物理必修二知识点及典型例题

物理必修二知识点及典型例题
物理必修二知识点及典型例题

第五章

第 一 二 节 曲线运动 质点在平面内的运动 曲线运动的方向: 质点在某一点的速度, 沿曲线在这一点的切线方向。 曲

线运动是变速运动。 物体做曲线运动的条件: 当物体所受合力方向与它的速度方向不在同一条直线上时, 物体做

曲线运动。

物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

合运动与分运动:几个运动的合成就是合运动,这几个运动就是这个合运动的分运动。 合运动与分运动特点:分运动之间具有独立性

合运动与分运动之间具有等时性 合运动与分运动之间具有等效性

典型题目

1,在弯道上高速行驶的赛车,突然后轮脱离赛车,关于脱离了的后轮的运动情况以下说法 正确的是

(

)

A .仍然沿着汽车行驶的弯道运动

B .沿着与弯道垂直的方向飞出

C .沿着脱离时轮子前进的方向做直线运动,离开弯道

D .上述情况都有可能

解析: 由于车轮原随赛车做曲线运动, 脱离赛车时车轮的速度方向为弯道的切线方向, 由此可知 C 正确.

2,小船过河的问题 , 小船渡河运动可以分解为同时参与的两个运动 , 一是小船相对水的运

( 设水不流时船的运动 , 即在静水中的运动 ), 一是随水流的运动 ( 水冲船的运动 , 等于水

流的

运动 ), 船的实际运动为合运动 .

解析:设河宽为 d, 船在静水中的速

度为 v1, 河水流速为 v2 ①船头正对河岸行驶

, 渡河时间最短 ,t 短 = d

v 1 ②当 v > v 2 时 , 且合速度垂直于河岸 , 航程

最短 x

=d 1 1

当 v < v 2 时 , 合速度不可能垂直河岸 , 确定方法如下 :

1

如图所示 , 以 v 2 矢量末端为圆心 ; 以 v 1 矢量的大小为半径画弧

, 从 v2 矢量的始端向圆弧

切线,则

合速度沿此切线航程最

,

v 1 d

v1 x2 由图知 : sin θ =

v 2 θ

v2

最短航程

x2=

d

v 2 d

=

v 1

sin

第 三 四 节 平抛运动

抛体运动:将物体以一定的初速度向空中抛出 , 仅在重力作用下物体做的运动

平抛运动:平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。

研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。

其运动规律为: ( 1)水平方向: ax=0, vx=v0, x= v 0t 。

( 2)竖直方向: ay=g , vy=gt , y= gt 2

/2 。

( 3)合运动: a=g ,

vt

2 2 2 y 2

v x v y , sx 。

v t 与 v0 方向夹角为 θ , tan θ = gt/ v 0, s 与 x 方向夹角为 α , tan α = gt/ 2v 0。

平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定, 2h 2h t g 。

g

,与 v0 无关。水平射程 s=

v 0 9、斜抛运动:将物体用一定的初速度沿斜上方抛出去,仅在重力作用下物体所做的运动 典型题目

1,关于平抛运动,下列说法正确的是( )

A 、因为轨迹是曲线,所以平抛运动是变加速运动

B 、运动时间由下落高度和初速度共同决定

C 、水平位移仅由初速度决定

D 、在相等的时间内速度的变化都相等

解析:曲线运动中某一时刻质点的瞬时速度 总是沿该时刻质点所在位置的切线方向。故: AD 正确。

2,在“研究平抛物体的运动”实验中,某同学记录了 A 、 B 、C 三点,取 建立了右图6-6所示的坐标系。平抛轨迹上的这三点坐标值图中已标出。

初速度为 ,小球抛出点的坐标为

A 点为坐标原点,那么小球平抛的

gT 2

T s 0.25 0.15 s 0.1s

解析:根据 s 得:

g

10

v 0 x

10 10 2

m / s 1m /

s

T 0.1 所以

由于

s 1 : s 2 : s 3

1: 3 : 5

所以: 抛出点的坐标应为( -10 ,-5 )

3,如图 6-10

所示,摩托车做腾跃特级表演, 以初速度 v0 冲上高为

h 、

顶部水平的高台,然后从高台水平飞出,若摩托车始终以额定功率

P 行驶,经时

t 从坡底到达坡顶,人和车的总质量为 m ,且各种阻力 的影响可忽略不计,求:

(1)人和车到达坡顶时的速

v (2)人和车飞出的水平距离 x

(3)当 h 为多少时,人和车飞出的水平距离最

远?

解析:

pt mgh 1 mv 2 1 mv02根据动能定理

得: 2 2

v 2 pt 2gh v02

所以:m

x vt ,

, t ,

2h x 2 pt 2gh v 02

2h ( 2)由平抛运动规律得:

g

所以:

m g

4 pth 4h 2 2v 02

h 4 pt 2v 02

)h 4h 2

x

mg g

(

g ( 3)由( 2)的结果整理得:

mg h

pt v 02

2mg

4g

时, x 最大。

4,小球以初速度 v 水平抛出,落地时速度为 v , 阻力不计 , 以抛出点为坐标原点 , 以水平

0 1 速度 v0 方向为 x 轴正向 , 以竖直向下方向为 y 轴正方向 , 建立坐

标系

小球在空中飞行时间

t 抛出点离地面高

h

水平射程 x 小球的位移 s

落地时速度 v1 的方向 , 反向延长线与 x 轴交点坐标 x 是多

少 ?

解析: (1) 如图在着地点速度 v1 可分解为水平方向速度

v0 和竖直方向分速

度 vy, 2 v 2 x1 x 1 0 v O

x

而 vy =gt 2 2 2 2 2 可求 t= g

则 v1 =v0 +vy

=v 0 +(gt

) s (2) 平抛运动在竖直方向分运动为自由落体运动

h v0 g 1 2 v 2

2 2 2 v

1 0

vy v1 h=gt 2

/2= 2 · g v 1 v0 = 2

g y

(3) 平抛运动在水平方向分运动为匀速直线运动

v 0 v 12

v 2

x=v0t=

g

2v 02

v 12

3v 04

v 14

(4)

位移大小 s= x 2

h 2

=

2g

位移 s 与水平方向间的夹角的正切值

h v 12 v 02

tan θ = x = 2v0

v 12

v 02

(5) 落地时速度 v 1 方向的反方向延长线与 x 轴交点坐标 x1=x/2=v 0 2g

第五六七八

圆周运动

描述匀速圆周运动快慢的物理量

线速度 v :质点通过的弧长和通过该弧长所用时间的比值,即 v =△ L/ △t ,单位 m/s ;属于

瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

注:匀速圆周运动是一种非匀速曲线运动,因线速度的方向在时刻改变。

角速度:质点所在半径转过的角度

φ 与所用时间 t 的比值,即 ω =△ φ / △ t ,单位

rad/s ; 对某一确定的匀速圆周运动而言,角速度是恒

定的

周期 T ,频率 f = 1/T ,转速 n =1/T T=2 /

ω

线速度、角速度及周期之间的关

系:

vr 向心力: 圆周运动的物体受到一个指向圆心力的作用, 只改变运动物体的速度方

向, 不改变

速度大小。

2

r ,或者 F

mv 2

向心力表达式: F

m

r

a v 2

a r 向心加速度:方向与向心力的方向相同,

2

r ,或

注意的结论:

(1)由于 a 方向时刻在变, 所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。 (2)做匀速圆周运动的物体,向心力是一个效果力,方向总指向圆心,是一个变力。 (3)做匀速圆周运动的物体受到的合外力就是向心力。

离心运动: 做匀速圆周运动的物体, 在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

满足条件:

(1)当产生向心力的合外力突然消失,物体便沿所在位置的切线方向飞出。 (2)当产生向心力的合外力不完全消失,而只是小于所需要的向心力,物体将沿切线和圆周之间的一条曲线运动,远离圆心而去。 现实中的实例:雨伞旋转、链球投掷、洗衣机的脱水筒

防止离心运动的实例:汽车拐弯时限速,高速旋转的飞轮、砂轮的限速 做圆周运动的物体供需关系

当 F=m ω 2

r 时,物体做匀速圆周运动 当 F= 0 时,物体沿切线方向飞出

当 F < m ω 2

r 时,物体逐渐远离圆心 当 F > m ω 2

r 时,物体逐渐靠近圆心 典型题目

1,如图所示,汽车以速度 v 通过一圆弧式的拱桥顶端时, 关于汽车受力的说法正确的是 ( )

A 、汽车的向心力就是它所受的重力

B 、汽车的向心力就是它所受的重力和支持力的合力,方向指 向圆心

C 、汽车受重力、支持力、牵引力、摩擦力和向心力的作用

D 、以上均不正确

解析:汽车在拱桥顶端时,竖直方向的重力和支持力的合力提供向

心力,水平方向受牵引力和摩擦力的合力为零。故: B 正确。

2,如图所示,用长为 L 的细绳拴着质量为 m 的小球在竖直平面内做圆周运动,则下列说法正确的是( )

A 、小球在圆周最高点时所受向心力一定为重力

B 、小球在圆周最高点时绳子的拉力不可能为零

C 、若小球刚好能在竖直面内做圆周运动,则其在最高点速率

gl

D 、小球在圆周最低点时拉力一定大于重力

解析:( 1)当球刚好通过最高点时,拉力为零,有mg mv 2

, v

gj l

(2)当球在最高点时的速度 v

gl 时,绳的拉力为 F ,此时 mg F mv 2

故 D

l

选项正确。

(3)小球在最低点有: F mg m v 2

所以拉力 F 必大于重力。故: CD 正确。 l

3,如图所示的传动装置中, B,C 两轮固定在一起绕同一轴转动, A,B 两轮用皮带传动, 三

的半径关系是 r A=r C=2r B. 若皮带不打滑 , 求 A,B,C 轮边缘的 a,b,c 三点的角速度之比和线速度

之比 . c

a ·

b

A · ·

B C

解析: A,B 两轮通过皮带传动,皮带不打

滑 , 则 A,B 两轮边缘的线速度大小相等 .

即 v a=vb 或 v a:v

b=1:1 ① 由 v= ωr 得 ω a: ω b= r B: r A=1:2 ② B,C 两轮固定在一起绕同一轴转动 , 则 B,C 两轮的角速度相

同, 即

ω b=ω c 或ω b: ω c=1:1 ③

由 v=ω r 得 v b :v c =r :r =1:2 ④ B C

由②③得 ω : ω : ω =1:2:2 a b c

由①④得 va:v b:v c=1:1:2

4,细杆的一端与小球相连,可绕 O 点的水平轴自由转动,不计摩擦,杆长

为 R 。

( 1)若小球在最高点速度

gR ,杆对球作用力为多少?当球运动到最低点时,杆对球

的作用力为多少?

(2)若球在最高点速度为 gR /2 时,杆对球作用力为多少?当球运动到最低点时,杆

对球的作用力是多少?

(3)若球在最高点速度为 2 gR 时,杆对球作用力为多少?当球运动到最低点时,杆对球

的作用力是多

少?

解析:

(1)球在最高点受力如图(设杆对球作用力 T1 向下) 2

。故当在最高点球速为gR 时,杆对球无作用力。 则 T1+mg=mv1 /R ,将 v1= gR 代入得

T1 =0

当球运动到最低点时,由动能定理得:

T 2

2 2

/2 , 2mgR=mv/2- mv 1 解得: v2 2

=5gR , 球受力如图: 2 T -mg=mv /R , 2 2

解得: T2 =6mg

mg

同理可求:( 2)在最高点时: T3=-3mg/4

“ - ”号表示杆对球的作用力方向与假设方向

相反,

即杆对球作用力方向应为向上,也就是杆对球为支持力,大小为

3mg/4

当小球在最低点时: T4=21mg/4

(3)在最高点时球受力: T5=3mg ;在最低点时小球受力: T6=9mg

5,在高速公路的拐弯处,路面造的外高内低,即当车向右拐弯时,司机左侧的路面比右侧 的要高一些, 路面与水平面间的夹角为 ,设拐弯路段是半径为 R 的圆弧, 那么车速为多少

时车轮与路面之间的横向(即垂直与前进方向)摩擦力等于零?

解析: 此题为火车转弯模型。 汽车在倾斜路面转弯时要使车轮不受横向摩擦力。 则汽车所受的重力和路面对汽车的支持力的合力提供向心力。则有:

v 2

mg tan

m

R

v

gR tan

第六章 万有引力定律及其应用 开普勒三大定律 :

所有行星绕太阳运动的轨道都是椭圆,太阳处于椭圆的一个焦点上 对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。

万有引力定律: 宇宙间任意两个有质量的物体都存在相互吸引力, 其大小与两物体的质量乘积成正比,跟它们间距离的平方成反比。 对万有引力定律的理解

万有引力定律: 自然界中任何两个物体都是相互吸引的, 引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。

Gm 1 m 2

公式表示: F=

r 2

引力常量 G :①适用于任何两物体。

②意义:它在数值上等于两个质量都是1kg 的物体(可看成质点)相距1m时的

相互作用力。

③ G的通常取值为G=6。67× 10-11Nm2/kg2 。是英国物理学家卡文迪许用实验测得。

适用条件:万有引力定律只适用于质点间引力大小的计算。当两物体是质量均匀分布的球

时,它们间的引力也可以直接用公式计算,但式中的r 是指两球心间的距离。

万有引力具有以下三个特性:

①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)

的相互吸引力,它是自然界的物体间的基本相互作用之一。

②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。

③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的

存在

才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略

计。

万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表

面重力加速度g )

万有引力 =向心力:( 一个天体绕另一个天体作圆周运动时,下面式中r=R+h )

G Mm m V 2

m 2

r m

4 2

r 2r 2 T 2

r

重力 =万有引

力:

地面物体的重力加速

度:mg =

Mm g

=

M 2

G 2

G 2≈

9.8m/s

R R

Mm M

2

高空物体的重力加速

度:mg = G g = G

2

R 2 <9.8m/s

( R h) h

三种宇宙速

度:

在地球表面附近 ( 轨道半径可视为地球半径 ) 绕地球作圆周运动的卫星的

线速度, 在所有圆周运动的卫星中线速度是最大

的 .

2 Mm V 2GM

= gR =7.9km/s 由 mg=mv/ R或由 G R 2m R V R

①第一宇宙速度 :v 1 =7.9km/s ,它是卫星的最小发射速度,也是地球卫星的最大环绕速度.

②第二宇宙速度(脱离速度)

:v 2

=11.2km/s ,使物体挣脱地球引力束缚的最小发射速度.

③第三宇宙速度(逃逸速度)

:v 3

=16.7km/s ,使物体挣脱太阳引力束缚的最小发射速度.

地球同步卫

星:

所谓地球同步卫星,是相对于地面静止

的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,

即T=24h=86400s,离地面高度同步卫星的轨道一定在赤道平面内,并且只有一

条. 所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着 .

卫星的超重和失重:

“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升

降机”中物体超重相同 . “失重”是卫星进入轨道后正常运转时,卫星上的物体完

全“失重”(因

为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用.

1,利用下列数据和引力常量,可以计算出地球质量的是:A、已知地球的半径 R 和地面的重力加速度

B、已知卫星绕地球作匀速圆周运动的轨道半径

C、已知卫星绕地球作匀速圆周运动的轨道半径r 和周

期 r 线

速度

T

v

D、已知卫星绕地球作匀速圆周运动的线速度v 和周期

解析:选项 A 设相对于地面静止的某一物体的质量是

T

m,根据万有引力等于重力的关系得:

GMm/R 2=mg

2

得: M=gR/G

选项 B,设卫星的质量为 m,根据万有引力等于向心力的关系

222

GMm/R =MR 4π /T

选项 C,设卫星的质量为 m,根据万有引力等于向心力的关系

22

GMm/R =mv/R

2

得: M=vR/G

选项 D,设卫星的质量为m,根据万有引力等于向心力的关系

2

GMm/R =mv 2 π /T

22

GMm/R =mv/R

3

得: M=vT/2 π G

综上所述,该题的四个选项都是正确的,如果已知地球的半径是 R,且把地球看作球体,则地球的体积为 V=4π R3/3 ,根据ρ=M/V=3πr 3/GT2 R 3计算出地球的密度,此法也可以

计算其它天体的质量和密度。当绕行天体在中心天体表面附近运行时,此式可简化为

2

ρ=M/V=3π/GT

2,宇航员站在某行星表面上的某高处,沿水平方向抛出一个小球,经过时间t ,小球落到

行星表面,测得抛出点与落地点之间的距离为L.若抛出时的初速度增大到 2 倍,则抛出点

与落地点之间的距离

为 3 L.已知两落地点在同一水平面内,该行星的半径为,万有引

力常数为,求该行星的质量.

解析:设抛出点距地面的高度为H,重力加速度为 g, 两次抛出的时间相同,

都为

t ,则根

平抛运动的公式可

得:H=1 gt 2----(1)

2

L

2-H

2=(Vt)

2----

(2)

3L2-H

2=(2Vt) 2----

(3)

由以上三式得: g=2L/ 3

t

2

2 2

3

2

G

根据: g=GM/R 可得: M=2LR/ t 3,关于人造卫星,下列说法正确的是:

A、运行的轨道半径越大,线速度越大

B、运行的速率可以等于8km/s

C、运动的轨道半径越大,周期也越大

D、运行的周期可以等于80m

解析:在中学物理中,一般认为人造卫星在圆轨道上绕地球作匀速圆周运动设地球的质量为 M,卫星的质量是m,卫星在半径为 r 的轨道上运行时的速率为v,根据

万有引力等于向心力的关系可得

v=GM/r ------------ ( 1)

ω =(GM/r 3) 1/2 --------------- ( 2)

T=(4 π2r 3/GM)1/2 ------

-------(3)

据( 1)式选项A错误

因v=(gr )1/2

=( 6. 4×10 6×10)1/2

=7.9km/s

故:B 错误

4,关于人造地球卫星,下列说法正确的是

A.第一宇宙速度是人造地球卫星绕地球运动所必须的最大地面发射速度

B第一宇宙速度是人造地球卫星绕地球做匀速圆周运动的最大速度

C.卫星离地面越高,运行速率越大,周期越小

D.卫星的轨道半径越大,需要的发射速度越大,在轨道上运行的速度越小

解析:第一宇宙速度是发射卫星的最小速度同时也是卫星绕地球运动的最大环绕速度。根据

公式以及 T=2π r/v 可知:卫星离地面越高,运行速率越小,周期越大。根据能量守恒,要把卫星发射的越高,需要的发射速度就越大,但在轨道上运行的速度就越小。答案: BD

5,俄罗斯“和平号”轨道空间站因超期服役和缺乏维持继续在轨道运行的资金,俄政府

2000 年底作出了将其坠毁的决定. 坠毁过程分两个阶

段,首先使空间站进入无动力自由运动

状态,因受高空稀薄空气阻力的影响,空间站在绕地球运动的同时缓慢向地球靠近,2001

年 3 月,当空间站下降到距离地球22km高度时,再由俄地面控制中心控制其坠毁 . “和平号”

空间站已于 2001 年 3 月 23 日顺利坠入南太平洋预定海域. 在空间站自由运动的过程中

A. 角速度逐渐减小B . 线速度逐渐减小

C. 加速度逐渐增大D . 周期逐渐减小

解析:根据

可得:卫星绕地球的线速度:;卫星绕地球的周

期:

卫星绕地球的角速度:卫星的加速度:

所以,当半径逐渐减小时,角速度增大,线速度增大,周期减小,加速度增大。答案:CD 第七

章机械能守恒定律

第一二三节功功率

功的定义:力和力的方向上的位移的乘

积。

做功的两要素:物体受力且在力的方向上的位移。

单位:焦耳( J)。

计算功的方法种: W Fl cos 其

为力 F 的方向同位移 L 方向所成的角功是标

量,

只有大小,没有方向,但有正功和负功之分.

物体做正功负功问题(将α理解为 F 与 V 所成的角,更为简单)

(1)当α=900时, W=0.这表示力 F 的方向跟位移的方向垂直时,力 F 不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。

(2)当α<900时, cos α>0,W>0.这表示力 F 对物体做正功。如人

用力推车前进时,人的推力 F 对车做正功。

(3)当时, cosα<0,W<0.这表示力 F 对物体做负功。如人用

力阻碍车前进时,人的推力 F 对车做负功。

一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了 -6J 的功,可以说成球克服重力做了 6J 的功。说了“克服”,就不能再说做了负功。

功率:

功率的定义式: P = W/ t ,所求出的功率

是时间t 内的平均功率。不管是恒力做功,还是变力做功,都适用

平v

功率的计算式: P =Fv。(或 = F

P) P 和 v 分别表示 t 时刻的功率和速度,α为两者间的夹角 .

单位:瓦特( W)

功率的物理意义:描述力对物体做功快慢;是标量,有正

负,求功率时一定要分清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.

额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工

作。实际功率总是

小于或等于额定功率。

交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引力的

功率.

①以恒定功率 P 启动 : 机车的运动过程是先作加速度减小的加速

运动,后以最大速度 v m=P/f 作匀速直线运动 .

②以恒定牵引力 F 启动 : 机车先作匀加速运动,当功率增大到额定功率时速度为

v1=P/F,而后 7、平均功率和瞬时功率

平均功率:描述力在一段时间内做功的快慢,

用P W 计算,若

P Fv cos ,

v

t

时t

间内的平均速度。开始作加速度减小的加速运动,最后以最大速度vm=P/f 作匀速直线运动。平均功率是针对一段时间或一个过程而言的,因此在计算平均功率时一定要弄

清是哪段时间或哪一个过程的平均功率。

瞬时功率:描述力在某一时刻做功的快慢,只能用P Fv cos , v 为某时刻的瞬时速

度。

瞬时功率是针对某一时刻或某一位置而言

的,因此在计算瞬时功率时一定要弄清是哪个时刻或哪一个位置的瞬时功率。

动能是标量,只有大小,没有方向。表达式为:E K1mv 2

2

重力势能是标量,表达式

为: E P mgh

注意:( 1)式中 h 应为物体重心的高度。( 2)重力势能具有相对性,是相对于选取的参

面而言的。因此在计算重力势能时,应该明确选取零势面。(3)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。(4)选取不同的零势面,物体的势能值是不同的,但势能的变化量不会因零势面的不同而不

同。

重力势能和重力做功的关系:重力做功与路径无

关,

只跟初末位置高度有关,物体减少的

势能仍等于重力所做的功,式子为W G FSsin mgh1mgh2

动能定理: W 1 mv2 1 mv02

2 2

其中 W为外力对物体所做的总功,m为物体质量, v 为末速度, v0为初速度

解答思路:

①选取研究对象,明确它的运动过程。

②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数

和。

③明确物体在过程始末状态的动能E k1和 E k2。

④列出动能定理的方程W和E k1E k 2。

机械能守恒定律:Ek 2Ep2Ek1 E p1 (内容 : 在只有重力(和弹簧弹力)做功

的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变)

判断机械能是否守恒的方法:

用做功来判断 : 分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对

物体或系统只有重力或弹簧弹力做功,没有其他力做功或其他力做功的代数和为零,则机械

能守恒 .

用能量转化来判定 : 若物体系中只有动能和势能的相互转化而无机械能与其他形式的能

的转化,则物体系统机械能守恒 .

对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒 .

能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

典型题目

1,汽车发动机的额定功率为 60 kW,汽车的质量为 5 t ,汽车在水平路面上行驶时,阻力

是车重的1,取 g=10 m/ s2.汽车保持额定功率不变从静止启动后,

10

汽车所能达到的最大速度是多大?当汽车的加速度为 2m/s2时速度是多大?若汽车从静止

开始,保持以 0.5 m / s2的加速度做匀加速直线运动,这一过程能维持多长时间?

解析:

汽车运动过程中所受的阻力大小为

F 0.1mg 0.1 5 10310N 5 103 N

f

汽车保持恒定功率启动时v

P F F f

当 a

0 时, v 达到 v m,

输出

F a

m

v

功率图象及速度图象如图。

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

人教版高中物理必修二知识点及题型总结

第五章曲线运动 一、知识点 (一)曲线运动的条件:合外力与运动方向不在一条直线上 (二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则) (三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动) (四)匀速圆周运动 1受力分析,所受合力的特点:向心力大小、方向 2向心加速度、线速度、角速度的定义(文字、定义式) 3向心力的公式(多角度的:线速度、角速度、周期、频率、转)(五)平抛运动 1受力分析,只受重力 2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式 3速度与水平方向的夹角、位移与水平方向的夹角 (五)离心运动的定义、条件 二、考察内容、要求及方式 1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空) 3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表

示方式、合力提供向心力(计算题) 3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空) 4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算) 5离心运动:临界条件、最大静摩擦力、匀速圆周运动相关计算(选择、计算) 第六章万有引力与航天 一、知识点 (一)行星的运动 1地心说、日心说:内容区别、正误判断 2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律 1万有引力定律:内容、表达式、适用范围 2万有引力定律的科学成就 (1)计算中心天体质量 (2)发现未知天体(海王星、冥王星) (三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)

物理必修二 知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点

涉及的公式: §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系: 等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

(完整版)人教版高中物理必修一知识点超详细总结带经典例题及解析(20200921053238)

高中物理必修一知识点运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎ 知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2 .参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3 .质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。 ' 物体可视为质点主要是以下三种情形: (1) 物体平动时; (2) 物体的位移远远大于物体本身的限度时; (3) 只研究物体的平动,而不考虑其转动效果时。 4 .时刻和时间 (1) 时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2 秒末”,“速度达2m/s 时”都是指时刻。 (2) 时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5 .位移和路程 (1) 位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2) 路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3) 位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1) .速度:是描述物体运动方向和快慢的物理量。 (2) .瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3) .平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。 第 1 页共28 页

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

高一物理必修一第二章练习题(含答案)

第二章同步习题 1.一物体做匀变速直线运动,下列说法中正确的是() A.物体的末速度与时间成正比 B.物体的位移必与时间的平方成正比 C.物体速度在一段时间内的变化量与这段时间成正比 D.匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小 2.物体做直线运动时,有关物体加速度,速度的方向及它们的正负值说法正确的是 ( ) A.在匀加速直线运动中,物体的加速度的方向与速度方向必定相同 B.在匀减速直线运动中,物体的速度必定为负值 C.在直线线运动中,物体的速度变大时,其加速度也可能为负值 D.只有在确定初速度方向为正方向的条件下,匀加速直线运动中的加速度才为正值 3.物体做匀加速直线运动,其加速度的大小为2 m/s2,那么,在任一秒内( ) A.物体的加速度一定等于物体速度的2倍 B.物体的初速度一定比前一秒的末速度大2 m/s C.物体的末速度一定比初速度大2 m/s D.物体的末速度一定比前一秒的初速度大2 m/s 4.原来作匀加速直线运动的物体,若其加速度逐渐减小到零,则物体的运动速度将 ( ) A.逐渐减小 B.保持不变C.逐渐增大D.先增大后减小5.汽车关闭油门后做匀减速直线运动,最后停下来。在此过程中,最后连续三段相等的时间间隔内的平均速度之比为: A.1:1:1 B.5:3:1 C.9:4:1 D.3:2:1 6.物体做初速度为零的匀加速直线运动,第1 s内的位移大小为5 m,则该物体( abd ) A.3 s内位移大小为45 m B.第3 s内位移大小为25 m C.1 s末速度的大小为5 m/s D.3 s末速度的大小为30 m/s 7.一物体做匀加速直线运动,初速度为0.5 m/s,第7 s内的位移比第5 s内的位移多4 m,求: (1)物体的加速度 (2)物体在5 s内的位移

高中物理必修二知识点总结

高中物理必修 2 知识点期末总复习 考试重点内容:曲线运动、动量、功和能、机械振动 (一)曲线运动、万有引力 知识结构 1. 曲线运动一定是变速运动!速度沿轨迹切线方向(fangxiang) ,加速度方向(fangxiang) 沿合外力方向——指向轨道内侧。物体做曲线运动的条件是合外力与速度不在一条直线上。 2. 曲线运动的研究方法:矢量合成与分解法,切线方向的分力艺Ft只改变质 点的运动速率大小;法线方向的分力艺Fn只改变质点运动的方向。 3. 运动的合成和分解:速度、位移、加速度等都是矢量,都可以根据需要和实际情况,用平行四边形定则合成和分解。两个匀速直线运动的合成,两个初速度为 0 的匀变速运动的合成一定是直线运动。两个直线运动的合成不一定是直线运动。 4. 平抛运动:加速度:a= g,方向竖直向下,与质量无关,与初速度大小无关;速度: vx = v0, vy = gt , vt =( v02+vy2) 1/2,方向与水平方向成0 角,tg 9 =gt/v0 ; 位移:x = v0t,y =gt2/2,s = (x2+y2) 1/2,方向与水平方向成a角,tg a=/x. 轨迹方程:y= gx2/2v02 为抛物线。 在空中飞行时间:t =( 2h/g ) 1/2 ,与质量和初速度大小无关,只由高度决定。 水平最大射程:x=v0t = v0(2h/g ) 1/2 由初速度和高度决定,与质量无关。曲线运动的位移、速度、加速度都不在同一方向上。 5. 匀速圆周运动: 1) 周期T、质点运动一周所用的时间。是描述质点转动快慢的物理量。 2) 线速度v、质点通过的弧长厶s与所用时间△ t之比为一定值,该比值是匀速圆周运动的速率v=A s/ △ t,数值上等于质点在单位时间内通过的弧长。线速度的方向在圆周的切线方向上。线速度是描述质点转动快慢和方向的物理量。 3) 角速度3、连接质点与圆心的半径转过的角度△?与所用时间厶t之比为一 定值,该比值是匀速圆周运动的角速度w = A^ /△ t,数值上等于在单位时间内半 径转过的角度。单位是弧度/秒( rad/s ),角速度也是描述质点转动快慢的物理量周期、线速度、角速度之间有的关系: 质点转一周弧长s = 2n r,时间为T,则v = 2n r/T 角度为2 n 3 = 2 n /T 由上两公式有v=3 r ,3= v/r 圆周运动是曲线运动,它的速度方向时刻在变化着,匀速圆周运动一定是变速运动,“匀速”仅是速率不变的意思。 4) 匀速圆周运动的加速度a、加速度的方向指向圆心一一向心加速度,其方向时时刻刻指向圆心,即方向时时刻刻在变化着,所以匀速圆周运动是变加速运动。向心加速度的大小:an = v2/r =3 2r 。 5) 向心力F= ma=mv2/r ,或F= ma= m32r ,方向总指向圆心。向心力是根据力的作用效果命名的。 6. 万有引力与天体、卫星的轨道运动万有引力定律:宇宙间任何两个有质量的物体间都 是相互吸引的,引力大小与 两物体的质量的乘积成正比,与它们的距离的平方成反比。 设物体质量分别为ml m2,物体之间距离为r,则F= Gm1m2/r2 万有引力定律在天文学上的应用——天体质量及运动分析,宇宙速度与卫星轨道运动问题分析依据:万有引力定律、牛顿运动定律、F= mv2/r 、匀速圆周运动规 律;常用近似条件:将有关轨道运动看作匀速圆周运动,引力 F = mg= mv2/r (g随 高度、纬度等因素变化而变化) 。 7. 宇宙速度: (1)线速度:设卫星到地心的距离为r,r 就是卫星轨道半径,环绕线速度为 v ,卫星质量为m设地球质量为M,地球半径为R. 根据万有引力定律和牛顿运动定律有 GMm/r2=mv2/r 由此得到环绕速度v=( GM/r) 1/2 对所有地球卫星,环绕速度由轨道半径决定,与卫星质量,性能因素无关。r =R+h, h为卫星距地面的高度,r (h)越大,环绕速度越小。 ( 2)角速度:由3= v/r 有3=( GM/r3) 1/2 (3)周期:由3= 2n /T 得T= 2n( r3/ GM ) 1/2 角速度和周期均由轨道半径决定,半径越大,角速度越小,周期越长。 宇宙速度:第一宇宙速度:由环绕速度公式v=( GM/r)1/2 r = R+h,当高度h远远小于地球半径时,即卫星在地面附近绕地球做匀速圆周运动。近似有v=( GM/R) 1/2 这是地球卫星的最大环绕速度。又在地球表面附近,地球对卫星的引力近似等于重力mg mg= mv2/R 可得 v=( gR) 1/2 把g= 9.8 X 10—3km/s2 和R= 6.4x103km 代入上公式,得到v = 7.9km/s,这是地球卫星在地面附近绕地球做匀速圆周运动的环绕速度,是最大的环绕速度,也是使一个物体成为人造地球卫星所必须的最小发射速度. 我们称之为第一宇宙速度。 VI=7.9km/s 第二宇宙速度:当发射速度小于第一宇宙速度时,物体将落回地面;当发射速 度大于v= 7.9km/s ,卫星将在不同圆轨道或椭圆轨道运动。当发生速度大于等于11.2km/s 时,物体将挣脱地球引力束缚,成为人造行星或飞向其它行星。所以 11.2km/s 为第二宇宙速度。 VII = 11.2km/s 第三宇宙速度:当物体的速度达到16.7km/s 时,物体将挣脱太阳引力的束缚飞向太阳系以外的宇宙空间,16.7km/s 为第三宇宙速度。 VIII = 16.7km/s (二)动量与动量守恒 知识结构 1. 力的冲量定义:力与力作用时间的乘积——冲量I=Ft 矢量:方向——当力的方向不 变时,冲量的方向就是力的方向。过程量:力在时间上的累积作用,与力作用的一段时间相关单位:牛秒、N?s 2. 动量定义:物体的质量与其运动速度的乘积——动量p=mv 矢量:方向——速度的 方向 状态量:物体在某位置、某时刻的动量单位:千克米每秒、kgm/s 3. 动量定理艺Ft = mvt—mv0 动量定理研究对象是一个质点,研究质点在合外力作用 下、在一段时间内的一 个运动过程。定理表示合外力的冲量是物体动量变化的原因,合外力的冲量决定并量度了物体动量变化的大小和方向。 矢量性:公式中每一项均为矢量,公式本身为一矢量式,在同一条直线上处理

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

物理必修一期末经典题汇总

第二章 匀变速直线运动 (一)匀变速直线 1.根据给出速度和加速度的正负,对下列运动性质的判断正确的是( )。 A 、V 0 >0,a< 0, 物体做加速运动 B 、V 0< 0,a >0, 物体做加速运动 C 、V 0 >0,a >0, 物体做加速运动 D 、V 0< 0,a< 0, 物体做减速运动 2.一物体以5 m/s 的初速度、-2 m/s 2的加速度在粗糙水平面上滑行,在4 s 内物体通过的路程为 ) A.4 m B.36 m C.6.25 m D. 3 ) A.①② B.②③ C.②④ D. 4.某质点的位移随时间的变化规律的关系是: s=4t+2t 2,s 与t 的单位分别为m 和s ,则质点的初速度与加速度分别为( A.4 m/s 与2 m/s 2 B.0与4 m/s 2 C.4 m/s 与4 m/s 2 D.4 m/s 与0 5.一个物体由静止开始做匀加速直线运动,第1 s 末的速度达到4 m/s ,物体在第2 s 内的位移是( ) A.6 m B.8 m C.4 m D.1.6 m 6.做匀加速运动的列车出站时,车头经过站台某点O 时速度是1 m/s ,车尾经过O 点时的速度是7 m/s ,则这列列车的中点经过 O ) A .5 m/s B 、 5.5 m/s C .4 m/s D 、 3.5 m/s 7.下列关于速度和加速度的说法中,正确的是( ) A .物体的速度越大,加速度也越大 B .物体的速度为零时,加速度也为零 C .物体的速度变化量越大,加速度越大 D .物体的速度变化越快,加速度越大 8、如图3所示为一物体沿南北方向(规定向北为正方向)做直线运动的速度—时间图象,由图可知( ) A .3s 末物体回到初始位置 B .3s 末物体的加速度方向发生变化 C ..物体的运动方向一直向南 D .物体加速度的方向一直向北 9.如图所示为甲、乙两质点的v-t 图象。对于甲、乙两质点的运动,下列说法中正确的是( ) A .质点甲向所选定的正方向运动,质点乙与甲的运动方向相反 B .质点甲、乙的速度相同 C .在相同的时间内,质点甲、乙的位移相同 D .不管质点甲、乙是否从同一地点开始运动,它们之间的距离一定越来越大 10.汽车由静止开始从A 点沿直线ABC 作匀变速直线运动,第4s 末通过B 点时关闭发动机,再经6s 到达C 点时停止,已知AC 的长度为30m ,则下列说法错误的是 ( ) A .通过 B 点时速度是3m/s B .通过B 点时速度是6m/s C .AB 的长度为12m D .汽车在AB 段和BC 段的平均速度相同 11.关于匀加速直线运动,下面说法正确的是( )。 ①位移与时间的平方成正比 ②位移总是随时间增加而增加 ③加速度、速度、位移三者方向一致 ④加速度、速度、位移的方向并不是都相同 A 、①② B 、②③ C 、③④ D 、②④ (二)追击与相遇问题 12.汽车正在以 10m/s 的速度在平直的公路上前进,在它的正前方x 处有一辆自行车以4m/s 的速度做同方向的运动,汽车立即关闭油门做a = - 6m/s 2的匀变速运动,若汽车恰好碰不上自行车,则x 的大小为 ( ) A .9.67m B .3.33m C .3m D .7m 13.一车处于静止状态,车后距车S 0=25m 处有一个人,当车以1m/s 2的加速度开始起动时,人以6m/s 的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少? 14.质点乙由B 点向东以10m/s 的速度做匀速运动,同时质点甲从距乙12m 远处西侧A 点以4m/s 2的加速度做初速度为零的匀加速直线运动.求: (1)当甲、乙速度相等时,甲离乙多远? (2)甲追上乙需要多长时间?此时甲通过的位移是多大? (三)自由落体 15.图2—18中所示的各图象能正确反映自由落体运动过程的是( 16.一个石子从高处释放,做自由落体运动,已知它在第1 s 内的位移大小是s ,则它在第 3 s A.5s B.7s C.9s D.3s 17.从某高处释放一粒小石子,经过1 s 从同一地点释放另一小石子,则它们落地之前, 两石子之间的距离将 ( A.保持不变 B. C.不断减小 D.有时增大有时减小 18.关于自由落体运动的加速度,正确的是( ) A 、重的物体下落的加速度大; B 、同一地点,轻、重物体下落的加速度一样大; C 、这个加速度在地球上任何地方都一样大; 图3

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

高中物理必修二知识点整理

德胜学校高一物理校本学案 粤教版高中物理必修二知识点汇总 时间 班级 姓名 第一章 抛体运动 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中 的速度方向时刻在改变,所以曲线运动一定是变速运动.(说明:曲线运动是变速运动,只是说明物 体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件: 物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直 线上.当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物 体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合 外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的轨迹 做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受 合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向. 二、运动的合成与分解的方法 1.运动的合成与分解:平行四边形定则,等效分解。 2.运动分解的基本方法 (1)根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. (2)两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. ①根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变 速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. ②根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速 度的方向在同一直线上则为直线运动,否则为曲线运动. ③小船过河的两类问题:最短时间过河以及最短路程过河。 如图所示,用v 1表示船速,v 2表示水速.我们讨论几个关于渡河的问题. θ sin 11s v d t v == ,船渡河的位移短直河岸),渡河时间最垂直河岸时(即船头垂当以最小位移渡河:当船在静水中的速度 1v 大于水流速度2v 时,小船可以垂直渡河,显然渡河的最小位移s 等于河宽d ,船头

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高一物理必修一典型例题

高一物理必修一典型例题汇总 考点一 两类运动图象的比较 1.x -t 图象和v -t 图象的比较 ! 表示从正位移处开始一直做反向匀速直线运动 表示先正向做匀减速直线运动,再反向做匀 (1)“交点”??? x -t 图象中交点表示两物体相遇 v -t 图象中交点表示两物体该时刻速度相等 (2)“线”??? x -t 图象上表示位移随时间变化的规律 v -t 图象上表示速度随时间变化的规律 (3)“面积”??? x -t 图象上“面积”无实际意义 v -t 图象上“面积”表示位移 典型例题: 1.(多选)质点做直线运动的位移-时间图象如图所示,该质点( ) ;

A.在第1秒末速度方向发生了改变 B.在第2秒和第3秒的速度方向相反 C.在前2秒内发生的位移为零 D.在第3秒末和第5秒末的位置相同 [答案]AC 2.质点做直线运动的速度-时间图象如图所示,该质点() A.在第1秒末速度方向发生了改变 B.在第2秒末加速度方向发生了改变 。 C.在前2秒内发生的位移为零 D.第3秒末和第5秒末的位置相同 [解析]0~2 s内速度都为正,因此第1 s末的速度方向没有发生改变,A错误;图象的斜率表示加速度,1~3 s内图象的斜率一定,加速度不变,因此第2 s末加速度方向没有发生变化,B错误;前2 s内的位移为图线与 时间轴所围的面积,即位移x=1 2×2×2 m=2 m,C错误;第3 s末到第5 s末的位移为x=- 1 2×2×1+ 1 2×2×1=0, 因此这两个时刻质点处于同一位置,D正确. 3.(多选)下图所示为甲、乙两个物体做直线运动的运动图象,则下列叙述正确的是() A.甲物体运动的轨迹是抛物线 B.甲物体8 s内运动所能达到的最大位移为80 m C.乙物体前2 s的加速度为5 m/s2 D.乙物体8 s末距出发点最远 。 [解析]甲物体的运动图象是x-t图象,图线不表示物体运动的轨迹,A错误;由题图甲可知4 s末甲位移最大,为80 m,B正确;乙物体的运动图象是v-t图象,前2 s做匀加速运动,计算得加速度为5 m/s2,2 s~4 s

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

高中物理必修二知识点整理讲课教案

高一物理必修二知识点姓名: 一、曲线运动 1.曲线运动的速度方向 做曲线运动的物体,在某点的速度方向,就是通过这一点的轨迹的切线方向.物体在曲线运动中的速度方向时刻在改变,所以曲线运动一定是变速运动. (说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.) 2.物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上. 当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小. 3.曲线运动的分类 4.曲线运动的轨迹 物体向力的一侧发生弯曲,或者说力一定在弯曲的内侧。 二、合运动与分运动的关系 1.等时性:2.独立性:3.等效性 三、运动的合成与分解的方法 1.运动的合成与分解:包括位移、速度、加速度的合成和分解.它们和力的合成与分解一样都遵守平行四边形定则,由已知的分运动求跟它们等效的合运动叫运动的合成,由已知的合运动求跟它等效的分运动叫运动的分解.2.运动分解的基本方法根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解. ★两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定. (1).根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变速运动;若合加速度变化(包括大小或方向)则为非匀变速运动. (2).根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速度的方向在同一直线上则为直线运动,否则为曲线运动. ①两个匀速直线运动的合运动仍然是匀速直线运动. ②一个匀速直线运动与一个匀变速直线运动的合运动仍然是匀变速运动,当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动. ③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动. ④两个匀变速直线运动的合运动仍然是匀变速运动;若合初速度与合加速度在同一直线上,则合运动为匀变速直线运动,如图甲所示;不共线时为匀变速曲线运动,如图乙所示. 2 2 2 2 tan 2 1 v gt x y y x s gt y t v x = = + = = = ? ★如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题. 1 1 d v t v = 当垂直河岸时(即船头垂直河岸),渡河时间最短 一、平抛运动:将物体用一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动叫做平抛运动. 二、平抛运动的性质:是加速度为重力加速度(g)的匀变速曲线运动,轨迹是抛物线. 三、平抛运动的研究方法 平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动

相关文档
最新文档