航空航天等领域有着重要的应用。

4. 电子器件RPD溅射可以制备高质量的导电膜和绝缘膜,用于制备电子器件中的电极和绝缘层。

这些薄膜具有良好的导电性和绝缘性能,能够提高电子器件的性能和稳定性。

总结:RPD溅射是一种常用的薄膜制备技术,通过离子束的轰击和靶材表面原子的释放,可以制备出具有特定性质的薄膜。

RPD溅射在防护膜、光学薄膜、硬质涂层和电子器件等领域有着广泛的应用。

随着科技的不断进步,RPD溅射技术将会得到更广泛的应用和发展。

3薄膜制备技术(PVD)(溅射)解析

3薄膜制备技术(PVD)(溅射)解析

下图是在45kV加速电压条件下各种入射离子轰击Ag、Cu、Ta表面时得到的 溅射产额随离子的原子序数的变化。易知,重离子惰性气体作为入射离子 时的溅射产额明显高于轻离子。但是出于经济方面的考虑,多数情况下均 采用Ar离子作为薄膜溅射沉积时的入射离子。
c、离子入射角度对溅射产额的影响
随着离子入射方向与靶面法线间夹 角θ的增加,溅射产额先呈现 1/cosθ 规律的增加,即倾斜入射 有利于提高溅射产额。0-60度左右 单调增加,当入射角θ接近70-80 度角时,达到最高,入射角再增加, 产额迅速下降。离子入射角对溅射 产额的影响如图。
(2) 各种物质都有自已的溅射阀值,大部分金属的溅射阀值在 10~40eV,只有当入射离子的能量超过这个阀值,才会实现对该物质 表面原子的溅射。物质的溅射阀值与它的升华热有一定的比例关系。
b、入射离子种类和被溅射物质种类
下图是在加速电压为400V、Ar离子入射的情况下,各种物质的溅射产额的 变化情况。易知,溅射产额呈现明显的周期性。
气体放电现象 气体放电是离子溅射过程的基础,下面简单讨论一下 气体放电过程。 开始:电极间无电流通过,气体原子多处于中性,只有 少量的电离粒子在电场作用下定向运动,形成极微弱的 电流。随电压升高,电离粒子的运动速度加快,则电流 随电压而上升,当粒子的速度达饱和时,电流也达到一 个饱和值,不再增加(见第一个垂线段); 汤生放电:电压继续升高,离子与阴极靶材料之间、电 子与气体分子之间的碰撞频繁起来,同时外电路使电子 和离子的能量也增加了。离子撞击阴极产生二次电子, 参与气体分子碰撞,并使气体分子继续电离,产生新的 离子和电子。这时,放电电流迅速增加,但电压变化不 大,这一放电阶段称为汤生放电。 电晕放电:汤生放电的后期称为电晕放电,此时电场强度 较高的电极尖端出现一些跳跃的电晕光斑。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等离子体
占靶产物的85-90% 镀膜
SIMS分析
溅射薄膜制备技术
刻蚀,清洗
2、什么是等离子体
当温度增高到使原子(分子)间的热运动动能与 电离能相当的时候,变成(部分)电离气体,系 统的基本组元变成了离子和电子(可以包含大量 的原子和分子)。电磁力开始作用,这就是等离 子体状态。
也被称作物质的第四态,可看作部分电离的气体
第三章、溅射镀膜
本章重点 1. 溅射的定义及原理 2. 溅射的特性及机理 3. 溅射与蒸发的比较
4. 溅射技术性问题
溅射薄膜制备技术
第一节、基本概念
1、溅射镀膜的定义:
高能离子在电场作
用下高速轰击阴极 (靶),经过能量

交换与转移,靶材
粒子飞离出来,
淀积在基板上形成
薄膜。
溅射薄膜制备技术

离子轰击固体表曲所引起的各种效应
1.4 与入射角的关系
Ar+
●EF段:增大功率,呈正电阻特性。
溅射一般工作在此区。
Fj V E
P
E、F:常数,与电极材料、 尺寸和气体种类有关。
●F点以后:弧光放电。特点是两极间电阻很小。
溅射薄膜制备技术
3)巴刑(paschen)定律
在气体成分和电极材料一定时,击穿电压只与气 压及电极距离的乘积相关。
溅射薄膜制备技术
起辉电压存在最小值:
溅射薄膜制备技术
结果:任何与等离子体接触的表面自动处于一 个负电位,并在其表面处伴随有正电荷的积累。 形成等离子体鞘层。
溅射薄膜制备技术
鞘层电压:
V p
kTe e
ln(
m 2.3me
1
)2
典型值:-10V,并变化不大。
在薄膜制备中的意义:离子受到加速,轰击基片,
电子受到减速,需大的能量方能到达基片。
克鲁克斯暗区:电子能量太大,不易与正离子复合发光。 电离产生低速电子。
负辉光区:大量电离区,产生大量的正离子,正离子与 电子复合发光。该区是正的空间电荷区, 也是主要的压降区。
法拉第暗区:少数电子穿过负辉光区,电子动能小。 正光柱区: 上述少数电子加速,产生电离。 负辉光区以后:等离子体密度低,几乎无电压降,类似
pd太小——二次电子在碰撞阳极前不能进行 足够数量的电离碰撞。
pd太大——气体中产生的离子,由于非弹性 碰撞被慢化、减速,到达阴极时无足够能量来 产生二次电子
大多数辉光放电,pd乘积在最小电压值右 侧——p有一定值,n较多;d有一定值,溅射 效率较高,特别是成膜区可以扩大。
溅射薄膜制备技术
4)等离子体鞘层
对于1Pa左右的辉光放电: 原子、电子、离子总密度:3× 1014个/cm3; 其中10-4的比例为电子和离子。
产生的是冷等离子体:电子和原子及离子温度不等 Te=23000K,Ti=300-500K。 离子质量大,其运动速度远低于电子: 平均速度:Vi=500m/s Ve=9.5 ×105m/s
电子优先到达固体表面!
鞘层厚度b:与电子密度及温度有关,典型值100微米。
溅射薄膜制备技术
直流辉光放电 的电位分布和 等离子体鞘层
5)辉光放电的空间分布
溅射薄膜制备技术
阿斯顿暗区:阴极发射的二次电子能量小 (1ev),不足以电离中性分子。
阴极辉光区:①电子获得足够能量,碰撞气体分子使其 激发,退激发而发光。 ②少数电子和正离子复合发光。
使离子被加速。
溅射薄膜制备技术
2)辉光放电的I-V特性
被激导电及 非自持暗放电
自持暗放电
直流辉光溅放射薄电膜制的备技术伏安特性曲线
●AB段:电压增加,而电流密度增加很小,说明电 压不够。
●BC段:电压不变,电流密度增加很快。说明电离 已经产生,但电源的阻抗很大。
●C点:击穿电压VB ●CD段:“雪崩区”、离子轰击靶、释放出二次电子,
二次电子与中性分子碰撞,产生更多离子,这些离 子再轰击阴极,又产生新的二次电子。达到一定的 电子、离子浓度后,气体起辉,两极间电流剧增, 电压剧减。电阻呈负阻特征。
溅射薄膜制备技术
●DE段:电流与电压无关,增大功率时,电压不变, 电流增加。放电能自动调节轰击阴极的面积,起初 集中在阴极边缘或表面不规则处,随功率密度的增 加,阴极面的电流密度达到近乎于均匀。
Ⅰ溅射率呈现周期性; Ⅱ同一周期中,溅射率基本随Z增大。
说明与外电子d壳层 的填满程度有关。 另外,升华热小的金 属S大;表面清洁的 S大。
溅射薄膜制备技术
1.3 与入射原子序数的关系 Ⅰ溅射率呈现周期性,总趋势随Z增大而增大; Ⅱ同一周期中,惰性元素的溅射率最高,而中部 元素溅射率最小。
溅射薄膜制备技术
一良导溅体射薄。膜制备技术
两电极间电压降主要在阴极与负辉光区之间。因此,当 极间电压不变而长度改变时,阴极到负辉光区的距离不 变,而是正光柱区变化。
产生的正离子冲击阴极产生溅射
阴极
阳极
Vp
0
电位
阳极鞘层 阴极溅射)
直流辉 光放电
射频辉 光放电
溅射薄膜制备技术
等离子体的基本粒子元是正负荷电的粒子(离
子),而不是其结合体,异类带电粒子之间是
相互“自由”和独立的。等离子体粒子之间的相互
作用力是电磁力
溅射薄膜制备技术
等 离 子 空 间
溅射薄膜制备技术
第二节、溅射的基本原理
1、溅射时入射粒子的来源:气体放电 所谓气体放电是指电流通过气体的现
象,气体放电将产生等离子体。一般是利 用辉光放电,根据所加电场的不同,又分 为直流辉光放电、射频辉光放电,而其他 如三极溅射、磁控溅射时的辉光放电都是 在此基础上的改进。 2、为什么用氩等惰性气体?
第三节、溅射特性
1.
溅射率(产额)
S
出射原子数 入射离子数
1.1 与入射离子能量的关系
Ⅰ存在溅射阈值,
通常金属10-30ev。
Ⅱ S E2(<150ev)
S E(150~1000ev)
S E0.5(1000~5000ev)
Ⅲ能量大于数万ev,
离子注入,溅射率
溅射薄膜制备技术
下降
1.2 与靶材原子序数的关系
溅射薄膜制备技术
3、辉光放电过程
定义:是指在低气压(1~10Pa)的稀薄气体中,在 两个电极间加上电压时产生的一种气体放电现象。
1) 为什么会产生辉光放电
空气中有游离的离子,在电场加速获得能量后,
与气体分子碰撞并使其电离,产生更多的离子,使
更多的分子电离。之所以需要低气压,使因为在较
高的气压下,平均自由程短,不能获得足够的能量
相关文档
最新文档