雾天图像清晰化理论与方法研究
雾天降质图像的清晰化技术研究

雾天降质图像的清晰化技术研究雾天降质图像的清晰化技术研究引言雾天降质图像是指在雾霾等恶劣环境中拍摄的图像,由于大气散射和光线的交互作用,图像会出现模糊、失真等降质现象,降低了图像的清晰度和视觉效果。
随着现代科技的发展和图像处理技术的成熟,对于雾天降质图像的清晰化技术的研究和应用具有重要的意义。
1. 雾霾成因及对图像质量的影响雾霾主要是由于大气中的细颗粒物质和水汽的聚集,导致光线被散射和吸收,使得远处的目标物体无法清晰地显示在图像中。
这种大气散射现象会引起图像的模糊、失真、边缘模糊和细节丢失等问题,严重影响了图像质量和可视性。
2. 雾天降质图像清晰化技术2.1 图像增强图像增强是最常见的一种清晰化技术,通过调整图像的亮度、对比度、色彩等参数来提高图像的整体质量。
其中,直方图均衡化、灰度拉伸和颜色校正是常用的增强方法。
这些方法可以有效地改善雾天降质图像的视觉效果,使得图像的细节更加清晰可见。
2.2 大气光照估计大气光照估计是在雾天降质图像中获得大气光照分布的一种方法。
通过计算图像中的全局光照分布,可以将图像中的大气散射效应减弱,提高图像的清晰度。
该方法需要从图像中估计出雾霾的程度,并计算出光照衰减因子,进而恢复出真实的目标物体信息。
2.3 多尺度图像分解多尺度图像分解是将图像分解成多个分辨率的子图像,分别处理不同尺度的图像细节,再将其合并为重构的清晰图像。
常见的多尺度图像分解方法有小波变换和金字塔分解方法。
这些方法可以有效地降低大气散射对图像细节的影响,提高图像的清晰度。
3. 雾天降质图像清晰化技术的应用雾天降质图像清晰化技术在许多领域都有广泛的应用,如交通监控、图像识别、无人驾驶等。
在交通监控中,通过清晰化处理雾天图像可以提高交通事故的预警能力。
在图像识别中,清晰化处理可以提高图像的分析和识别能力,对于人脸识别、物体检测等任务有重要的影响。
在无人驾驶中,清晰化处理可以提高车辆对前方障碍物的识别能力,减少交通事故的发生。
图像去雾技术研究进展

图像去雾技术探究进展一、引言雾霾天气给城市生活带来了很大的困扰,不仅降低了人们的生活质量,也给城市管理者带来了很大的挑战。
在此背景下,图像去雾技术的探究迅速进步,在改善图像质量的同时,也为我们熟识雾霾天气提供了一种新的途径。
本文将详尽介绍图像去雾技术的探究进展,包括基础算法、改进算法以及应用领域。
二、基础算法图像去雾的基础算法主要有两种,分别是单幅图像去雾算法和多幅图像去雾算法。
1. 单幅图像去雾算法单幅图像去雾算法是最早提出的一种算法,它通过从单幅图像中预估雾的传输矩阵来恢复明晰的图像。
最常见的算法是使用暗通道先验原理进行预估。
该算法假设在绝大多数的非雾像素区域中,至少存在一个颜色通道的像素值靠近于0,通过计算每个像素点在颜色通道中的最小值,可以预估出雾的浓度和传输矩阵,从而实现图像去雾的效果。
2. 多幅图像去雾算法多幅图像去雾算法是在单幅算法的基础上进步起来的。
由于单幅图像去雾算法需要对雾的传输矩阵进行预估,这个过程中很难准确地预估雾的浓度和传输矩阵。
为了解决这个问题,探究者们提出了多幅图像去雾算法。
这种算法通过利用多幅具有不同对比度的图像,来进行雾的浓度和传输矩阵的预估,从而提高了去雾效果。
三、改进算法虽然基础算法在一定程度上可以去除雾霾的影响,但是依旧存在一些问题,如去雾结果中可能会出现颜色失真、细节丢失等状况。
为了进一步改善去雾效果,探究者们提出了一系列的改进算法。
1. 多标准算法多标准算法是一种常用的改进算法,它通过将图像分解为多个标准的子图像,然后对每个子图像进行去雾处理,再将处理结果进行融合。
这种算法可以充分利用图像的局部特征,并且能够提高去雾结果的质量。
2. 深度进修算法深度进修算法是目前探究较为活跃的一种改进算法。
它通过构建深度神经网络模型,利用大量的真实雾霾图像训练模型,从而实现对雾霾图像的去雾。
深度进修算法不仅可以提高去除雾霾的效果,还可以缩减人工干预,提高算法的自动化程度。
基于大气散射模型的雾霾天道路图像清晰化

基于大气散射模型的雾霾天道路图像清晰化基于大气散射模型的雾霾天道路图像清晰化一、引言近年来,雾霾天气持续加剧,给人们的生活和交通出行带来了很大的困扰。
雾霾天气中的道路图像常常受到大气粒子的散射影响,导致图像模糊不清,给车辆驾驶和交通监控带来了安全隐患。
因此,研究如何对雾霾天道路图像进行清晰化处理,对于提高交通安全性和可视化效果具有重要意义。
二、雾霾天大气散射模型雾霾天气中的道路图像模糊常常是由大气中的颗粒物散射引起的。
大气散射模型是描述光在大气中传播过程的数学模型。
根据光在大气中的传播特性,常用的大气散射模型包括Mie散射模型和Rayleigh散射模型。
1. Mie散射模型Mie散射模型适用于颗粒物尺寸较大的情况,例如大气中的雾霾颗粒。
Mie散射模型可以描述光在颗粒上的散射和吸收过程。
在图像处理中,可以利用Mie散射模型对雾霾天道路图像进行去雾处理。
该方法主要通过估计图像中散射光的强度,消除雾霾颗粒造成的影响,使道路图像恢复清晰度。
2. Rayleigh散射模型Rayleigh散射模型适用于颗粒物尺寸远小于光波长的情况。
在雾霾天气中,颗粒物的尺寸通常较小,因此Rayleigh散射模型更适用于描述光在大气中的传播。
然而,在实际应用中,Rayleigh散射模型对雾霾天道路图像的清晰化处理效果较差。
三、基于大气散射模型的道路图像清晰化方法1. 视频图像去雾算法雾霾天气中的道路图像往往是由连续的视频图像组成的。
因此,可以利用视频图像的时空信息,结合大气散射模型进行去雾处理。
该方法首先对视频图像序列进行背景建模,估计每帧图像中的散射光分布。
然后根据大气散射模型,去除散射光的影响,最终得到清晰的道路图像。
2. 多尺度图像去雾算法基于大气散射模型的道路图像清晰化还可以利用多尺度图像处理技术。
该方法通过将道路图像分解为不同尺度的图像,分别进行去雾处理。
首先对图像进行小波变换,得到不同尺度的图像分量。
然后根据大气散射模型,对每个尺度的图像进行去雾处理。
图像去雾方法和评价及其应用研究

图像去雾方法和评价及其应用研究图像去雾方法和评价及其应用研究一、引言在自然环境中,雾是一种常见的气象现象。
不可避免地,雾会影响人们对远距离物体的识别和辨认能力,同时也降低了图像的质量。
因此,图像去雾技术的研究和应用变得越来越重要。
本文将介绍图像去雾的基本原理和常见方法,并重点探讨目前应用于图像去雾评价的指标和方法。
二、图像去雾方法图像去雾的目标是恢复被雾遮挡的真实场景。
目前,已经有多种图像去雾方法被提出和研究。
根据去雾方法的基本原理,可以将图像去雾方法分为物理模型方法和统计模型方法。
1. 物理模型方法物理模型方法基于对雾的形成机制进行建模和分析,通过估计雾的传输模型来去除图像中的雾。
典型的物理模型方法有海平面模型、单一scatter模型和双scatter模型等。
(1)海平面模型海平面模型认为景物表面具有 Lambertian 反射特性,雾的光传输模型可以表示为 I(x) = J(x)t(x) + A(1 - t(x)),其中I(x) 和 J(x) 分别表示观测到的雾图像和无雾图像在像素 x 处的亮度值,t(x) 表示像素 x 处的透射率,A 表示大气光值。
根据这个模型,可以通过估计透射率 t(x) 和大气光值 A 来去除图像中的雾。
(2)单一scatter模型单一scatter模型认为雾粒子只发生一次散射,透射率可以通过改进的Retinex算法进行估计。
改进的Retinex算法可以通过最小二乘法和约束优化方法去除雾图像中的散射成分。
(3)双scatter模型双scatter模型认为雾粒子发生了两次散射,透射率可以通过解半无限光传输方程进行估计。
然后可以利用估计的透射率和大气光值去除雾图像中的散射成分。
2. 统计模型方法统计模型方法通过研究和利用图像中不同区域的统计特性来去除雾。
典型的统计模型方法有基于局部特征的方法和基于全局特征的方法。
(1)基于局部特征的方法基于局部特征的方法主要通过分析图像的纹理信息和对比度来去除雾。
雾天退化图像的清晰化方法研究的开题报告

雾天退化图像的清晰化方法研究的开题报告题目:雾天退化图像的清晰化方法研究研究目的和意义:随着社会的发展,图像处理技术在物体识别、人机交互、虚拟现实等领域得到了广泛应用。
然而,在环境不良的条件下拍摄的图像往往存在着雾天退化现象,即图像显示模糊、色彩失真、细节模糊等,严重影响了图像的质量和增强了图像处理的难度。
因此,对于雾天退化图像的清晰化方法的研究具有重要的意义,对于提高图像质量、增强图像处理的效果具有实际应用价值。
研究内容:本文将从以下几个方面进行研究:1. 雾天退化图像的成因和特点分析:对雾天退化图像的成因进行深入的研究,以及雾天退化图像的特点进行分析,为研究清晰化方法提供基础。
2. 基于传统算法的清晰化方法:通过对基于传统算法(如直方图均衡化、中值滤波、锐化等)的清晰化方法进行研究和实验验证,给出相应的优缺点和适用范围,为后续研究提供基础。
3. 基于深度学习算法的清晰化方法:针对深度学习算法在图像处理领域的优势,结合卷积神经网络(CNN)等深度学习算法,提出对雾天退化图像进行清晰化的方法,为图像处理提高效果提供新思路。
预期结果:通过上述研究,预期可以得到以下几个结果:1. 对雾天退化图像成因和特点有更加深入的认识。
2. 对传统清晰化算法在雾天退化图像中的效果进行了充分的研究和实验验证。
3. 针对深度学习算法在图像处理领域的优势,提出基于CNN等深度学习算法的雾天退化图像清晰化方法,并得到相应的实验验证。
参考文献:1. Zhang, K., Patel, V. M., & Chellappa, R. (2018). Densely connected pyramid dehazing network. IEEE Conference on Computer Vision and Pattern Recognition.2. He, K., Sun, J., & Tang, X. (2009). Single Image Haze Removal Using Dark Channel Prior. IEEE Transactions on Pattern Analysis and Machine Intelligence.3. Berman, D., Treiber, A., & Avidan, S. (2016). Non-local Image Dehazing. IEEE Conference on Computer Vision and Pattern Recognition.。
基于Retinex模型的雾天图像清晰化算法

基于Retinex模型的雾天图像清晰化算法黄山风景区全年雨雾天气近200天,常规的视频监控系统在这种天气下,很难发挥作用。
为了解决这个问题,黄山针对雾天图像对比度降低的退化现象,提出了一种快速的对比度增强算法。
通过简单变换后发现,大气散射模型的数学表达式符合Retinex模型,因此采用Retinex算法来提高图像的对比度。
同时提出了一种新的平滑保边滤波,用来快速估计Retinex算法中的照度。
它的每次迭代仅需要三次均值滤波,时间复杂度低。
对于彩色图像,通过非线性指数增强图像的饱和度。
实验结果表明,提出的清晰化算法能有效增强雾天图像的对比度(特别是降质严重的低对比度区域),改善彩色图像的色彩,同时较好的保持图像的边缘。
标签:雾;Retinex;对比度;保边滤波;饱和度1、引言黄山,素以奇伟绝俗、灵秀多姿著称于世。
其全年雨雾天气近200天,弥漫在空中的雾气模糊了人们的视线,使得景物的能见度大幅降低,图像中蕴含的许多特征都被覆盖或模糊。
并且图像退化程度跟图像景物到摄像头的距离相关,距离越远,距离越远,退化越严重。
因此,这种退化在空间上是不均匀的。
图像去雾算法主要经历了3个研究阶段:传统图像增强方法,比如直方图处理[1][2]、小波方法[3]和retinex[4]等。
由于雾天退化图像的空间不均匀,这类方法效果有限。
基于物理模型的多图像(或多数据源)复原方法。
由于退化模型与成像距离密切相关,而基于单幅图像很难获得准确的深度信息。
因此,这类方法通过多图像(或多数据源)得到图像深度信息后利用物理模型达到复原的目的。
Narasimhna 等人提出了多种提取场景深度信息的方法,有些需要用到不同天气状态下相同景物的图像[5],有些利用偏振光的方法[6]。
基于大气散射模型的方法能够在雾天图像增强上达到较好的效果,但要求多图像(或多数据源),因此在实际应用上具有一定的局限性。
基于物理模型的单幅图像复原方法。
由于考虑了雾天成像的物理模型和仅使用单幅图像,这类方法是近年来研究的热点和难点,取得了很大的进展。
雾天条件下图像的恢复研究的开题报告

雾天条件下图像的恢复研究的开题报告文献综述:雾天天气对图像的影响十分显著,会使图像变得模糊、失真、色彩偏差严重,给人类的视觉观感以及计算机视觉算法的准确性带来了很大的影响。
因此,对于雾天条件下图像的恢复的研究一直是计算机视觉、图像处理领域的热点问题之一。
近年来,国内外学者对于雾天条件下图像恢复的算法进行了广泛的研究。
研究结果可以分为两种主要的方向:一种是基于图像退化模型的图像去雾算法,另一种则是基于深度学习的图像去雾算法。
1. 基于图像退化模型的图像去雾算法通过建立雾天天气的图像退化模型,来恢复图像的清晰度。
其中,常见的模型为简单的线性模型,即将雾天图像分解为雾图像和场景图像两个部分,从而将去雾过程简化为去除雾图像的过程。
对于雾图像的去除又可分为以下几种方式:(1)固有图像分解法固有图像分解(intrinsic image decomposition)可以将雾图像分解为固有图像和雾图像两部分,进而提取雾图像的深度信息,并基于深度信息来进行图像去雾处理。
(2)暗通道先验法暗通道先验法(dark channel prior)是一种基于物理学原理的去雾算法,该算法基于“任何天空区域上的像素在某种颜色通道上至少有一个值非常小”,从而提出了类似“暗通道”的概念,并以此来推理出雾世界中的深度信息。
(3)多尺度分解法多尺度分解法是将图像进行多尺度分解,并使用多尺度信息来辅助图像去雾处理。
该方法被广泛应用于加速去雾算法的运算速度,同时在增加去雾的效果上也有很好的表现。
2. 基于深度学习的图像去雾算法深度学习在图像去雾中发挥了非常重要的作用。
可以通过构建深度学习模型来进行雾天图像的恢复。
其中,更为流行的是针对图像去雾的卷积神经网络(CNN),其可以直接学习图像的高层次特征,并在反卷积的过程中恢复出原始图像。
研究内容:本论文主要是针对雾天条件下图像的恢复研究,并基于此设计出一组基于深度学习的图像去雾算法。
具体的研究内容如下:1. 对雾天天气下的图像恢复技术深入研究,包括基于图像退化模型的图像去雾算法以及基于深度学习的图像去雾算法。
雾天图像清晰化方法及应用

( 2 )
( 7 )
在上述 2种成像机制的共同作用下, 摄像机接 ( 3 )
搜索步骤如下: 1 ) 任意给定一个偏小的方差 σ , 代入( 5 ) 式得 0 到初始的正态分布 y , 同时计算( 6 ) 式得到 t 。 0 2 ) 令 σ =σ , 代入( 5 ) 式计算新的正态分 0 +δ 布y , 同时计算( 6 ) 式得到 t 。 1 3 ) 判断是否 t t , 如果是, 令t , 转步骤 1 0 1 =t 0 1 ) ; 否则所得到的以 μ为均值,σ为标准差的正态 分布即为最佳近似正态分布。 2 . 2 天空阈值的确定
A b s t r a c t :A i m i n gt od e g r a d e dp h e n o m e n ao f i m a g e s i nf o g g yw e a t h e r ,a n e we n t i r e l y s e l f a d a p t i n g m e t h o do f i m a g e c l e a r n e s s w a s p r o p o s e da c c o r d i n gt oa na t m o s p h e r i cm o d e l .U n d e r t h eg r a yd i s t r i b u t i n gc h a r a c t e r i s t i co f a ni m a g e ,t h eo p t i m a l , t h e g r a y m e a no f t h e s k y d i s t r i b u t i o nc a nb e o b t a i n e da c n o r m a l d i s t r i b u t i o no f t h e g r a y f o r s k y r e g i o nc a nb e g a i n e d . T h e n c o r d i n gt ot h eo p t i m a l n o r m a l d i s t r i b u t i o n .S i m u l t a n e o u s l y ,t h e s a m e d e p t hn e i g h b o r h o o do f i m a g e c a nb e d i v i d e db y t h e a ,a n dt h e e q u a t i o n s c a nb e l i s t e du s i n g a t m o s p h e r i c m o d e l f o r g e t t i n g t h e v a l u e s o f n o r m a l i z e dr a r i t h m e t i co f g r a y h i s t o g r a m d i a n c e .T h e r e b y ,t h eo v e r c a s t o f i m a g ec a nb e c l e a r e d .E x p e r i m e n t a l r e s u l t s h o w s t h a t t h i s m e t h o dc a ne f f e c t i v e l y i m p r o v e f o g g yw e a t h e r i m a g e s . K e yw o r d s :a t m o s p h e r i cm o d e l ;c l e a r n e s s ;n o r m a l d i s t r i b u t i o n ;d e p t hn e i g h b o r h o o d ;n o r m a l i z e dr a d i a n c e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密 级: 分类号: TP391.4
Hefei University of Technology
硕士学位论文
MASTER’S DISSERTATION
论文题目: 雾天图像清晰化理论与方法研究
学位类别:
学历硕士
专业名称:
计算机应用技术
作者姓名:
王晶
导师姓名:
万方数据
致谢
研究生生活即将结束,在毕业论文完成之际,谨向在我读硕士期间给与我 指导、关心和帮助的导师、同学和家人表示诚挚的感谢!
首先,我要衷心感谢我的授业恩师汪荣贵教授。在两年多的时间里,导师 为我们创造了良好的学习环境和大量实践锻炼的机会,使我能够顺利地完成硕 士阶段的学业和科研任务,同时在理论和实践方面都有很大的提高。在大论文 的撰写过程中,汪老师精心指导,提出许多宝贵的意见,并对我的论文耐心地 进行多次修改。汪老师渊博的知识、严谨的治学态度、渊博的专业知识和敏锐 的学术洞察力,为我树立了学习的榜样,对我的一生的工作与学习都会产生深 远的影响。
汪荣贵 教授
完成时间:
2014 年 04 月
万方数据
合肥工业大学 学历硕士学位论文
雾天图像清晰化理论与方法研究
作者姓名: 指导教师: 专业名称: 研究方向:
王晶 汪荣贵 教授 计算机应用技术 人工智能及其应用
2014 年 04 月
万方数据
A Dissertation Subm Nhomakorabeatted for the Degree of Master
感谢董俊鹏、秦飞、梁启香、曾佳、王宇、陆海俊师弟师妹们,为我的研 究生生活增添了许多欢乐。
特别地,我要感谢我的父母,感谢他们对我无微不至的关怀和照顾,在我 多年的求学过程中,给与我的巨大的支持和鼓励,给我提供了强大的精神力量 和物质后盾,为我的成长花费了无数的精力和心血。
最后我要感谢的是合肥工业大学这片热土,我最美好的青春岁月在这里度 过,它为我的成长提供了优越的环境。
感谢计算机与信息学院办公室曹航、徐静等各位老师在日常事务中及时为 我们提供各种帮助。
感谢我的同窗挚友:张冬梅、李想、蒋守欢、齐立立,他们是我研究生阶 段的好伙伴,一直以来我们相互鼓励,相互鼓励,在写大论文的过程中共同探 讨和交流,对我研究生的学习和论文的完成起着重要的推进作用。
感谢傅剑峰、周良、沈法琳、游生福、戴经成和查炜等师兄师姐给予的多 方面帮助和支持。
1) This dissertation analyzed and discussed the research background of image enhancement and image restoration in detail. The basic principles of several typical hazy image clarification methods were expounded, and the advantages and disadvantages of these algorithms were analyzed.
4) 选取若干户外雾天视频图像,使用本文算法进行实验。实验结果表明, 与以往的经典的雾天清晰化方法对比,本文的算法获得了较好的视觉效果,在 图像细节恢复的同时,原始的色彩得到了保持,且保证了算法的效率。
关键词: 图像增强; 图像复原; 自适应色彩均衡化; 暗原色先验; 均值漂移
II
万方数据
ABSTRACT
Equalization; Dark Channel Prior; Mean Shift
IV 万方数据
目录
第一章 绪论 ........................................................................................................... 1 1.1 课题研究背景与意义 ................................................................................... 1 1.2 国内外研究现状 ........................................................................................... 1 1.3 本文的主要研究工作和结构安排 ................................................................ 5
3) For the high complexity of medium transmission computing, He’s dark channel prior knowledge can not satisfy the real-time requirement when enhancing hazy image. A new high precision and fast computing technology is proposed for estimating transmission and haze-removal in this dissertation. First of all, this paper appropriately improved mean shift algorithm, and then precisely figured the transmission map obtained by dark channel prior algorithm through improved mean shift. The proposed algorithm was introduced into simple image haze remove using dark channel. The algorithm eliminates the block diagram and halo phenomenon of the transmission map, and solves the problem of rapid calculation for the high
Research of Clearness Theory and Methods for Fog-Degraded Images
By Wang Jing
万方数据
Hefei University of Technology Hefei, Anhui, P.R.China April, 2014
万方数据
1) 对图像增强和图像复原的研究背景进行了比较细致的分析和讨论,阐 述了若干比较典型的雾天图像清晰化算法的基本原理,并分析了这些算法的优 缺点。
2) 针对自动色彩均衡化算法在雾天图像增强中不能很好的保持图像原始 色彩信息的不足,提出一种双选像素点的局部自适应 ACE 算法。首先将获得的 图像从 RGB 色彩空间变换到 YCbCr 色彩空间中,然后利用亮度图像的梯度信息 和图像的局部信息进行双层像素点选择,最后采用局部自适应滤波调整 ACE 算 法中的亮度控制函数。该算法不仅具有较好的色彩保持性质,而且具有较快的 计算速度。
III
万方数据
precision transmission. 4) This paper implemented experiments on some outdoor foggy images. The
results show that the improved algorithms get better visual effect, keep the original color when restoring image detail and ensure the efficiency compared with the conventional classical fog clearness methods. KEYWORDS: Image Enhancement; Image Restoration; Automatic Color
2) For the deficiency of the Automatic Color Equalization algorithm can not keep the original color information well when using for hazy image enhancement, a double selection pixel of local adaptive ACE algorithm was proposed. The proposed algorithm transformed the obtained images from the RGB color space to the YCbCr color space firstly, and then employed gradient information of the luminance image and local information of the image to select pixels in double layer. Lastly, it adjusted the brightness control function in ACE algorithm with locally adaptive filter. The algorithm is not only good at color retention in nature, but also calculating fast.
In bad weather, such as fog and haze, the brightness and color of images acquired by imaging device are affected by the scattering particles in the atmosphere. This results in severely degrading of image quality and great reduction of the application value of videos and images. A fast and efficient algorithm for image clarification is proposed and implemented based on in-depth study for image enhancement and restoration methods which are respectively using the increase in contrast and fog degradation mechanism. The proposed research results are evaluated by subjective observation and objective data analysis. The main contents are as follows: