《工程力学》第4次作业解答(杆件的内力计算与内力图).
第四章 杆件的内力与内力图

第四章 杆件的内力与内力图一、选择题1.各向同性假设认为,材料沿各个方向具有相同的( ) A .应力 B .变形 C .位移 D .力学性质2.关于截面法下列叙述中正确的是( ) A .截面法是分析杆件变形的基本方法 B .截面法是分析杆件应力的基本方法 C .截面法是分析杆件内力的基本方法D .截面法是分析杆件内力与应力关系的基本方法 3.下列结论正确的是( )。
A.杆件某截面上的内力是该截面上应力的代数和B.杆件某截面上的应力是该截面上内力的平均值C.应力是内力的集度D.内力必大于应力4.常用的应力单位是兆帕(MPa ),1Mpa =( ) A .103N /m 2 B .106 N /m 2 C .109 N /m 2D .1012 N /m 25.长度为l 的简支梁上作用了均布载荷q ,根据剪力、弯矩和分布载荷间的微分关系,可以确定( )A .剪力图为水平直线,弯矩图是抛物线B .剪力图是抛物线,弯矩图是水平直线C .剪力图是斜直线,弯矩图是抛物线D .剪力图是抛物线,弯矩图是斜直线6.如图所示悬臂梁,A 截面上的内力为( )。
A.Q =ql ,M =0B.Q =ql ,M =21ql 2C.Q =-ql ,M =21ql 2D.Q =-ql ,M =23ql 27.AB 梁中C 截面左,右的剪力与弯矩大小比较应为( )。
A.Q c 左=Q c 右,M c 左<M c 右B.Q c 左=Q c 右,M c 左>M c 右C.Q c 左<Q c 右,M c 左=M c 右D.Q c 左>Q c 右,M c 左=M c 右8、为保证构件有足够的抵抗变形的能力,构件应具有足够的( ) A.刚度 B.硬度 C.强度 D.韧性 9.内力和应力的关系( )A 内力小于应力B 内力等于应力的代数和C 内力为矢量,应力为标量D 应力是单位面积上的内力 10、图示简支梁中间截面上的内力为( )。
工程力学答案第4章

第4章材料力学基本假设及杆件内力题库:主观题4-1 试计算图示各杆件各段的内力,并做各杆的轴力图解:(a)如图4-1-1所示,做截面1-1和截面2-2图4-1-1取截面1-1右部分研究,其受力图如图4-1-2所示图4-1-2由平衡方程∑Fx=0,﹣FN1+3F=0,得FN1=3F结果为正值,表明FN1的方向与假设相同,即为拉力。
取截面2-2右部分来研究,其受力图如图4-1-3所示图4-1-3由平衡方程∑Fx=0,﹣FN2+F+3F=0得FN2=4F结果为正值,表明FN2的方向与假设相同,即为拉力轴力图如图4-1-4所示图4-1-4(b)如图4-1-5所示,做截面1-1、截面2-2和截面3-3图4-1-5取截面1-1右部分来研究,其受力图如图4-1-6所示图4-1-6由平衡方程∑Fx=0,﹣FN1﹣5KN=0,得FN1=-5KN结果为负值,表明FN1的方向与假设相反,即为压力。
取截面2-2右部分来研究,其受力图如图4-1-7所示图4-1-7由平衡方程∑Fx=0,﹣FN2+8KN-5KN=0,得FN2=3KN结果为正值,表明FN2的方向与假设相同,即为拉力。
取截面3-3右部分来研究,其受力图如图4-1-8所示图4-1-8由平衡方程∑Fx=0,﹣FN3﹣6KN+8KN-5KN=0,得FN3=-3KN 结果为负值,表明FN3的方向与假设相反,即为压力。
轴力图如图4-1-9所示:图4-1-9知识点:1.内力,截面法;2. 轴力和轴力图参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图)难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图提示二:无提示三:无提示四(同题解)题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。
4-2 求图示各梁中指定截面上的剪力和建立图解:(a)计算1-1截面上的剪力Fs和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-1所示图4-2-1由∑Fy=0得:Fs1=-qa(负剪力)由∑Mo1=0得:qa﹒a+M1=0,得M1=-qa2(负弯矩)计算2-2截面上的剪力Fs2和弯矩M2如图4-2-2所示,由∑Fy=0得:Fs2=-qa(负剪力)由∑Mo2=0得M2=-3qa2(负弯矩)图4-2-2计算3-3截面上的剪力Fs3和弯矩M3如图4-2-3所示,由∑Fy=0,-qa-qa-Fs3=0得:Fs3=-2qa(负剪力)由∑Mo3=0,qa﹒4a+qa﹒0.5a+ M3=0得M3=-4.5qa2(负弯矩)图4-2-3(b)计算支座范力选整体梁为研究对象,如图4-2-4所示·图4-2-4由∑MA=0,10KN﹒m+FB×2.5m=0得:FB = -4KN(↓)由∑Fy=0得:FA=-FB=4KN(↑)计算1-1截面上的剪力Fs1和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-5所示图4-2-5由∑Fy=0,FA-Fs1=0,得FA=Fs1=4KN(正剪力)由∑Mo1=0得:-FA·1m+M1=0得M1=4KN·m(正弯矩)计算2-2截面上的剪力Fs2和弯矩M2,如图4-2-6所示图4-2-6由∑Fy=0,FB+Fs2=0,得-FB=Fs2=4KN(正剪力)由∑Mo2=0得:FB·1.5m-M2=0得M2=-6KN·m(负弯矩)(c)计算支座反力选整体梁为研究对象,如图4-2-7所示·图4-2-7由∑Fy=0,FA-5KN+FB=0得FA=3KN(↑)由∑MA=0得:FB·5m-5KN·3m+5KN·m=0得FB=2KN(↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-8所示·图4-2-8由∑Mo1=0得:5KN·m + M1=0,得M1=-5KN·m(负弯矩)由∑Fy=0,FA-Fs1=0,得FA=Fs1=3KN(正剪力)计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-9所示·图4-2-9由∑Mo2=0,5KN·m - FA·3m+M2=0,得M2=4KN·m(正弯矩)由∑Fy=0,FA-Fs2=0,得FA=Fs2=3KN(正剪力)计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-10所示图4-2-10由∑Mo3=0,FB·2m-M3=0,得M3=4KN·m(正弯矩)由∑Fy=0,FB+Fs3=0,得-FB=Fs3=-2KN(负剪力)(d)计算支座反力选整体梁为研究对象,如图4-2-11所示图4-2-11由∑MB=0得:qa·25a-FA·2a+qa·a=0,得FA=47qa (↑)由∑Fy=0,FA-2qa+FB=0得FB=41qa (↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-12所示图4-2-12由图知 Fs1=0 M1=0 计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-13所示图4-2-13由∑Mo2=0,qa·21a+ M2 =0得M2=-21qa 2(负弯矩)由∑Fy=0,-qa-Fs2=0,得Fs2=-qa(负剪力) 计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-14所示图4-2-14由∑Mo3=0,FB·a-M3=0,得M3=41qa 2(正弯矩)由∑Fy=0,-qa+FB+Fs3=0,得Fs3=43a (正剪力)知识点:1.内力,截面法;2. 轴力和轴力图 参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图) 难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图 提示二:无 提示三:无 提示四(同题解) 题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。
土木工程力学网上形考专业04全部选择题和判断计算

土木工程力学作业04任务一、单项选择题(共10 道试题,共30 分。
)1. 位移法典型方程实质上是(A )A。
平衡方程B。
位移条件C。
物理关系D。
位移互等定理2 用位移法计算超静定结构时,独立的结点角位移数等于( B )A。
铰结点数B。
刚结点数C。
多余约束数D。
不确定3。
用位移法解超静定结构其基本未知量的数目( A )A。
与结构的形式有关B。
与多余约束的数目有关C。
与结点数有关D. 与杆件数有关4。
用位移法计算超静定结构时,其基本未知量为(D )A. 多余未知力B。
杆端内力C。
杆端弯矩D。
结点位移5。
在位移法计算中规定正的杆端弯矩是(A )A。
绕杆端顺时针转动 B. 绕结点顺时针转动C。
绕杆端逆时针转动D。
使梁的下侧受拉6位移法典型方程中的系数代表在基本体系上产生的( C)A. B. C. 第i个附加约束中的约束反力 D. 第j个附加约束中的约束反力7 位移法基本方程中的自由项,代表荷载在基本体系作用下产生的( C )A. B. C. 第i个附加约束中的约束反力 D。
第j个附加约束中的约束反力8 图示超静定结构结点角位移的个数是( C )A。
2 B。
3 C。
4 D. 59. 图示超静定结构结点角位移的个数是( B )A。
2 B。
3 C. 4 D。
510. 图示超静定结构,结点线位移(独立)的个数是( B )A。
0 B. 1 C. 2 D。
311。
图示超静定结构独立结点角位移的个数是(B)A。
2 B。
3 C。
4 D。
512. 用位移法求解图示结构时,基本未知量的个数是( B)A。
8 B. 10 C。
11 D。
1213。
用位移法求解图示结构时,基本未知量个数是( B )A. 1 B。
2 C. 3 D。
414。
图示结构位移法方程中的系数=(D )A. 11B. 5C. 9 D。
815 图示结构位移法方程中的系数=( C )A. 3 B。
8 C。
15 D。
1316。
图示结构位移法方程中的自由项=( B )A。
清华出版社工程力学答案-第5章 杆件的内力分析与内力图

eBook工程力学习题详细解答教师用书(第5章)2011-10-1范 钦 珊 教 育 教 学 工 作 室FAN Qin-Shan ,s Education & Teaching Studio习题5-1 习题5-2 习题5-3 习题5-4 习题5-5 习题5-6工程力学习题详细解答之五第5章 杆件的内力分析与内力图5-1 试用截面法计算图示杆件各段的轴力,并画轴力图。
5-2 圆轴上安有5个皮带轮,其中轮2为主动轮,由此输入功率80 kW ;1、3、4、5均为从动轮,它们输出功率分别为25 kW 、15 kW 、30 kW 、10 kW ,若圆轴设计成等截面的,为使设计更合理地利用材料,各轮位置可以互相调整。
1. 请判断下列布置中哪一种最好?(A) 图示位置最合理;(B) 2轮与5轮互换位置后最合理; (C) 1轮与3轮互换位置后最合理; (D) 2轮与3轮互换位置后最合理。
2. 画出带轮合理布置时轴的功率分布图。
30kN 20kN10kN20kN10kN 5kNBAD CB A DC BACBA C(a)(b)(c)(d)F NF ACBF N xDACB102030ACF N x210ADCF N -10习题5-1图解: 1. D2. 带轮合理布置时轴的扭矩图如图(b )所示。
5-3 一端固定另一端自由的圆轴承受4个外力偶作用,如图所示。
各力偶的力偶矩数值均示于图中。
试画出圆轴的扭矩图。
固定固定(kN.m)习题5-3图P x (kW)2540(b)习题5-2图5-4 试求图示各梁中指定截面上的剪力、弯矩值。
(a)题解:取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:22222211qa qa qa a qa M M qaF Q =−=⎟⎠⎞⎜⎝⎛⋅−=−= 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:222222222qa qa qa a qa M M qaqa qa F Q =−=⎟⎠⎞⎜⎝⎛⋅−=−=−−= (b)题解:取1-1截面右段为研究对象,1-1截面处的剪力和弯矩按正方向假设:21P 12322qa a qa a qa M qa qa qa qa F F Q −=⋅−⋅−==+=+= 取2-2截面右段为研究对象,2-2截面处的剪力和弯矩按正方向假设:2222222qa qa a qa a qa M qaF Q −=+⋅−⋅−== (c)题解:(1)考虑整体平衡,可解A 、C 支座约束力0m kN 5.4124m kN 4,0)(=⋅××−×+⋅=∑C i A F F M得 kN 25.1=C F0kN 12,0=×−+=∑C A iyF F F得 kN 75.0=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:BB5kN1 m34AAB(b)(a)(c)(d)习题5-4图0,01=−=∑Q A iyF F F得 kN 75.01=Q F02,0)(11=+×−=∑M F F MQ i A得 m kN 5.11⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0,02=−=∑Q A iyF F F得 kN 75.02=Q F0m kN 42,0)(22=+⋅+×−=∑M F F M Q i A得 m kN 5.22⋅−=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0kN 12,03=×−+=∑C Q iyF F F得 kN 75.03=Q F0m kN 1221,0)(23=⋅××−−=∑M F M i C得 m kN 13⋅−=M (5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0kN 12,04=×−=∑Q iyF F得 kN 24=Q F0m kN 1221,0)(24=⋅××−−=∑M F Mi C得 m kN 14⋅−=M (d)题解:(1)考虑整体平衡,可解A 、B 支座约束力03m kN 2m kN 15,0)(=×+⋅+⋅×−=∑B i A F F M 得 kN 1=B F0kN 5,0=+−=∑B A iyF F F得 kN 4=A F(2)取1-1截面左段为研究对象,1-1截面处的剪力和弯矩按正方向假设:0,01=−=∑Q A iyF F F得 kN 41=Q F01,0)(11=+×−=∑M FF M Ai得 m kN 41⋅=M(3) 取2-2截面左段为研究对象,2-2截面处的剪力和弯矩按正方向假设:0kN 5,02=−−=∑Q A iyF F F得 kN 12−=Q F01,0)(22=+×−=∑M F F M A i得 m kN 42⋅=M(4) 取3-3截面右段为研究对象,3-3截面处的剪力和弯矩按正方向假设:0,03=+=∑B Q iyF F F得 kN 13−=Q F1m kN 2,0)(33=×+⋅+−=∑B iF M F M得 m kN 33⋅=M(5) 取4-4截面右段为研究对象,4-4截面处的剪力和弯矩按正方向假设:0,04=+=∑B Q iyF F F得 kN 14−=Q F1,0)(44=×+−=∑B i F M F M得 m kN 14⋅=M5-5 试写出以下各梁的剪力方程、弯矩方程。
杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴

Fθθ34轴向拉压杆的内力轴向拉压杆的内力为轴力,用F N 表示轴力的大小:由平衡方程求解PN ,0F F F x ==∑轴力的正负:拉力为正;压力为负轴力的单位:N ;kN6轴向拉压杆的内力轴力图解:应用截面法,在F N1,由∑F x =0kN5.21P 1N ==F F kN5.13P 2P 1P 2N -=-=-=F F F F 在2-2截面截开,画出正向的F N2,由∑F x =089= 6 kN = -4 kN轴力图画在受力图正下方;10轴向拉压杆的内力轴力图例2 图示一砖柱,柱高3.5m ,截面尺寸370×370mm 2,柱顶承受轴向力F P =60 kN ,砖砌体容重ρ.g =18 kN/m 3。
试绘柱的轴力图。
11轴力图应用截面法,由平衡方程求得:kN46.260P y y A g F --=⋅⋅⋅-ρ,kN 6.68)5.3(,kN 60)0N -=-=F ㈠F N /kNy68.66012轴向拉压杆的内力轴力图等截面直杆在上端A 处固定,其受力如图试绘制杆件的轴力图。
kN,10kN,5P2=F l(a)Cl(b)机械传动轴杆件各相邻横截面产生绕杆轴的相对转动ϕ1720扭矩沿轴线的变化规律e21221. 外力偶矩的计算m N ⋅=1146AmN ⋅=3509549n PB m N ⋅=446n D23扭矩的计算m N 350e ⋅-=-=B M m N 700e e ⋅-=--B C M M mN 446e ⋅=D M 扭矩图问题:如将轮A 与轮C 互换,扭矩图如何?哪种布置受力更合理?mN 700max ⋅=轴力图剪力图和弯矩图组合变形杆件的内力与内力图25梁的外力和内力均可仅由静力平衡方程求解27纵向对称面内时,梁的轴线由位于纵向对称面内的直28单跨静定梁的三种基本形式由静力平衡方程无法全部确定梁所有外力和内力29平面弯曲梁的内力剪力图和弯矩图:剪力F S 和弯矩M 求内力的方法:截面法A F R =M MaF A R =30平面弯曲梁的内力剪力图和弯矩图单位;kNN ·m ;kN ·m31截面,并取右段研究221qa -33平面弯曲梁的内力剪力图和弯矩图剪力方程剪力沿梁轴线的变化规律,即F S =F S (x )弯矩方程弯矩沿梁轴线的变化规律,即M=M (x )按比例绘出F S (x )的图线按比例绘出M (x )的图线剪力图和弯矩图受力分析,画受力图,由平衡方程求支座约束力分段列出剪力方程和弯矩方程,标出变量x 的取值根据剪力方程,求各控制面的剪力值,按比例绘剪力图。
工程力学材料力学第四完整版本习题答案解析

工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
建筑力学与结构选型第4章 静定杆系结构内力分析

2 k N /m A D F Ax F Ay
6kN B C F By
由
2m
F
2m
y
C
0
2m
B
则 解得
FAy FBy 2 2 6
FAy 8kN
( ↑)
解得
由
F
x
0
FAx 0
6kN (2)用截面法求指定截面的内力 k N /m A C 求截面C的弯矩 2m 2m B 2m D
第 4章
静定杆系结构内力分析
4.1 杆件的基本变形与内力 4.2 单跨静定梁的内力计算与内力图 4.3 多跨静定梁的内力计算与内力图 4.4 静定平面刚架的内力计算与内力图
4.5 静定三铰拱
4.6 静定平面桁架
4.1 杆件的基本变形及内力
4.1.1 内力和截面法
内力是荷载在构件内部的传递方式。
F F F F F F
非圆截面等直杆(如巨型截面梁和箱形梁)的扭转较复杂,截 面将发生翘曲
4.2 单跨静定梁的内力计算与内力图
梁的特点: 荷载垂直于杆件轴线的横向荷载,变形以挠曲为主。 起横向连接作用,是间接传力构件。
简支梁的变形图
悬臂梁的变形图
4.2.1单跨静定梁的基本形式
简支梁
简支斜梁
悬臂梁
伸臂梁
4.2.2 梁式杆指定截面内力的计算
2 k N /m A F Ax F Ay
6kN B C F By
由 解得
M
C
0
FNC
MC
C FQC右
B 2kN
M C FBy 2 4kN m()
2kN/m B D A
求A左截面的剪力 MC
由
第五章 杆件的内力与内力图

Mz (x) = m - FRAx = m (l -x ) / l (a < x≤ l ) 3°画 FQy (x)图和 Mz (x)图。
四、剪力、弯矩和荷载集度之间的关系
y FP
q(x) MZ(x) q(x) MZ(x)+d MZ(x) C FQY(x)+d FQY(x) dx
x
x dx
FQY(x)
FRA FQy
(KN)
FRB
60 20 x = 3.6m
Mz6 = 72 ×12 - 160 - 20×10 ×5 = 0
88
当FQY(x)=0时, Mz (x)有极值。
Mz x = 3.6m处, FQY(x)=0 。(KNm)
16 113.6 144
80
即
Mz7 = 72 ×5.6 - 160 - 20×3.6 ×3.6 / 2 = 113.6 KNm
MZ —— 弯矩
A FRA
x
m
C
MZ
m FQY
规 定:
∑FP
FQY 下剪力正, 反之为负
∑M
MZ
MZ
∑M
MZ:
上凹下凸弯矩正, 反之为负
a A
FP1
m m
FP2 B
由∑Fyi=0, FRA- FP1 - FQY =0
x
FRA y A
x
FRB FP1
m
C
得 FQY = FRA- FP1
x = 2m 时 , FN (x) = - 1KN。
3KN
A 2m 3
B 2KN/ m C 2m 2m
D 1KN
FN (KN) 1
规律:没有力作用的杆段,轴力为常数;
分布荷载为常数的杆段,轴力线性变化;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程力学》第4次作业解答(杆件的内力计算与内力图)2008-2009学年第二学期一、填空题1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。
2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。
3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。
4.若传动轴所传递的功率为P 千瓦,转速为n 转/分,则外力偶矩的计算公式为9549P M n=⨯。
5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负,按右手螺旋法则确定。
6.剪力S F 、弯矩M 与载荷集度q 三者之间的微分关系是()()S dM x F x dx =、()()S dF x q x dx=±。
7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。
8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。
9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。
10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。
二、问答题1.什么是弹性变形?什么是塑性变形?解答:在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。
如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。
2.如图所示,有一直杆,其两端在力F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。
试问:(1)对于图示的三种受力情况,直杆的变形是否相同?(2)力的可传性原理是否适用于变形体?解答:(1)图示的三种情况,杆件的变形不相同。
图(a )的杆件整体伸长变形,图(b )的杆件只有局部伸长变形,图(c )的杆件是缩短变形。
(2)力的可传性原理,对于变形体不适用。
因为刚体只考虑力的外效应,力在刚体上沿其作用线移动,刚体的运动状态不发生改变,所以作用效应不变;力在变形体沿其作用线移动后,内部变形效果发生了改变,与力在原来的作用位置对变形体产生的效果不同。
3.如上图所示,试判断图中杆件哪些属于轴向拉伸或轴向压缩。
解答:(a )图属于轴向拉伸变形;(b )图属于轴向压缩变形。
(c )、(d )两图不属于轴向拉伸或压缩变形。
4.材料力学中杆件内力符号的规定与静力平衡计算中力的符号有何不同?【解答】问答题2图 问答题3图材料力学中内力的符号规定,是按照变形的性质决定的。
例如:轴向拉伸时,轴力取正号;轴向压缩时,轴力取负号;剪切变形时,“左上右下剪力为正”意思也可以理解成:剪切面左边部分向上运动,或者剪切面右边部分向下运动,则剪切面上的剪力取正号;弯曲变形时,梁的轴线由直线变成“上凹下凸”形状的曲线时,弯矩取正号等等。
计算一个截面的内力(轴力、剪力、扭矩、弯矩)时,只取这个截面一侧(既可以单独取截面左侧,也可以单独取截面右侧)的全部外力来计算,而舍弃截面另一侧的全部外力。
单独取截面左侧的外力计算内力与单独取截面右侧的外力计算内力,符号规定的标准是相反的,但最后得出的计算结果是一致的,即无论取截面的哪一侧外力来计算,同一截面的内力,必定大小相等,符号相同(就是对杆件产生的变形性质相同)。
静力平衡计算中力的符号,是对力在坐标轴上的投影和力对点之矩进行符号规定,主要根据力的方向,坐标轴正向和矩心位置等因素决定。
如果规定了一个方向的力在坐标轴上的投影规定为正,则与之相反方向的力在同一坐标轴上的投影则要为负;力对点取力矩时,如果规定了一个转向为正,则与之相反转向的力矩为负。
列平衡方程时,作用在同一物体上的所有外力都参加计算,全部外力按照同一标准规定符号。
【说明】:此题为一个作业之外的补充问答题,将答案写在这里,是希望有助于同学们理解工程力学中经常用到的各种符号规则。
三、作图题1.作如图所示各杆的轴力图。
(a )解答:由上图可知,用截面法求得截面1-1、2-2、3-3的轴力分别为:取截面1-1右侧的全部外力计算,结果为正,表示1-1截面受拉力。
N 2220N F -=-(指向2-2截面)(背离2-2截面)+30=10(表示受拉)计算结果为正,表示1-1截面受拉力。
N3320N F -=-(指向=2-2面)-20截(表示受压)根据计算结果,画出杆的轴力图如上图所示。
(b )解答:由上图可知,用截面法求得截面1-1、2-2、3-3的轴力分别为:N11F F -=+(取截面1-1左侧的全部外力计算,结果为正,表示受拉)N 220F F F -=-=(取截面2-2左侧的全部外力计算,结果为0,表示此段不变形)N33F F F F F -=-+=+(取截面1-1左侧的全部外力计算,结果为正,表示受拉)根据计算结果,画出杆的轴力图如上图所示。
(c )解答:由上图可知,用截面法求得截面1-1、2-2、3-3的轴力分别为:N110F -=(截面1-1左侧没有任何外力作用)N 2224F F -=+-(背离2截面)(取截面2-2左侧的全部外力计算,结果为正,受拉)N3343F F F F -=-=(取截面3-3左侧的全部外力计算,结果为正,表示受拉)根据计算结果,画出杆的轴力图如上图所示。
2.作如图所示各圆轴的扭矩图。
根据扭矩的计算简便规则和符号规定,分别计算出轴各段截面上的扭矩值,画出轴的扭矩图如上图所示。
3.求下列各梁中截面1-1、2-2、3-3上的内力。
这些截面无限接近于截面C 或截面D ,且F 、q 、a 均为已知。
【解答】(a )(1)画出从1-1、2-2、3-3截面截开示意图(本题是悬臂梁,取截面右侧外力计算,可以避免求解梁的左端约束力),分别如图(1)、(2)、(3)所示。
(2)根据剪力和弯矩计算法则,可得1-1、2-2、3-3截面的剪力和弯矩分别为:S11F F F -=-(右上+)(右下)=0,11M F a Fa -=⋅(右逆=)S22F F F -=-(右上=-),22M F a Fa -=⋅(右逆=)S220F -=,330M -=(3-3截面右侧没有任何外力作用)(b )(1)对于简支梁,无论取截面的左侧还是右侧外力求内力,都需要求解杆端约束力,画出A 、B 两端的约束力,根据梁的平衡方程,可求得两端约束力为:(2)画出从1-1、2-2截面截开示意图,分别如图(1)、(2)所示。
(2)根据剪力和弯矩计算法则,可得1-1、2-2截面的剪力和弯矩分别为:4.已知如图所示各梁的q 、F 、M e 和尺寸a ,试求:(1)列出梁的剪力方程和弯矩方程;(2)作剪力图和弯矩图;(3)指出max S F 和max M 及所在截面位置。
(a )解答:(1)求两端支座A 、B 的约束力,并写出剪力方程和弯矩方程。
122A B qa a F F qa a ⋅===(两力大小相等、方向相反,组成力偶) 剪力方程为:弯矩方程为:(2)按剪力方程作剪力图,按弯矩方程作弯矩图,如图所示。
【说明】:在本题手工绘制的剪力图和弯矩图后面,同时给出了计算机辅助分析(工程)软件ANSYS 建模分析自动绘出的剪力图和弯矩图,验证了手工绘图的正确性。
(3)确定最大剪力和最大弯矩。
由剪力图和弯矩图可知:max 12SF qa =,2max 18M qa = (b )解答:(1)对于本题的悬臂梁,取任一截面之右部分研究,不必求左端支座A 的约束力,直接写出剪力方程和弯矩方程如下:剪力方程为: ()()S F x q a x =-- (0<x <a )弯矩方程为:21()()2M x a x =- (0≤x ≤a ) (2)按剪力方程作剪力图,按弯矩方程作弯矩图,如图所示。
【说明】:在本题手工绘制的剪力图和弯矩图后面,同时给出了计算机辅助分析(工程)软件ANSYS 建模分析自动绘出的剪力图和弯矩图,验证了手工绘图的正确性。
(3)确定最大剪力和最大弯矩。
由剪力图和弯矩图可知:max S F qa =,2max 12M qa = 5.试利用q 、S F 和M 之间的微分关系作下列梁的剪力图、弯矩图。
并指出max S F 和max M 及所在截面位置。
【说明】:本题解答过程的说明文字没有给出,请同学们自己写出过程说明,主要把握以下几点:(1)对于简支梁(a )或外伸梁(b )、(c ),必须求得各支座的约束力;(2)要将梁分成若干段:集中力作用处、集中力偶作用处、支座处、均布线载荷的起点、终点,剪力图上剪力等于0的点,都是分界点。
(3)在一段梁内,如果没有均布载荷作用,则该段内剪力为常数,剪力图为水平直线(平行于梁轴线);弯矩图为斜直线。
(4)在一段梁内,如果有均布载荷作用,则该段内剪力图为斜直线;弯矩图为抛物线,在剪力为零的截面上,弯矩达到极值。
(5)在集中力(包括梁上已知的主动力和支座约束力)作用处(梁的一个截面),剪力图发生突变(该截面左右两侧附近剪力值不同);弯矩图发生转折(该截面左右两侧弯矩图的斜率不同)。
(6)在集中力偶(包括固定端约束)作用处,剪力图不受影响,弯矩图发生突变(该截面左右两侧附近弯矩值不同)。
(7)如果是水平直线,只需确定一点即可作图;如果是斜直线,需要确定两个点的坐标,才能作图(一般取起点和终点作控制点);如果是抛物线,需要确定三个点作图(一般取起点、极值点、中点、结束点为控制点),计算出各控制点的剪力值和弯矩值,描点、连线即可作出剪力图和弯矩图。
(8)根据作出的剪力图,可以直接观察出剪力和弯矩的最大值。