小学数学数与代数知识点整理
人教版-小学数学-六年级-数与代数-知识梳理

人教版小学数学六年级数与代数知识梳理一知识点一:整数1、整数的范围整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。
自然数的个数是无限的,没有最大的自然数。
自然数的基本单位:任何非“0”的自然数都是假设干个“1”组成,所以“1”是自然数的基本单位。
1也是最小的一位数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。
“0”还可以表示起点、分界点等。
“0”是最小的自然数。
自然数的两种意义:如果一个自然数用来表示物体的个数就叫基数;如果一个自然数用来表示物体排列的次序就叫序数。
〔2〕正数正数的定义以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法正数前面也可以加“+”号,例如:+8读作:正八。
“+”号一般可以省略不写。
〔2〕负数负数的定义像-1、-5、-132……这样的数叫做负数。
“一”叫负号。
负数的写法和读法负数前面加“一”号,例如:-15读作:负十五。
数字越大的负数反而越小。
“0”既不是正数,也不是负数。
〔4〕整数与自然数的联系及区别自然数全是整数,整数不全是自然数,还包括负整数。
2、整数的读法和写法数的分级按照我国的计数习惯,整数从个位起,每四个数位是一级。
个位、十位、百位、千位是个级,表示多少个一;万位、十万位、百万位、千万位是万级,表示多少个万位;亿位、十亿位、百亿位、千亿位是亿级,表示多少个亿。
计数单位整数、小数都是按照十进制写出的数,其中一〔个〕、十、百…….是整数的计数单位。
计数单位是按一定顺序排列的。
数位各个计数单位所占的位置叫数位。
如9357中的“5”在右起第二位,即“5”所在的数位是十位。
位数指一个数是由几个数字组成,是含有数位个数,如1234占有四个数位,就是四位数。
十进制计数法十进制是指满十进一,十个一进为十,十个十进位百,十个百进为千……每相邻两个计数单位间的进率都是“十”,这样的计数法叫做十进制计数法。
小学数学1—6年级数与代数知识点汇总

五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。
六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
八、在1—20这些数中:(1既不是素数,也不是合数)
奇数:1、3、5、7、9、11、13、15、17、19。
二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
一、运算定律:
二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)
三、求近似数的方法。
①四舍五入法。②进一法。③去尾法。
四、积与因数、商与被除数的大小比较:
(三)式与方程
01用字母表示数
一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。
一、4×3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
二、一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。
三、一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。
四、5的倍数:个位上的数是5或0。
2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。
偶数:2、4、6、8、10、12、14、16、18、20。
素数:2、3、5、7、11、13、17、19。(共8个,和为77。)
合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)
九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
小学二年级数学知识点总结数与代数

数与代数是小学数学的重要内容,它包含了数的概念和运算,以及代数的初步应用。
小学二年级是数学学习的基础阶段,下面是关于数与代数的知识点总结:一、数的概念与认识1.数的读法和写法:认识个位数、十位数、百位数。
2.数的比较:使用大于、小于、等于符号比较两个数的大小。
3.账数法:学会使用中文的读法写大数。
4.排列、顺序:掌握正序、倒序和顺序写数的方法。
二、数的加减法1.数的加法:掌握数的加法原理和加法法则,进行小数的口算和写法。
2.数的减法:认识减法符号“-”,掌握数的减法原理和减法法则,进行小数的口算和写法。
3.加减法的运算顺序:根据计算顺序进行加减法的综合运算,掌握两步运算的方法。
三、乘法和除法1.数的乘法:认识乘法符号“×”,掌握数的乘法原理和乘法法则,进行小乘法口算。
2.数的除法:学习使用除法符号“÷”,了解数的除法原理和除法法则,进行小除法口算。
3.乘法和除法的关系:掌握乘法和除法的逆运算关系,理解乘法和除法的互逆关系。
四、数的应用:日期和时间、长度和面积1.日期和时间:认识年、月、日、星期,学会写日期,并进行简单的日期计算。
2.长度的测量:认识米、厘米、分米,学会使用简单的长度单位进行测量,并进行长度之间的换算。
3.面积的计算:认识平方厘米和平方米,并进行简单的面积计算。
五、数的图形和图形的应用1.认识图形:认识正方形、长方形、三角形、圆形等基本图形,并学会用简单的方法画出这些图形。
2.表格和图表的应用:了解和使用简单的表格和图表进行数据的整理和分析。
六、分数和小数1.分数的认识:了解分数的概念,认识分数的分子和分母,理解分数与整数的关系。
2.小数的认识:了解小数的概念,认识小数点的作用和写法,学习小数的读法和写法,进行小数的加减法运算。
七、代数的初步应用1.数式:了解数式的概念,学会根据实际情况写出数式,并进行简单的数式计算。
2.方程:学习简单的一元一次方程,并进行解方程的初步应用。
小学数学数与代数知识点汇总

小学数学数与代数知识点汇总一、数与运算1.数的认识:自然数、整数、有理数、实数2.顺序数的比较:大小比较、比大小的符号3.加法与减法:加法和减法的意义、加法和减法的性质、整数的加减法4.乘法与除法:乘法和除法的意义、乘法和除法的性质、整数的乘除法5.数的倍数和因数:整数的倍数、整数的因数、公倍数、最大公约数、最小公倍数6.小数:小数的读法、小数的比较、小数的四则运算7.分数:分数的意义、分数的大小比较、分数的加减法、分数的乘除法8.百分数:百分数的意义、百分数的相互转化、百分数的加减乘除二、代数式和方程1.代数式的认识:代数式的定义、代数式的运算、多项式2.代数式的计算:代数式的约分、代数式的化简、代数式的展开与因式分解3.代数式的应用:根据实际问题编写代数式、代数式的求值4.方程的认识:方程的定义、方程的解、解方程的意义、解方程的方法5.解一元一次方程:一元一次方程的解法、方程的意义、方程的实际应用6.解一元一次不等式:一元一次不等式的解法、不等式的意义、不等式的实际应用7.解一元一次方程组:一元一次方程组的解法、方程组的意义、方程组的实际应用三、数的性质和运算1.数的分类:分数、小数、整数及其运算2.数的性质:数的大小比较、数的相反数、数的绝对值、数的相反数与绝对值的关系3.定量关系:数与长度的关系、数与面积的关系、数与体积的关系4.倍数与公约数:整数的倍数和倍数的性质、整数的公约数和公约数的性质5.比例:比例的意义、比例的性质、比例的应用6.百分数:百分数的意义、百分数的相互转化、加减乘除百分数的方法7.降幂与乘方:降幂与升幂的意义、乘方及其运算法则、次乘方的意义和运算四、数据的应用1.数据的收集:问卷调查、实地调查、统计资料2.数据的整理:频数表、频数图、折线图3.数据的分析:数据的中心趋势、数据的离散程度、数据的比较4.数据的应用:数据的解读、数据的预测、数据的比较和判断五、几何基础1.点、线、面:基本图形的认识、基本图形的命名2.直线与线段:直线、线段、射线的认识和性质3.角的认识:角的定义、角的分类、角的性质4.三角形:三角形的分类、三角形的性质、等腰三角形、等边三角形5.四边形:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质6.圆:圆的性质、圆的周长和面积7.空间几何图形:长方体、正方体、棱柱、棱锥、棱台、球体等的性质六、图形的应用1.图形的绘制:使用尺规作图仪器绘制图形2.图形的变换:平移、旋转、对称、放缩等图形的变换3.图形的投影:直线的平行投影、线段的视、上、右投影、线段的和、差投影以上是小学数学中的数与代数知识点汇总,希望对你的学习有所帮助。
小学数学总复习数与代数知识点与例题

小学数学总复习数与代数知识点与例题数与代数一、数的认识——整数1、数的分类:数可以分为整数和小数两种。
2、正数、负数:正数大于0,负数小于0,0既不是正数也不是负数。
3、数位顺序表:数位顺序表可以帮助我们表示和读写较大的整数。
4、数的读法和写法:读法是从高位到低位,写法是从高位到低位,没有单位的数位上直接写数字0.5、多位数的改写和省略尾数:将一个较大的数改写成用“万”或“亿”作单位的数,近似数时用四舍五入法舍去尾数。
6、倍数和因数:自然数a和b的积c就是a和b的倍数,a和b就是c的因数。
7、2、5、3的倍数特征:2的倍数的个位数是偶数,5的倍数的个位数是0或5,3的倍数各位数字之和是3的倍数。
5的倍数特征:个位上是0或5的数。
3的倍数特征:各个数位上的数字之和是3的倍数,这个数就是3的倍数。
同时是2、5、3的倍数的特征:各个数位上的数字和是3的倍数,且个位上是5.例3:在12、15、20、30、85、98、120、234和1200中,2的倍数有5个,5的倍数有3个,3的倍数有5个,既是2的倍数又是5的倍数有1个,既是3的倍数又是5的倍数有0个。
要使31□这个数有因数3,□里可以填2.要使43□既是2的倍数,又是3的倍数,□里可以填6.一个三位数,既有因数2和3,又是5的倍数,这个数最小是120.定义:①是2的倍数的数叫做偶数,最小的偶数是2.②不是2的倍数的数叫做奇数,最小的奇数是1.数的奇偶性:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数奇数×奇数=奇数定义:①一个数只有1和它本身两个因数,像这样的数叫做质数(或素数)。
②一个数除了1和它本身还有别的因数,像这样的数叫做合数。
1既不是质数,也不是合数;最小的质数是2,最小的合数是4;2是唯一的偶质数。
分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
例4:在自然数1-20中,奇数有10个,偶数有10个,质数有8个,合数有12个,既是偶数又是质数的有1个,既是奇数又是合数的有0个。
小学六年级数学知识点归纳

小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
小学数学数与代数知识点整理

小学数学数与代数知识点整理第一章数和数的运算一、概念(一)整数1 整数的意义:自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a ;如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的因数。
(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(3)常用规律:①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
③一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
④一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
⑥能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
小学数学数与代数知识点整理

小学数学数与代数知识点整理一、数的大小和比较1.数的比较:数的大小关系,如大于、小于、等于。
2.数的顺序:自然数、整数、有理数的大小顺序。
二、数的性质和运算1.数的分类:自然数、整数、有理数、无理数。
2.数的性质:奇数、偶数、质数、合数。
3.数的运算:加法、减法、乘法、除法的基本概念和运算规则。
4.数的整除性:倍数、约数、公因数、最大公约数等概念。
三、数的分数表示和运算1.分数的概念:分子、分母、真分数、假分数。
2.分数与整数的运算:加法、减法、乘法、除法。
3.分数相比较:大小比较和等值判断。
四、数的小数表示和运算1.小数的定义:小数点的概念。
2.小数的读法和写法:整数、小数部分的读法和写法。
3.小数与分数的相互转化。
4.小数运算:加法、减法、乘法、除法。
五、数的倍数和约数1.倍数的概念:一个数能整除另一个数。
2.约数的概念:一个数能被另一个数整除。
3.最大公约数:两个数公共的约数中最大的那个数。
4.最小公倍数:两个数公共的倍数中最小的那个数。
六、数的代数式和数的应用1.代数式的概念:数、字母和运算符号的组合。
2.代数式的计算:代数式的加减乘除运算。
3.代数式的应用:通过代数式解决实际问题。
七、数的方程式1.方程式的概念:等号连接的代数式。
2.一元一次方程式:解方程的方法和步骤。
3.方程式的应用:通过方程式解决实际问题。
八、数的图形的认识与应用1.数的图形的概念:点、线、面。
2.平凡形的认识:正方形、长方形、三角形、圆形、梯形等。
3.图形的属性:边、角、面积、周长等。
4.图形的运算:图形的加法和减法。
总结:小学数学数与代数知识点主要包括数的大小和比较、数的性质和运算、数的分数表示和运算、数的小数表示和运算、数的倍数和约数、数的代数式和数的应用、数的方程式以及数的图形的认识与应用等内容。
在学习过程中,要注重理论与实践相结合,通过解决实际问题来巩固所学知识。
同时,要培养学生的计算和推理能力,让他们能够自主思考和解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学数与代数知识点整理第一章数和数的运算一、概念(一)整数1 整数的意义:自然数和0 都是整数。
2自然数:我们在数物体的时候,用来表示物体个数的1 , 2, 3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位练习题:(1)分数的单位是1/8 的最大真分数是(),它至少再添上()个这样的分数单位就成了假分数(2)在1/4 、15/24 、7/4 、9/12 四个数中,分数单位相同的是(),相等的分数是()和()。
(3)3/7 的分子加上6,要使分数的大小不变,分母应加上()。
5 数的整除:整数a除以整数b(b工0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a ;如果数a能被数b (b工0)整除,a就叫做b的倍数,b就叫做a的因数(或a 的因数)。
倍数和因数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的因数。
(1 )一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12…… 其中最小的倍数是3 ,没有最大的倍数。
(3)常用规律:①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
③一个数的各位上的数的和能被3 整除,这个数就能被3 整除,例如:12、108、204 都能被3整除。
④一个数各位数上的和能被9 整除,这个数就能被9 整除。
能被3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。
⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
⑥能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
⑦质数和合数的概念:一个数,如果只有1 和它本身两个因数,这样的数叫做质数(或素数),100 以内的质数有:2、3、5、7、11、13、17、…79、83、89、97。
一个数,如果除了 1 和它本身还有别的因数,这样的数叫做 合数 ,例如 4、6、8、9、12 都 是合数。
1 不是质数也不是合数,自然数除了 1 外,不是质数就是合数。
如果把自然数按其因数的个 数的不同分类,可分为质数、合数和 1。
每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合 数的质因数,例如15=3 >5, 3和5叫做15的质因数。
(把一个合数用质因数相乘的形式表 示出来,叫做分解质因数。
练习题: 由 4、5、6 三个数字可以组成()个不重复的三位数,这些数中是 2 的倍数的有( ),是 5的倍数的有( ),有( )个是 3的倍数,同时是 3 和 5 的倍数有( )。
(4)公因数和公倍数的概念:① 几个数公有的因数,叫做这几个数的 公因数。
其中最大的一个,叫做这几个数的最大公因 因数,例如 12的因数有 1、2、3、4、6、12;18的因数有 1、2、3、6、9、18。
其中, 1、2、3、6是12和 1 8的公因数, 6是它们的最大公因数。
② 几个数公有的倍数,叫做这几个数的 公倍数,其中最小的一个,叫做这几个数的最小公倍数,女口 2的倍数有2、4、6、8……;3的倍数有3、6、9、12……其中6、12、18…… 是2、 3 的公倍数, 6是它们的最小公倍数。
③ 公因数只有 1 的两个数,叫做 互质数, 成互质关系的两个数,有下列几种情况:1 和任何自然数互质;相邻的两个自然数互质;两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质练习题: 一、填空题。
1、 因为 3>6=18,所以( )是( )的因数, 18 是6 的( )2、 在自然数1〜20中,质数分别有( )。
3、个位是( 最大的偶数是( )的自然数,叫做奇数。
两位数中,最小的奇数是( ),4、 同时是 2, 5 的倍数的最大两位数是()。
5、 一个数既是 9 的因数、又是 9 的倍数,这个数可能是(6、有一个两位数5□,如果它是5的倍数,□里填(以填(),如果它同时是2、5的倍数,□里可以填(7、 三个连续的偶数和是 96,这三个数分别是( )、( 8、 226 至少增加( )就是 3 的倍数,至少减少( 9、两个连续的质数是( )和( );两个连续的合数是( )和( )10、用质数填一填。
22=() +() =() +() 11、 100 以内最大的质数与最小的合数的和是(),差是( )。
12、 一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是( )。
二、判断题。
1 、自然数按是否是2 的倍数,分成了奇数和偶数。
())。
如果它是3的倍数,□里可)。
)、( )。
)就是 5 的倍数。
2 、自然数按因数个数的不同,分成了质数和合数。
( ) 3、13,51,47,97 这几个数都是质数。
( ) 4、在 10、15、20中,10是20的因数, 15 是10 的倍数。
( ) 5 、几个质数的积一定是偶数。
( )三、选择题。
2、判定下面的结果是偶数还是奇数。
A 、785 +547 的和是( —465的结果是()C 、75 >71的积是() 3、 同时是2、3、5的倍数的数是( )A .奇数4、 36 的因数共有()个。
A. 6 个5、如果 a 表示自然数, 那么下面一定可以表示偶数的是 (二)小数1小数的意义:把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、 千分之几……可以用小数表示;一位小数表示十分之几,两位小数表示百分之几,三位小数 表示千分之几…… 一个小数由 整数部分、小数部分和小数点部分组成。
数中的圆点叫做小 数点,小数点左边的数叫做 整数部分 ,小数点右边的数叫做 小数部分 在小数里,每相邻两个计数单位之间的进率都是 10。
2 小数的分类纯小数: 整数部分是零的小数,叫做纯小数。
例如: 0.25 、 0.368 都是纯小数。
带小数: 整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
有限小数: 小数部分的数位是有限的小数, 叫做有限小数。
例如: 41.7 、 25.3 、 0.23 都 是有限小数。
无限小数: 小 数部分的 数位是无限的小 数, 叫做无限小 数。
例如: 4.33 3.1415926无限不循环小数: 一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不 循环小数。
例如:n循环小数: 一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循 环小数。
例如: 3.555 …… 0.0333 …… 12.109109 …… 练习题:5为的商用小数表示是( ),保留三位小数约是()。
(三)分数1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“ 1”平均分成多 少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“1 ”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类真分数:假分数: 带分数:3 约分: 分子比分母小的分数叫做真分数。
真分数小于 1 。
分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于 1。
注: 分子分母是互质数的分数,叫做最简分数学习资料1、一个边长是质数的正方形,它的面积一定是( ) A. 合数 B. 质数 B 、675+54D 、奇数>奇数的积是()B .偶数) A. a+1 B. a+2 C. 2a学习资料收集于网络,仅供参考学习资料收集于网络,仅供参考4、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%" 来表示。
百分号是表示百分数的符号。
二方法(一)数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字每。
一级末尾的0 都不读出来,其它数位连续有几个0 都只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。
练习题:1、由8个亿,8个千万,7 个万,6 个千,5 个百组成的数是(),这个数读作(),改写成用“万”作单位的数是(),省略亿后面的尾数是()。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8. 百分数的写法:通常不写成分数形式,而在原来的分子后面加上百分号“ % ”来表示。
(二)数的改写:一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数。
例如把1254300000 改写成以万做单位的数是125430 万;改写成以亿做单位的数12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。
例如:1302490015 省略亿后面的尾数是13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4 小,就把尾数去掉;如果尾数的最高位上的数是5 或者比5 大,就把尾数舍去,并向它的前一位进1。
例如:省略345900 万后面的尾数约是35 万。
省略4725097420 亿后面的尾数约是47 亿。