钛合金在多领域的应用与发展完整版

合集下载

钛合金的发展现状及应用前景

钛合金的发展现状及应用前景

钛合金的发展现状及应用前景
钛合金是一种特殊的材料,它与碳钢,铝,钛和银等金属材料相比具
有许多优势,如耐腐蚀性,耐冲击性,耐高温和低温和良好的弹性性能。

近年来,钛合金在航空、航天、航空航天科学以及其他领域得到了广泛的
应用。

钛合金的特殊性质使它成为各种工程应用的理想选择,如特种卫星,
航空航天飞机及其他航空器件。

钛合金的便携性,坚韧性,耐磨性和轻量
级得到了航空航天领域的大量应用。

例如,钛合金在航天器周围用于皮带,框架和支撑结构。

钛合金也可以用于制造结构件,例如发动机罩,发动机
和燃油管道。

钛合金在热工工程方面得到了广泛的应用。

由于钛合金具有优异的热
性能,所以它被广泛用于航空发动机,制冷和冷却系统,涡轮机,汽轮机,反应堆,火箭和太阳能发电机的结构中。

钛合金的耐热性,耐腐蚀性和强
度可以使发动机组件能够承受高温的热负荷,而且无需特殊处理即可获得
更高的机械性能,从而显著提高航空发动机的性能。

钛合金的发展历程及应用

钛合金的发展历程及应用

钛合金的发展历程及应用
一、t钛合金的发展历程
钛合金的诞生始于20世纪初,它的出现大大改变了传统的材料,如钢铁、铝合金和有机材料等的应用。

1925年,英国科学家Andrew Jackson正式发明了钛合金,它由钛、铝和氧组成,其特点是耐腐蚀、高强度、低密度、低比热,以及弹性好的特性。

1945年,美国科学家将钛合金作为更坚固的空间制备材料,在火箭航天领域发挥了重要作用。

1960年,为了满足局部低温和极端条件下机械性能要求,更复杂的钛合金被研发出来,由此开启了钛合金应用水平的跃升。

二、t钛合金的应用
钛合金的性能优越,使它广泛应用于航空、航天、医疗、汽车、机械等领域。

●t航空航天:航空航天领域最先使用钛合金,因其结构强度、耐腐蚀性、耐热性,成为航空航天机械及结构件材料的绝佳选择。

●t医疗:钛合金的低密度及较高的抗腐蚀性能,使它成为生物相容性好的金属材料,常用于制造人体器官植入物,包括支架、骨头替代物以及其他数百种植入物。

●t汽车:钛合金可以用来制造车架、车身、变速器、转向系统等零部件,其结构强度可以增加车辆总重量并减少车身噪音。

●t机械:钛合金可用于机器零件,比如航天机械、飞机发动机、
机床轴承、大型设备零件等,它的特殊性能充分满足旋转、振动和小位移等多元需求。

三、t钛合金的未来
未来,钛合金将继续成为一种高效能、高强度、高结构性能的金属材料,广泛应用于各行各业领域。

随着现代科技的不断发展,钛合金将成为更多高精尖的应用领域,从而为我们的生活带来更多的便利。

钛及钛合金的应用现状与发展趋势分析

钛及钛合金的应用现状与发展趋势分析

钛及钛合金的应用现状与发展趋势分析1. 钛及钛合金的应用现状与发展趋势分析钛及其合金具有重量轻、强度大、耐热性强、耐腐蚀等许多优特性,被誉为“未来的金属”,是具有发展前途的新型结构材料。

钛及其合金不仅在航空、宇宙航行工业中有着十分重要的应用,而且已经开始在化工、石油、轻工、冶金、发电等许多工业部门中广泛应用。

1.1. 钛在化工等部门的应用钛的另一个显著特点是耐腐蚀性强,这是由于它对氧的亲合力特别大,能在其表面上生成一层致密的氧化膜,可保护钛不受介质腐蚀。

金属钛在大多数水溶液中,都能在表面生成钝化氧化膜。

因此,钛在酸性、碱性、中性盐水溶液中和氧化性介质中具有很好的稳定性,比现有的不锈钢和其它有色金属的耐腐蚀性都好,甚至可与铂比美。

但是,如果在某种介质中,能连续溶解钛表面氧化膜时,则钛在这种介质中便会受到腐蚀。

例如,钛在氢氟酸、浓的或热的盐酸、硫酸和磷酸中,由于这些溶液溶解钛表面氧化膜,所以钛被腐蚀。

如果在这些溶液中加入氧化剂或某些金属离子时,则钛表面氧化膜便会受到保护,此时钛的稳定属于增加。

1.2. 化学工业钛在各种酸、碱、盐介质中,除上述四种无机酸和腐蚀性很强的氯化铝外,都具有很好的稳定性。

所以,钛是化学工业中优良的抗腐蚀材料,得到了越来越广泛的应用。

例如,在氯碱工业中使用钛金属阳极和钛制湿氯气冷却器,收到很好的经济效果,被誉为氯碱工业中的一大革命。

1.3. 石油工业钛在有机化合物中,除了温度较高下的五种有机酸(甲酸、乙酸、草酸、三氯乙酸和三氟乙酸)外,都具有非常好的稳定性。

因此,钛是石油炼制和石油化工中优良的结构材料,可以用来制作各种热交换器、反应器、高压容器和蒸馏塔等。

三.冶金工业钛属活性金属,具有良好的吸气性能,是炼钢工业中优良的脱气剂,它能化合钢在冷却时析出的氧和氮。

在钢中加入少量的钛(<0.1%)可使钢坚韧而富有弹性。

钛也是炼钢,炼铝等工业中重要的合金添加剂。

钛具有超导性,是一种常见的超导材料。

钛及钛合金的应用现状与发展趋势分析

钛及钛合金的应用现状与发展趋势分析

钛及钛合金的应用现状与发展趋势分析1.航空航天领域:钛及钛合金由于其高强度、低密度、优良的耐高温性能以及抗腐蚀等特点,成为航空航天领域的首选材料。

钛及钛合金主要应用于飞机结构、发动机零部件、航空发动机叶片等领域。

随着航空航天工业的不断发展,钛及钛合金在该领域的应用将继续扩大,其中以高性能钛合金的研究和应用为发展方向。

2.船舶建造领域:钛及钛合金具有良好的耐腐蚀性能和高强度,是一种理想的船体结构材料。

目前,钛及钛合金主要应用于海洋工程船舶、潜水器材和海洋石油平台等领域。

未来,钛及钛合金在船舶建造领域的应用将继续扩展,如用于制造更大型、更轻量化的船体结构,以提高航行能力和燃油效率。

3.化工领域:钛及钛合金具有优异的耐腐蚀性能,在化工领域得到了广泛应用。

钛及钛合金制成的设备可以用于储存、输送和处理腐蚀性介质,如强酸、强碱等。

此外,钛及钛合金还可用于制造化学反应器、换热器和蒸发器等设备。

未来,随着化工行业的不断发展和技术升级,对耐腐蚀性能更为优良的钛合金的需求将大幅增加。

4.制药领域:钛及钛合金在制药领域的应用主要是制造药品容器、反应器和输送管道等设备。

钛及钛合金具有良好的生物相容性,不会与药品发生反应,且不会污染药品。

随着人们对高质量医疗产品要求的增加,钛及钛合金在制药领域的应用将得到进一步改进和推广,尤其在一次性使用的医疗设备中。

5.汽车领域:钛及钛合金具有优异的强度重量比和耐腐蚀性能,可用于制造汽车结构部件和发动机零部件,如车身、悬挂系统、排气管等。

目前,钛及钛合金在汽车领域的应用主要集中在高端豪华车型上,但随着钛合金制造技术的进一步发展和成本的降低,预计在未来几年内钛及钛合金将在大众汽车中得到更广泛的应用。

综上所述,钛及钛合金在航空航天、船舶建造、化工、制药、汽车等领域均具有广泛应用前景。

随着科技进步和工艺改进,钛及钛合金的性能将进一步提升,应用领域将得到进一步扩展。

同时,钛合金材料的成本与采购难度仍然是制约其广泛应用的因素,因此,降低成本和提高生产工艺的研究也是今后发展的重点。

钛合金在各领域的应用

钛合金在各领域的应用

钛合金在各领域的应用随着科技的不断发展和人们对高性能材料需求的增加,钛合金作为一种优异的工程材料,其应用范围也越来越广泛。

本文将从航空、航天、医疗、汽车、体育器材等多个领域,介绍钛合金的应用情况。

一、航空领域钛合金在航空领域中的应用是最为广泛的。

首先,钛合金具有高强度、低密度、耐腐蚀等优点,可以大幅度减轻飞机的重量,提高飞机的速度、升限和航程。

因此,许多飞机的结构件、发动机零部件、连接件、螺栓等都采用了钛合金材料。

例如,波音787梦想客机中,使用了超过50%的钛合金材料,使得飞机整体重量减轻了20%以上,大大提高了其经济性和环保性。

二、航天领域钛合金在航天领域中的应用也非常广泛。

由于航天器的运行环境极其恶劣,需要材料具有高强度、高温、耐腐蚀等性能。

钛合金正是具备这些性能的材料之一。

例如,中国的嫦娥探月工程,使用了大量的钛合金材料,包括航天器的结构件、降落伞支架、太阳能电池支架等。

此外,美国的阿波罗登月计划中,登月舱的外壳也采用了钛合金材料。

三、医疗领域钛合金在医疗领域中的应用也越来越广泛。

由于钛合金具有良好的生物相容性、低密度、高强度等优点,被广泛用于人体植入物的制造。

例如,人工髋关节、人工膝关节、牙种植体等都采用了钛合金材料。

此外,钛合金也被用于制造手术器械、牙科器械等。

四、汽车领域钛合金在汽车领域中的应用还比较有限,但是随着对轻量化的追求,钛合金在汽车领域的应用也将越来越广泛。

钛合金可以替代传统的钢铁材料,可以减轻汽车的重量,提高汽车的燃油效率和性能。

例如,福特GT超级跑车的车身和底盘就采用了钛合金材料,使得整车重量减轻了约250公斤,大大提高了其性能。

五、体育器材领域钛合金在体育器材领域中的应用也越来越广泛。

由于钛合金具有高强度、低密度等优点,可以制造出更加轻盈、坚固的器材。

例如,高尔夫球杆、自行车车架、滑雪板、网球拍等都采用了钛合金材料。

此外,许多运动员也开始使用钛合金做成的装备,以提高其竞技水平。

钛合金的应用现状及发展前景

钛合金的应用现状及发展前景

钛合金的应用现状及发展前景
钛合金是一种新兴的金属材料,它具有良好的力学性能和耐腐蚀性能,可以应用于航空航天、医疗器械、制造工程和其他领域。

根据美国国家材
料和工程科学研究所的数据,钛合金的全球销量在过去几年出现了迅猛增长,预计用于高技术应用的钛合金的需求将在未来增加,正在发展出新型
钛合金材料。

钛合金的主要特点是耐腐蚀性能优异,耐高温、耐热变形以及耐磨损
性能都很好,能够承受较高的应力,并且重量轻,可以用于制造航空航天
结构件以及其他结构件。

钛合金是一种高度耐蚀性材料,可以在潮湿的环
境下稳定运行,可以用于制造电子组件和其他对耐腐蚀性要求高的零部件。

钛合金也可用于药物制剂、水处理、化工仪器和工具、医疗器械制造
等领域,因其抗腐蚀、低磨损、低密度等优点,也应用于汽车、船舶和机
械行业中。

此外,由于其外观漂亮、轻便、易于加工等特点,钛合金也应
用于珠宝、餐饮、化妆品和家用电器等消费领域。

钛行业的创新应用介绍钛行业的创新应用和市场前景

钛行业的创新应用介绍钛行业的创新应用和市场前景

钛行业的创新应用介绍钛行业的创新应用和市场前景钛是一种轻质、高强度、耐腐蚀的金属材料,因其独特的性能,在各个领域都有广泛的应用。

随着科技的发展和工艺的改进,钛行业在创新应用方面取得了重要进展。

本文将介绍钛行业的创新应用和市场前景。

一、航空航天领域钛在航空航天领域的应用是最为广泛和重要的。

由于其轻质、高强度和耐腐蚀性,钛被广泛用于飞机、火箭等航空器的制造中。

钛制品不仅能够减轻飞机的重量,提高燃油效率,还能够增加航空器的耐久性和安全性。

随着航空航天技术的不断进步和发展,对钛行业的需求将持续增长,给钛行业带来了巨大的市场前景。

二、医疗领域钛在医疗领域的应用也越来越广泛。

钛的生物相容性非常好,不会引起人体的排斥反应,因此被广泛应用于人体植入物的制造中。

例如,人工关节、牙种植体、心脏支架等医疗器械都可以采用钛材料制造,提高患者的生活质量和医疗效果。

钛行业的创新应用在医疗领域有着巨大的潜力和市场前景。

三、汽车工业钛在汽车工业中的应用也逐渐增多。

由于钛的轻质和高强度,使用钛材料可以减轻汽车的重量,提高燃油效率和行驶性能。

此外,钛材料还具有良好的抗腐蚀性能,可以延长汽车的使用寿命。

随着对汽车安全性和环保性要求的不断提高,对钛行业在汽车领域的需求将逐渐增加,市场前景广阔。

四、能源领域钛在能源领域的应用也具有重要意义。

钛材料可以用于制造太阳能电池板、风力发电装置等,提高能源的可再生性和清洁性。

此外,钛还可用于制造储氢合金、储电池等设备,为能源储备和利用提供了更多可能性。

随着全球能源需求的增长和环保意识的提升,钛行业在能源领域的创新应用有着巨大的市场潜力。

总结:钛行业在各个领域的创新应用展现了其独特的优势和巨大的市场潜力。

航空航天、医疗、汽车和能源等领域对钛材料的需求将持续增长,给钛行业带来了广阔的市场前景。

随着科技的不断发展和进步,相信钛行业的创新应用将会迎来更多的突破和发展,为人类社会的进步和发展做出更大的贡献。

钛合金的研究应用现状及其发展方向

钛合金的研究应用现状及其发展方向

钛合金的研究应用现状及其发展方向钛合金是以金属钛为基,加入适量的其他元素组成钛合金,其在300-600度时的比强度优于钢和铝合金。

钛的工业化生产是1948年开始的,为航空工业发展的需要,使钛工业以平均每年约8%的增长速度发展。

目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。

使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。

钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。

钛及其合金不仅大量应用在航空、航天工业,而且在化工、石油、冶金、造纸、纺织,机械仪器、能源;医疗卫生等工业中也有着十分重要的应用;在民用工业中的应用也日渐增多。

1、发展历史钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。

第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。

其他许多钛合金都可以看作是Ti-6Al-4V合金的改型。

20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。

耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。

A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。

结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。

另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。

2、原理钛合金是以钛为基础加入其他元素组成的合金。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钛合金在多领域的应用与发展HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】上海大学本科生课程论文论文题目:钛合金在多领域的应用与发展课程名称:课程号:学生姓名:学生学号:所在学院:材料科学与工程学院日期摘要:钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。

世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。

本文综述了钛合金在航空航天飞行器、热氢处理、发动机、高温钛合金、生物医用材料等方面的应用与发展。

关键词:钛合金;航空;氢;发动机;生物医用材料钛合金在航空方面的应用与发展钛合金具有比强度高、耐腐蚀性好、耐高温等优点。

从20世纪50年代开始,钛合金在航空航天领域中得到了迅速的发展。

钛合金是当代飞机和发动机的主要结构材料之一,可以减轻飞机的重量,提高结构效率。

在飞机用材中钛的比例,客机波音777为7%,运输机C-17为%,战斗机F-4为8%,F-15为%,F-22为39%。

高性能航空发动机的发展需求牵引着高温钛合金的发展,钛合金的使用温度逐步提高,从20世纪50年代以Ti-6Al-4V合金为代表的350℃ ,经过IMI679和IMI829提高到了以IMI834合金为代表的600℃。

目前,代表国际先进的高温钛合金有美国的Ti-6242S,Ti-1100,英国的IMI834,俄罗斯的BT36以及中国的Ti-60。

表2为600℃主要高温钛合金的成分及性能特点。

Ti-6242S钛合金是美国于20世纪60年代为了满足改善钛合金高温性能的需要,特别是为了满足喷气发动机使用要求而研制的一种近α型钛合金。

合金的最高使用温度为540℃,室温的σb=930 MPa。

特点是具有强度、蠕变强度、韧性和热稳定性的良好结合,并具有良好的焊接性能,主要应用于燃气涡轮发动机零件,发动机结构板材零件,飞机机体热端零件。

BT36合金是俄罗斯于1992年研制成功的一种使用温度在600~650℃的钛合金。

合金中加入了5%W和约%Y。

加入W对提高合金的热强性有明显作用。

加入微量Y可以明显地细化合金的晶粒,改善了合金的塑性和热稳定性。

Ti60 合金由中国科学院金属研究所在Ti55合金基础上改型设计、宝鸡有色金属加工厂参与研制的一种600℃高温钛合金。

Ti60合金的特点之一是合金中加入了1%Nd(质量分数),通过内氧化方式形成富含Nd、Sn和O的稀土相,降低基体中的氧含量,从而起到净化基体,改善合金热稳定性的作用。

Ti60合金已进行了半工业性中试试验(包括压气机盘模锻)和全面性能测定。

根据国内外研究现状,未来高温钛合金的发展趋势是:(1)研制600℃以上的新型高温钛合金。

可对现有高温钛合金的成分进行调整,改进加工工艺,或研发新的高温钛合金,提高高温钛合金的使用温度。

(2)稀土元素在高温钛合金中的作用尚待进一步研究。

我国研制的含稀土元素的高温钛合金其使用温度已达到600℃ ,其各项性能显示均为良好。

但稀土元素在合金中的机制作用需进一步研究,为含稀土元素的高温钛合金的发展奠定理论基础。

(3)合金朝着多元强化的方向发展。

合金成分的优化越来越重要,Ti-Al-Sn-Zr-Mo-Si-(RE)系近α钛合金占主导地位;Si元素是高温钛合金中必不可少的重要元素。

钛合金在热氢处理方面的应用与发展钛合金热氢处理技术是利用氢致塑性、氢致相变以及钛合金中氢的可逆合金化作用以实现钛氢系统最佳组织结构、改善加工性能的一种新体系、新方法和新手段,利用该技术不仅可以改善钛合金的加工性能,而且可以提高钛制件的使用性能,降低钛产品的制造成本,提高钛合金的加工效率。

钛合金室温塑性低,变形极限低,变形抗力大,冷成形容易开裂,大大限制了钛合金的冷态工艺性;因此,绝大多数钛合金必须在热态下成形,但热变形温度高,流动应力大,应变速率低,特别是对于那些高强、高韧、高模量、耐高温的难变形钛合金,这种现象尤为严重,大大地限制了它们的应用;此外,由于热变形温度高,造成系统或工艺的高温保护困难,费用高;同时,钛合金热加工时对模具材料要求高,要求模具能够在900℃以上的高温下仍需具有足够的强度,对模具选材和制造带来了很大的困难,造成加工周期长、生产费用高等一系列问题;不仅如此,由于钛合金的热变形温度高和变形抗力大的原因,给成形设备也提出了更高的要求,使得现有成形设备加工钛合金结构件的能力大大降低,为研制新成形设备提出了更高的要求,增加了设备研制的费用和难度。

氢对钛合金高温塑性的影响主要表现为(1)流变应力较低(2)高温拉伸塑性性能提高(3)高温镦粗出现第一个裂纹前的变形极限提高。

高温增塑是最早受到关注并得到广泛而深入研究的热氢处理技术方向,国内外学者对此给予了高度重视。

早在上世纪70年代,前苏联学者就致力于这方面的研究工作,一系列的研究表明:钛合金加氢可使合金的热压力加工性能得到改善,表现为热变形流动应力的降低和塑性的提高,使热变形更容易在较低温度下实现轧制、热锻等工序;氢增塑效应对高铝含量的热强钛合金及Ti3Al合金的作用特别明显,对近α和α+β合金也是适用的,但对近β合金几乎没有作用。

Kolachov对Ti3Al基的CT5合金研究发现:虽在1 050~1 250℃的β区温度范围内变形也很困难,但加入%(质量分数)的氢,甚至在900℃下变形达80%也不产生裂纹,塑性提高伴随有屈服强度的降低,其渗氢试样的压缩流变应力仅为未渗氢试样流变应力的1/3。

铸态的以Ti3Al(α2)为强化相的耐热钛合金Ti-9Al-1Mo-3Zr-4Sn的等温镦锻试验表明:渗氢合金的最大变形量可以达到60%,并可以有效地降低合金的变形抗力,σ分别从950℃和900℃的200 MPa和320 MPa降低到50~60MPa和120~140MPa,且氢对合金变形抗力下降的影响程度随温度的上升而降低。

Ti-5Zr-9Al-5Sn-2Mo合金镦锻试验表明:氢含量%(质量分数)的试样在800℃的锻造流变应力比未渗氢试样下降50%左右。

BT16合金镦粗试验表明:在600~850℃试验温度范围内,加入~%(质量分数)的氢,屈服应力降低1/3~1/2。

BT6高温拉伸试验表明:800℃时置入%氢的试样的流变应力比未渗氢试样的流变应力低一半,延伸率由50%提高到105%。

Kerr等人对渗氢Ti-6Al-4V合金进行了等温锻造试验研究,图9和10所示分别是不同氢含量合金在760和820℃时的应力—应变曲线,图11所示是合金在不同温度下氢含量对峰值流动应力的影响曲线。

图9,10和11表明:合金的流动应力随着氢含量的增加而减小,当氢含量达到%(质量分数)时,其流变应力为最低,约为未渗氢合金流变应力的70%;之后,随着氢含量的增加,流变应力反而增加,这主要是因为氢化物TiH2的析出而致。

Birla等人在Ti-6Al-2Sn-4Zr-6Mo合金中加入%(质量分数)氢,30℃时的锻造流变应力比未加氢时,降低30%~35%。

张勇等人对Ti3Al基Ti-25Al-10Nb-3V-1Mo铸态和锻态合金进行热压缩行为研究时发现:氢可以显着降低热压缩的峰值流变应力,在900~1 000℃范围内,铸态的%(质量分数)H渗氢试样的峰值流变应力比未渗氢试样的流变应力降低了37%~53%,锻态的%(质量分数)H渗氢试样的峰值流变应力比未渗氢试样的降低了27%~31%,从流动应力的角度出发,%(质量分数)H可使合金的热压缩温度降低50℃ ,应变速率提高一个数量级;等温压缩时,氢含量增加所产生的组织变化相当于在更高温度压缩所产生的组织变化,随热压温度的提高,Ti3Al相由部分动态再结晶发展到完全动态再结晶,Ti3Al相的体积分数下降,当氢含量达到%(质量分数)时,温度达到1 000℃ ,变形时显示出β相区变形特征。

钛合金氢致热塑性效应在实际生产中具有显着的效果和意义,可以降低等温变形温度50~150℃ ,流变应力下降30%以上,可以采用工艺性更好的模具材料替代现有模具材料,提高模具寿命和金属利用系数。

钛合金中氢的作用具有双重性:一方面,氢作为有害杂质元素对钛合金使用性能有着极为不利的影响;另一方面,可以通过合理有效地控制渗氢、相变、除氢等过程获得适应某种工艺的组织结构以改善其加工性能,否则,氢的积极作用亦不能得到发挥。

需要指出的是,氢的有益作用主要体现在钛合金的加工过程中,无论其加工过程是否加氢,必须利用氢的可逆合金化作用经真空退火使其氢含量恢复到安全水平,以保证钛合金制件在使用中不发生氢脆。

钛合金热氢处理技术是从氢的可逆合金化角度出发,有效地控制钛氢系统中氢含量、存在状态及相变过程,实现改善塑性加工、扩散加工、切削加工和变质加工工艺性能的目的,并已成为一个新型的学科领域。

俄罗斯已经建立了一套完整的技术体系,主要包括热氢处理、氢增塑、氢致密和氢机械加工。

钛合金热氢处理技术有利于全面改善钛合金成形性能、提高加工效率、降低加工难度和提高制件使用性能,可以提升钛合金的加工制造水平,其应用前景良好,并有可能推广到与钛性质相近金属的加工过程之中。

钛合金在发动机方面的应用与发展现代军用战斗机的战术机动性、短距起飞、超音速巡航等优异作战性能在很大程度上依赖于先进的高推重航空发动机的应用,而高推重比航空发动机的发展与高温钛合金的大量应用密切相关。

航空发动机压气机叶片、盘和机匣等零件要求在室温至较高的温度范围内具有高的瞬时强度、持久强度、温蠕变抗力、组织稳定性和高低周疲劳性能。

喷气发动机是飞机的心脏。

发动机的风扇、高压压气机盘件和叶片等转动部件,不仅要承受很大的应力,而且要有一定的耐热性,即要求钛在300~650℃温度下有良好的抗高温强度、抗蠕变性和抗氧化性能。

这样的工况条件,对铝来说温度太高;对钢来说密度太大;钛是最佳的选择。

因此,钛在先进发动机上的应用不断扩大。

在飞机上使用较多的钛合金有Ti-6Al-4V,Ti-8Al-1M-1V,Ti-17,Ti-6242,Ti-6246,TC6,TC9,TC11,Ti-1100,IMI829,IMI834等。

发动机的一个重要性能指标是推重比,即发动机产生的推力与其自重之比。

推重比越高,发动机性能越好。

早期发动机的推重比只有2~3,现在已达到10。

国外正在研制推重比10~20的发动机。

提高推重比,必须提高涡轮前进气的压缩比(进气量指标)与进气温度。

工作温度越高,发动机的热效率越高。

提高推重比也必须提高材料高温下的比强度和比刚度,减轻发动机自身的重量。

据计算,当压缩比达到15∶1时,压气机的出口温度为590℃ ,而当压缩比达到25∶1时,压气机的出口温度就达到620~705℃ ,需要耐热性非常好的钛合金。

相关文档
最新文档