射频电缆的参数理论

合集下载

射频电缆的参数、种类和选用常识

射频电缆的参数、种类和选用常识

射频电缆的参数、种类和选用常识作者:武刚刚来源:《无线互联科技》2014年第01期摘要:本文简要介绍了射频电缆的特性、实际中常用的类型和与之配套的插头、插座的型号、并讲述了一些选用射频电缆的常识。

关键词:射频电缆;特性阻抗;额定功率射频电缆也叫同轴电缆,是由互相同轴的内导体、外导体以及支撑内外导体的介质组成的。

在无线电通讯、广播电视的射频传输中,射频电缆是重要的设备。

如果选用不当,不仅会造成浪费,增加投资成本,也会使系统工作时不稳定,引发故障,造成设备损坏、。

为了正确地选用射频电缆,就需要学习了解一些有关电缆的特性参数和类型。

射频电缆的特性包括有电器性能和机械性能,电器性能包括有特性阻抗、传输损耗及其频率特性、温度特性、屏蔽特性、额定功率、最大耐压;机械性能包括有最小弯曲半径、单位长度的重量、容许最大的拉力、以及电缆的老化特性和一致性。

下面重点介绍射频电缆的电器性能参数。

1 特性阻抗对于内、外导体表面为光滑平面、绝缘层为填满介质的电缆,其特性阻抗W为:式中:r2为外导体的内径;r1为内导体的外径;εr为绝缘层的相对介电常数。

理论分析表明,射频电缆使用的目的不同,内导体和外导体的最佳尺寸比例也不同,因而电缆的特性阻抗也不同。

如果希望同轴电缆的功率容量相对大一些,那么其特性阻抗最好为60欧姆;如果希望内、外导体之间能承受的电压相对高一些,那么特性阻抗最好为30欧姆;如果希望信号在射频电缆内传输时损耗相对小一些,那么特性阻抗最好为77欧姆。

如果兼顾功率容量和耐压两方面的性能,那么特性阻抗最好为50欧姆。

目前工厂生产的射频电缆主要有特性阻抗为50欧姆和75欧姆的两种。

在选用射频电缆时,一定要注意加以区别,不可混用。

在射频电缆制造的过程中由于内、外导体尺寸的误差,材料性能的不一致性,电缆的特性阻抗会存在一定的误差。

大多数生产厂家生产的射频电缆,其特性阻抗的误差在±3欧姆以内。

2 传输损耗及其频率特性信号在射频电缆内传输时会产生一定的损耗,这种损耗包括两个方面,一是内、外导体表面的高频电流在表面电阻上的损耗,二是内、外导体之间的绝缘材料的介质损耗。

射频线缆传递控制信号的方法

射频线缆传递控制信号的方法

射频线缆传递控制信号的方法摘要:一、射频线缆简介二、射频线缆传递控制信号的原理三、射频线缆在实际应用中的优势四、射频线缆传递控制信号的注意事项五、未来发展趋势与应用前景正文:射频线缆作为一种重要的传输介质,在我国的通信、电子、家电等领域得到了广泛的应用。

其优良的传输性能和稳定的性能特点,使得射频线缆在传递控制信号方面具有显著的优势。

本文将从射频线缆的基本介绍、传递控制信号的原理、实际应用优势、注意事项以及未来发展趋势等方面进行详细阐述。

一、射频线缆简介射频线缆,又称射频同轴电缆,是一种具有良好抗干扰性能的传输线。

它主要由内外导体、绝缘层和保护层组成。

射频线缆具有良好的高频传输特性,被广泛应用于各种射频信号传输系统中。

二、射频线缆传递控制信号的原理射频线缆传递控制信号主要依赖于其内部导体间的电磁感应原理。

当控制信号加载在射频线缆的导体上时,信号会产生磁场。

磁场与线缆内外导体之间相互作用,使得控制信号得以传递。

此外,射频线缆的绝缘层和保护层还能有效抑制外部干扰,保证信号传输的稳定性。

三、射频线缆在实际应用中的优势1.传输速率快:射频线缆具有较高的传输速率,能满足高速数据传输的需求。

2.抗干扰能力强:射频线缆的内外导体结构和绝缘层设计使其具有较强的抗干扰能力,能在复杂环境中稳定传输信号。

3.传输距离远:射频线缆可传输较远的距离,适用于大规模通信系统。

4.成本较低:相较于其他传输介质,射频线缆具有较低的成本优势。

四、射频线缆传递控制信号的注意事项1.选用合适的射频线缆:根据实际应用场景和需求,选择合适的射频线缆型号和规格。

2.线缆接头处理:确保射频线缆接头处理良好,以降低信号损耗和反射。

3.防止过度弯折和拉力过大:避免射频线缆过度弯折和拉力过大,以免影响传输性能。

4.屏蔽措施:在必要时,采取屏蔽措施以减小外部干扰对信号传输的影响。

五、未来发展趋势与应用前景随着科技的不断发展,射频线缆在通信、物联网、家电等领域中的应用将越来越广泛。

射频电缆的参数理论

射频电缆的参数理论

射频电缆的参数理论射频电缆是一种用于传输高频信号的特殊电缆,它在通信、广播、军事、航空航天以及科学研究领域都得到了广泛应用。

射频电缆的参数理论主要包括电气参数、物理参数和传输参数等方面的内容。

接下来将分别介绍这些参数。

1.电气参数:-电阻:射频电缆的电阻是指单位长度内的电阻,通常用欧姆/米(Ω/m)来表示。

电缆的电阻对信号的传输质量有直接影响,较小的电阻可以减小信号损耗。

-电感:射频电缆中电流变化会引起磁场,进而产生电感,其单位为亨利/米(H/m)。

电感会导致信号的相位延迟,因此电缆中的电感必须被控制在合理范围内。

-电容:射频电缆中的导体和绝缘体之间会产生电场,产生电容,其单位为法拉/米(F/m)。

电缆的电容会导致信号的频率响应和波形扭曲。

2.物理参数:- 外径:射频电缆的外径通常用毫米(mm)来表示,它反映了电缆的几何尺寸。

外径的大小会直接影响电缆的弯曲半径和机械强度等特性。

-绝缘体:射频电缆的绝缘体通常由聚乙烯、聚四氟乙烯等材料制成。

绝缘体的性能和质量对于电缆的电气特性以及信号传输质量具有重要影响。

-屏蔽:为了抑制电磁干扰和减小信号的串扰,射频电缆在绝缘体外通常还有一层金属屏蔽,如铜箔屏蔽或网状铜屏蔽。

3.传输参数:-带宽:射频电缆的带宽指的是电缆能够传输的最高频率范围,通常用兆赫兹(MHz)或千兆赫兹(GHz)来表示。

带宽决定了电缆能够传输的最大数据量和信号质量。

-驻波比:驻波比是衡量信号反射的程度,它可以通过电缆的特性阻抗和负载阻抗之间的比值来计算。

较小的驻波比表示较好的信号匹配和传输质量。

-损耗:射频电缆在信号传输过程中会有一定的损耗,通常以分贝/米(dB/m)来表示。

损耗与电缆的电阻、电容、电感等参数密切相关,较小的损耗可以提高信号传输的效率。

为了提高射频电缆的性能,需要根据具体的应用需求选择适当的型号和参数。

不同型号的电缆在电气参数、物理参数和传输参数上可能有所不同,因此需要根据具体的应用场景来选择合适的射频电缆。

射频同轴电缆线知识

射频同轴电缆线知识

铝箔麦拉作用是起防辐射抗干扰的屏蔽作用,根据材质、生产工艺或用途的不 同,也可以分为:普通OPE型铝箔、双面OPE型铝箔、单面自粘OPE铝箔、双面自 粘OPE铝箔、PET高温型铝箔。
编织丝层的作用一是起紧固纵包层的作用,并能与插头有良好接触,及防辐射 抗干扰的屏蔽作用,二是为了提高屏蔽效果,三是为了连接方便,以及为了增大电 流,便于焊接等。编织丝层根据材质及工艺不同,分为:裸铜线、镀锡丝、镀银线、 铝镁合金丝等,其中铝镁合金丝性价比最高,被广泛使用。铝箔外层的编织应采用 镀锡铜丝而不能采用裸铜丝,以免产生双金属的腐蚀。
乙烯双护套 YY 聚 乙 烯 双护套
B 玻璃丝编织 H 橡套 M 棉纱编织
比如:SYV 型,它的绝缘层为实心聚乙烯; SYK 型其绝缘层为聚乙烯藕芯
以上介绍的命名方式为国家标准的命名方式,由于目前我们针对的是国际市场,而 国外不同国家对于电缆的命名方式是各不相同的。例如我国的 SYWV-75-5 射频同轴电缆 与美国的军用规范 MIL-C-17F《射频电缆》的 RG-59 类似。
三、同轴电缆线的命名方式:
为了便于大家从同轴电缆的型号大致看出其结构类型,下面给出我国电缆的统一型号 编制方法以及代号含义,供大家参考。
同轴电缆的命名通常由 4 部分组成:第一部分用英文字母,分别代表电缆的代号、绝 缘介质、介质工艺、护套材料(见表 1),第二、三、四部分均用数字表示,分别代表电 缆的特性阻抗(Ω)、芯线绝缘外径(mm)和结构序号,例如“SYWV-75-5”的含义是:该 电缆为射频同轴电缆,绝缘介质为聚乙烯,介质工艺为物理发泡,护套材料为聚氯乙烯, 电缆的特性阻抗为 75 Ω,芯线绝缘外径为 5 mm。
4
学习资料——射频同轴电缆线知识
使用高屏蔽或高编织密度的电缆。铝箔屏蔽或包箔材料的电缆不适用于电视监控系 统,但可用于发射无线电频率信号。

lmr400技术参数

lmr400技术参数

lmr400技术参数
LMR400是一种国外进口的电缆型号,相当于我国国标特性阻抗为50欧姆的同轴射频电缆,高频衰减相对较小。

以下是LMR400电缆的一些技术参数:
1. 内导体:不同型号的LMR400电缆内导体直径有所不同,例如SDY-50-7电缆的内导体外径为
2.83mm。

2. 绝缘材料:LMR400电缆采用聚乙烯螺旋绝缘皱纹铜管或其他绝缘材料制成。

3. 总外径:不同型号的LMR400电缆总外径也有所差异,如SDY-50-7电缆的总外径为10.2mm。

4. 最高使用频率:LMR400电缆的最高使用频率可达1
5.6GHz,具体取决于型号。

5. 衰减:LMR400电缆的高频衰减相对较小,不同频率下的衰减值有所不同。

例如,
在30MHz时,SDY-50-7电缆的衰减为25dB/km;在1GHz时,SUY-50-7-3电缆的衰减为
0.168/m。

6. 连接器:LMR400电缆可配接多种连接器,如SL16-J123、L16-J123、L16-KF123、
N-J123、N-K123、N-KF123等。

7. 应用领域:LMR400电缆广泛应用于无线通信、广播电视、数据传输、测试仪器等
领域。

需要注意的是,LMR400电缆有多种型号,不同型号的电缆技术参数可能会有所差异。


实际应用中,请根据具体需求选择合适的电缆型号。

为什么射频电缆的特征阻抗是50欧姆视频电缆的特征阻抗是75欧姆

为什么射频电缆的特征阻抗是50欧姆视频电缆的特征阻抗是75欧姆

为什么射频电缆的特征阻抗是50欧姆视频电缆的特征阻抗是75欧姆射频电缆的特征阻抗是50欧姆,而视频电缆的特征阻抗是75欧姆。

这两种电缆的特征阻抗选择是基于设计需求和应用场景的不同。

下面我将详细讨论射频电缆和视频电缆的特征阻抗选择原因。

首先,我们先了解一下特征阻抗的概念。

特征阻抗是指在一个无限长的电缆中传输信号时,使得信号的行驶速度和电缆本身的特性阻抗匹配的阻抗值。

特征阻抗决定了电缆传输线上的信号传输质量。

特征阻抗的选择对于提高信号传输质量、减少信号反射和保持信号完整性至关重要。

射频电缆的特征阻抗一般选择为50欧姆的原因如下:1.广泛应用于无线通信领域:射频电缆主要用于无线通信系统中的射频传输,例如无线电、卫星通信、电视和广播等。

在这些应用中,电缆用于将射频信号从一个设备传输到另一个设备。

选择50欧姆的特征阻抗能够实现更好的信号传输质量,并且在各种设备和系统之间提供兼容性。

2.降低信号反射:50欧姆的特征阻抗与常用的传输线电缆和设备的输出/输入阻抗匹配较好。

阻抗匹配可以减少信号在电缆传输过程中的反射,确保信号能够完整、稳定地传输。

3.适合高频传输:射频电缆一般用于高频信号的传输,而50欧姆的特征阻抗对于高频信号的传输和抗干扰能力更好。

此外,50欧姆的特征阻抗能够有效减少信号损耗,提高传输效率。

相反,视频电缆的特征阻抗一般选择为75欧姆的原因如下:1. 色差信号的传输:视频电缆主要用于传输包括亮度和色差信号的视频信号,例如电视、监控等领域。

这些信号通常是基于复合视频信号的传输标准,其中包括亮度信号(也称为Luma信号)和色差信号(也称为Chroma信号)。

而75欧姆的特征阻抗可以提供更好的信号传输质量,以确保亮度和色差信号的准确传输。

2.防止色差失真:视频信号的色差分量的传输对于保持图像的色彩准确性是非常重要的。

75欧姆的特征阻抗对于色差信号传输有较好的匹配性,可以降低色彩失真和交叉干扰。

总结起来,射频电缆的特征阻抗选择为50欧姆,而视频电缆的特征阻抗选择为75欧姆,是基于它们在不同应用场景中的需求和特性。

射频电缆参数报告

射频电缆参数报告

射频电缆参数报告射频电缆参数: 一.特性阻抗特性阻抗的大小取决于导体直径以及绝缘结构的等效介电常数 特性阻抗应尽可能和发射天线阻抗一致,避免驻波的出现 同轴电缆阻抗公式:Zc =)/()(C j G L j R ωω++R <<ωL ,G <<ωC则Zc =C L / =60•ln(D/d)/ε =138•l g(D/d)/ε (欧姆)式中,D 为外导体内直径 (mm ) d 为内导体外直径 (mm ) ε为绝缘相对介电常数 表1常用介质材料的特性三种标准阻抗为:50±2欧姆:适用于射频及微波75±3欧姆 :适用于视频以及脉冲数据100±5欧姆:适用于低电容电缆以及其他特种电缆二.电容同轴电缆电容计算公式:C =1000ε/(18lnD/d )=24.13ε/(lgD/d ) (pF/m )三.衰减在射频下,同轴电缆衰减通常可以用下式表示:α=αR +αG =R/2·L C /+G/2·C L /式中,αR 为导体电阻损耗引起的衰减分量,称为导体衰减 αG 为绝缘损耗引起的衰减分量,称为介质衰减 其中αR =2.61×10-3εf (1/d +1/D )/lgD/d (dB/km )式中,f 为频率(Hz )ε为绝缘介电常数 D 为外导体内径(mm )d 为内导体外径(mm )在大功率射频电缆中,内外导体的温度会升高,因此电阻也随着升高,从而使衰减增大,因此在公式中引入衰减的温度系数:Kt =)20(1-+t t α式中,t α为导体温度系数,对于铜,可取t α=0.00393 1/℃标准软铝,可取t α=0.00407 1/℃绝缘介质衰减可以按照下式计算:G α=9.1×10-5f εtg δ (dB/km )对于组合绝缘,如果介质1是固体材料,介质2是空气,即有:tg e δ=tg δ+2εtg δ(1-P)/{2ε+1-2P (ε-1)}-εtg δ(2+P)/{ 2ε+1+ P (ε-1)}式中,P 为发泡度,ε、tg δ为固体介质相应参数。

射频电缆的参数、种类和选用常识

射频电缆的参数、种类和选用常识

阻抗最好为6 O 欧姆 ; 如果希望内、 外导体之 间能承受 的电压相 此在实际使 用电缆时, 要注意防潮防漏。 对 高一 些, 那么特 性阻抗最 好为3 O 欧姆 ; 如 果希望信号在射 频 电缆内传输 时损耗相对小一些 , 那么特 性阻抗最好为7 7 欧姆 。 如果兼顾功率容量和耐压 两方面 的性能 , 那么特 性阻抗最好为 5 0 欧姆 。目 前工厂生产的射频 电缆主要有特 性阻抗为5 O 欧姆和 7 5 欧姆的两种。 在选用射频电缆时, 一定要注意加以区别, 不可 混用。 在射频 电缆制造 的过程 中由于 内、 外导体尺寸的误差 , 材 料性能 的不一致性 , 电缆的特性 阻抗会存 在一定的误差 。 大 多 数 生产厂家生产的射频 电缆 , 其特性 阻抗的误差 在 ±3 欧姆 以
能和 机械性能, 电器性能包括有特性 阻抗 、 传输 损耗及其频率 高温度不能超过介质所 能允许 的长期工作温度。 额定峰值功率 特 性、 温度特性、 屏蔽特 性、 额定功率、 最 大耐压 ; 机械 性能包 是指射频 电缆在 匹配 的状态下, 不致 发生电击穿所能传输送 的
括有最小弯 曲半径、 单位长度的重量、 容许最大 的拉 力、以及电 最大功率 。 它取决于 电缆线所能承受的最大 工作 电压。 显然 , 根 缆的老化特 性和一致性 。 下面重 点介绍射频 电缆 的电器性 能参 据这两种额 定功率 , 在 选用 同轴 电缆 时, 如传送 的功率为脉冲 数。 信号, 主要应 从额 定峰值 功率的角度 考虑 ; 如果传送 的射频功
、 /

式中: r , 为外导体的内径; r 为 内导体 的外径 ; 6 , 为绝缘层 压值 , 即射频 电缆手册 中给出的最大实验 电压, 它是 同轴 线介 的相对介电常数 。 理论分析表 明, 射 频电缆使 用的目的不同, 内 质所能允许 的最 高电压 。 在实际中要通过计算发射机输 出的最 导体和 外导体的最佳 尺寸 比例也不同, 因而 电缆 的特 性阻抗也 高 电压 , 来选 用合适规格 的同轴 电缆 。 需要注 意的是电缆受潮 不 同。 如 果希望 同轴 电缆的功率容量相对 大一些 , 那么其特性 时, 耐压会大大 地降低 , 一 般会在绝 缘片处发 生击 穿现象 。因 Leabharlann 2 传输损耗及其频率特性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频电缆的参数理论第一节 特性阻抗特性阻抗是选用电缆的首先要考虑的参数,它是电缆本身的参数,它取决于导体的直径以及绝缘结构的等效介电常数。

特性阻抗对于电缆的使用有很大的影响。

例如在选择射频电缆作为发射天线馈线时,其特性阻抗应尽可能和天线的阻抗一致,否则会在电缆和天线的连接处造成信号反射,使得天线得到的功率减少,电缆的传输效率也会下降,更为严重的是,反射的存在会使电缆沿线出现驻波,有些地方会出现电压和电流的过载,从而造成电缆的热击穿或热损伤而影响电缆的正常运行。

电缆内部反射的存在,还会造成传输信号的畸变,使传输信号出现重影,严重影响信号传输质量。

为了便于使用,射频电缆的阻抗已经标准化了。

因此在选用电缆时应尽可能选用标准阻抗值。

对于射频同轴电缆有以下三中标准阻抗: 50±2ohm 推荐使用于射频及微波,用于测试仪表以及同轴-波导转换器等;75±3ohm 用于视频或者脉冲数据传输,用于大长度例如CA TV 电缆传输系统;100±5ohm 用于低电容电缆以及其它特种电缆。

以下是同轴电缆特性阻抗计算的各种公式。

§1.1同轴电缆阻抗公式根据传输理论,特性阻抗公式为:Zc =)/()(C j G L j R ωω++式中,R 、L 、G 、C 、代表该传输线的一次参数,而ω=2πf 代表信号的角频率。

对于射频同轴电缆传输高频信号,通常都有R <<ωL ,G <<ωC ,此时特性阻抗公式可以简化为:Zc =CL/=60•ln(D/d)/ε=138•l g(D/d)/ε(ohm)式中,D为外导体内直径(mm)d为内导体外直径(mm)ε为绝缘相对介电常数表1给出了常用绝缘材料的相对介电常数。

表1常用介质材料的特性§1.2皱纹外导体同轴电缆阻抗公式皱纹外导体已经获得广泛应用,阻抗尚无标准的方法计算,可以利用电容电感参考方法进行计算。

测量出L和C后可以计算阻抗:Zc =CL/§1.4特性阻抗与电容的关系同轴电缆的特性阻抗与电容有如下简单的关系,即Zc=104/3·ε/ C式中,C为电缆电容(pF/m)第二节电容电容是射频电缆的一个重要参数,同轴电缆的电容按照下式计算:C=1000ε/(18lnD/d)=24.13ε/(lgD/d)(pF/m)第三节衰减衰减是射频电缆的重要参数之一,它反映了电磁能量沿电缆传输时的损耗的大小。

电缆的衰减表示电缆在行波状态下工作时传输功率或者电压的损耗的程度,即αl=10lgP1/P2=20lgU1/U2(dB)式中,α为电缆的衰减常数(dB/m)l为电缆长度(m)电缆的衰减越大,表明信号的损耗越严重,电缆的传输效率越差,如果电缆的衰减为3dB,表明信号传输此电缆后电压或电流的幅度下降30%,信号功率下降50%。

为了提高电缆的传输效率,总是希望电缆的衰减尽可能的低,但低损耗的电缆通常要贵许多,这是因为它通常制成大尺寸,并且采用结构复杂的空气或半空气绝缘,低损耗电缆还经常采用特殊结构的导体,也相应会增加成本。

因此,电缆的衰减是十分重要的指标,特别在大长度传输时更是如此。

为了降低电缆的衰减,要在经济上付出相当大的代价。

选用电缆并非是衰减越低越好,必须将衰减指标和其它因素例如尺寸、柔韧性同时考虑,才能选得经济合理的电缆。

§3.1衰减的计算公式在射频下,同轴电缆衰减通常可以用下式表示:α=αR+αG=R/2·LL/C/+G/2·C式中,αR为导体电阻损耗引起的衰减分量,称为导体衰减αG为绝缘损耗引起的衰减分量,称为介质衰减一、导体衰减同轴电缆内外导体均为圆柱形导体时,导体衰减如下公式:αR =2.61×10-3εf (1/d +1/D )/lgD/d (dB/km )式中,f 为频率(Hz )ε为绝缘介电常数D 为外导体内径(mm )d 为内导体外径(mm )注:上式是将标准软铜电阻率1.724×10-6ohm ·cm 代入计算得到的。

如果导体是双金属结构形式,在高频下,可以将它看成是由表面材料组成的单金属导体来处理。

在大功率射频电缆中,内外导体的温度会升高,因此电阻也随着升高,从而使衰减增大,因此在公式中引入衰减的温度系数:Kt =)20(1-+t t α式中,t α为导体温度系数,对于铜,可取t α=0.00393 1/℃ 标准软铝,可取t α=0.00407 1/℃二、介质衰减绝缘介质衰减可以按照下式计算:G α=9.1×10-5f εtg δ (dB/km ) 对于组合绝缘,如果介质1是固体材料,介质2是空气,即有: tg e δ=tg δ+2εtg δ(1-P)/{2ε+1-2P (ε-1)}-εtg δ(2+P)/{ 2ε+1+ P (ε-1)}式中,P 为发泡度,ε、tg δ为固体介质相应参数。

§3.2驻波对衰减的影响电缆在实际工作状态下,其负载阻抗不一定匹配,从而在负载处发生信号功率的反射,引起失配损耗。

失配损耗α∆=10lgPm/P =10lg1/(1-2Γ)=10lg(S+1)2/(4S) 式中,P 为负载失配时吸收的功率Pm为负载失配时可吸收的功率,此为最大吸收功率S为电压驻波比Г为负载的反射系数电压驻波比条件下的失配损耗可以利用表3查得。

表3电压驻波比、回波损耗、传输损耗、反射系数、反射功率对照表第四节第五节阻抗不均匀和驻波§4.1概述在推导传输理论公式时,假定电缆是均匀的,即沿着传输方向电缆的各点的阻抗是相同的,但是在实际上是不可能的。

电缆在制造过程中,其导体直径、绝缘外径、发泡度总是或多或少存在着变化的,而导体间也有可能存在偏心,绝缘介电常数在长度方向上也可能存在变化,因此在实际线路上,每一点的阻抗都不一定相等。

通常,我们称线上任意一个截面上的特性阻抗为局部特性阻抗Zx ,则电缆的Zx 是沿线变化的,即使终端匹配,其始端的输入阻抗也不一定等于其匹配阻抗值,而且这种输入阻抗值与频率、电缆长度都有关系,为了反映这种线路不均匀的情况,引入了“有效特性阻抗”概念。

根据国际电工委员会标准,电缆的有效特性阻抗定义为:Ze = Z Z 0式中,Z 0为电缆终端短路时的输入阻抗Z ∞为电缆终端开路时的输入阻抗有效特性阻抗通常用于较高的射频频率,而在较低的频率下一般采用平均特性阻抗Z m 。

平均特性阻抗是沿线所有的局部特性阻抗Zx 的算术平均值。

因为在低频下,波长比较长,每个不均匀性的长度只占信号波长的很小部分,在一个半波长的长度内存在很多的不均匀点,不均匀点引起的发射在始端的迭加是算术迭加,因此,在低频下有效特性阻抗实质上是沿线分布的许多局部特性阻抗的算术平均值Z m 。

在高频下,由于波长比较短,在始端出现的总的发射波不仅取决于沿线各点Zx 引起的许多内部发射波的大小,而且与它们之间的相位有关系,也就是说,在高频下线路的有效特性阻抗Ze 是许多内部不均匀性Zx 的矢量迭加的结果。

有效特性阻抗与平均特性阻抗不同,它对于频率的变化是敏感的,很小的频率变化往往会引起有效特性阻抗的很大变化。

下图是终端匹配的不均匀线路的输入阻抗与频率的关系,图中曲线(a)表示沿线只存在一个不均匀性的情况,曲线(b)则表示沿线存在周期性不均匀性的情况,曲线(c)则反映了随机分布不均匀性的情况。

实际上这些曲线就是电缆的有效特性阻抗Ze与频率的关系曲线。

这种随频率变化的输入阻抗是十分有害的。

线路的输入阻抗随频率的波动会引起线路输入功率也随之波动,还会引起线路的衰减特性随频率之波动。

内部不均匀性除了会引起输入阻抗的变化外,还存在着二次发射的恶劣影响。

所谓二次发射是指入射波沿线前进遇到一个不均匀点反射回去之后,又遇到一个不均匀点再次反射而重新传输到终点。

这种两次反射信号与主信号在时间上存在一个延迟距离,会引起信号的畸变。

因此,内部不均匀性对电缆的传输性能影响很大,通常要求越小越好。

阻抗内部不均匀性的大小标志着电缆产品杂制造工艺的好坏,要在宽频带内电缆保持良好的阻抗均匀性,必须在制造工艺上狠下功夫,因此,设备的稳定性能对于电缆尤其重要。

图1. 内部不均匀性的典型曲线(a)沿线只存在一个不均匀性(b)沿线存在着周期性的阻抗不均匀性(c)随机分布的不均匀性§4.2阻抗偏差、驻波和回波损耗内部阻抗不均匀性的大小可以用有效特性阻抗Ze与额定阻抗值的偏差来表示,阻抗偏差越大,则反映内部不均匀性越厉害。

作为射频电缆的内部不均匀性的指标,国际电工委员会曾经规定,在2300~3300MHz的频段范围内,均匀地选取20个测试频率,彻得的有效阻抗与额定阻抗的偏差的均方根值应不大于额定阻抗值的3%。

更常用的是采用电缆的输入驻波比作为内部不均匀的指标。

驻波比S和阻抗偏差ΔZ之间很容易由下式换算:S={1+Γ}/{1-Γ}={2Zc+ΔZ}/{2Zc-ΔZ}式中Γ代表输入端反射系数。

Γ=ΔZ /{Zc +(Zc +ΔZ)}≈ΔZ /2ZcΔZ表示有效特性阻抗Ze与额定阻抗Zc的偏差。

电缆内部不均匀性指标还可以使用下式定义的回波损耗:回波损耗SRL=-20lgΓ分贝回波损耗越大,代表反射系数越小,也就是驻波比S越小,电缆内部均匀性越好。

驻波比、反射系数和回波损耗之间的关系见表3。

§4.3周期性的阻抗不均匀性同轴电缆制造时,由于制造工艺的缺陷,例如绝缘挤出不均匀、牵引轮的偏心、周期性的受力等因素,会使成品电缆沿长度方向上出线局部特性阻抗的周期性变化,当电缆长度很大时,会由于信号的内部反射在始端产生同相位迭加,从而出现反射系数的很大峰值而影响电缆的正常使用。

周期性阻抗不均匀性有很严重的影响,小的不均匀性会由于内部谐振而导致很大的反射系数峰值,这种峰值出线的频率与周期长度直接有关,可以按照下式确定:f =150 /{ h}式中h——周期长度(m);ε——电缆的等效介电常数例如:重心不均匀的放线盘具直径为8英寸时,会对聚乙烯绝缘挤塑工艺引入周期变化的节距为h=8×25.4×3.14×0.001=0.638m,并使成品电缆的回波损耗曲线在208MHz频率下出现谐振峰值。

§4.3周期性的阻抗不均匀性如果电缆上存在随机分布的许多不均匀性,则这种情况要比周期性不均匀好的得多。

随机分布不会如周期性分布那样在某一个频率下出现尖锐的峰值,其输入阻抗的频率特性是显示出噪音般的随机性(如图1.的曲线c)。

由于随机分布是由于制造工艺所决定的,其分布规律无法用理论方法决定。

电压驻波比与电缆长度关系如下图2。

从图上可以看出来,实测数据与按随机分布计算出来的结果接近,从而表明电缆工艺尚好,即没有什么显著的周期性不均匀,因此,即使电缆使用长度很大,也不会出现电压驻波比的显著恶化。

相关文档
最新文档