工程力学杆件内力图

合集下载

专升本工程力学第6章 杆件的内力分析.

专升本工程力学第6章 杆件的内力分析.

29
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
【例6.3】求简支梁横截面1-1、2-2、3-3上的剪力和弯矩。
30
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
解 (1)求支座反力。由梁的平衡方程,求得支座反力为
FA=FB=10kN
(2)求横截面1-1上的剪力和弯矩。假想地沿横截面1-1把梁
2018/12/8
6.3 杆件弯曲时的内力分析
6.3.1 平面弯曲的概念 6.3.2 剪力和弯矩
6.3.3 剪力图和弯矩图
26
机电工程学院
2018/12/8
6.3.2 剪力和弯矩
以悬臂梁为例,其上作用有载荷F,由平衡方程可求出固定端
B处的支座反力为FB=F,MB=Fl。
27
机电工程学院
2018/12/8
(3)求横截面2-2上的剪力和弯矩。假想地沿横截面2-2把梁截
成两段,取左段为研究对象,列出平衡方程
F
y
0, FA F1 FS2 0
FS2 FA F1 0
D
M
0, M2 FA (4m) F1 (2m) 0
M 2 FA (4m) F1 (2m) 20kN m
16
机电工程学院
2018/12/8
6.2.2 扭矩与扭矩图
解 (1)计算外力偶矩。作用于各轮上的外力偶矩分别为
PA M eA 9549 4.46kN m n PB M eB 9549 1.91kN m n PC M eC M eD 9549 1.27kN m n
T2 M eA M eB 2.55kN m T3 M eD 1.27kN m

工程力学第6章内力和内力图

工程力学第6章内力和内力图

工程力学教程电子教案
例题 6-1
K
FFE
FFA
FFC
内力和内力图
15
FAy A
FAx
K
E FE FB
a a aa
CD B
FC
取节点K,受力分析如图。由平衡方程
Fx 0, FFE FFA cos 45 0
Fy 0, FFC FFA cos 45 0
解得 FFE 2 kN,FFC 2 kN
B
C
F1
C
D
D
E
F
G
A
B
H
(a)
(b)
工程力学教程电子教案
内力和内力图
26
4. 小 结 (1) 节点法
(a)一般先研究整体,求支座约束力;
(b) 逐个取各节点为研究对象; (c) 求杆件内力; (d) 所选节点的未知力数目不大于2,由此开始计算。
(2) 截面法
(a)一般先研究整体,求支座约束力; (b) 根据待求内力杆件,恰当选择截面;
上,对于平面桁架,各力的作用线都在桁架的平 面内。
根据上述假设,桁架的各个杆件都是二力杆。 我们能比较合理的地选用材料,充分发挥材料的作 用,在同样跨度和荷载情况下,桁架比梁更能节省 材料,减轻自重。
工程力学教程电子教案
内力和内力图
10
3. 平面简单桁架的构成
节点
杆件
在平面问题中,为保证桁架几何形状不变,可 以由基本三角形ABC为基础,这时是3个节点,以后 每增加一个节点,相应增加两根不在一条直线上的 杆件,依次类推,最后将整个结构简支,这样构成 的桁架称为平面简单桁架。
2C
∑MF (F)=0
F

工程力学C-第9章 扭转

工程力学C-第9章 扭转
T 1000 0.04 3 Wp (1 0.54 )
max
84.88MPa
16
min max
10 42.44MPa 20
§9-6 圆轴扭转破坏与强度条件
一、圆轴扭转时的破坏现象
脆性材料扭转破坏
沿450螺旋曲面被拉断
塑性材料扭转破坏
沿横截面被剪断
二、圆轴扭转的强度条件
D 1.192 得: d1
2
D2
A空 A实 4
(1 0.8 )
d1
4
2
0.512
例6 传动轴AB传递的功率为 P =7.5kW, 转速n=360r/min。轴的 AC 段为实心圆轴, CB 段为空心圆轴。已知:D =30mm,d =20mm。试计算AC段的最大剪应力,CB 段横截面上内、外缘处的剪应力。 解: (1)计算外力偶矩和扭矩 P AC段最大剪应力: m 9549 198.9N m n Tmax D 1max 37.5 10 6 Pa 37.5MPa T m 198.9N m I P1 2 (2)计算极惯性矩 CB段上内外缘的剪应力: D 4 T d 8 4 AC段:I P1 7.95 10 m 2内 I P2 2 32 D 4 4 31.2 10 6 Pa 31.2MPa (1 ) CB段:I P 2 T D 32 2外 8 4 6.38 10 m I P2 2 46.8 10 6 Pa 46.8MPa (3)计算应力
A
ρτ
ρ
dA T
d 2 G ρ dA T dx A
令:
ρ dA I P
2 A
极惯性矩
d G IP T dx

工程力学05-杆件的内力图

工程力学05-杆件的内力图
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
构件内力图概念、画法
杆件基本变形时内力图的表示
内力图沿杆轴线的分布规律 最大内力与危险截面的确定
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
5.2 轴力图与扭矩图
5.2.2 扭矩图 1)扭转内力分量与扭矩
作用在杆件上的外力偶矩可以向杆轴线简化, 简化的结果若力偶作用面在横截面上,该力偶矩分 量——扭矩 扭矩可以是外力简化,也可以由传递的功率计 算得到 2)功率P、转速n和外力偶矩T P (5-1) T=9549 n (N.m) 式中: P:功率(kW) n:转速(r/min)
d
D MD D
确定控制截面
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
5.2 轴力图与扭矩图
5.2.2 扭矩图 MA=1146N.m,MB=MC=350N.m,MD=446N.m。 MB MC MA 求各截面扭矩 BC段 SMx= 0 B C A
C
l l MO =2FPl
FP D B
MC C
l
FP
D B
FQC
S M C= 0
解得:
– MC + MO – FP×l =0
FQC=FP MC = MO – FP×l = 2FPl– FPl = FPl

《工程力学》第4次作业解答(杆件的内力计算与内力图).

《工程力学》第4次作业解答(杆件的内力计算与内力图).

《工程力学》第4次作业解答(杆件的内力计算与内力图)2008-2009学年第二学期一、填空题1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。

2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。

3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。

4.若传动轴所传递的功率为P 千瓦,转速为n 转/分,则外力偶矩的计算公式为9549P M n=⨯。

5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负,按右手螺旋法则确定。

6.剪力S F 、弯矩M 与载荷集度q 三者之间的微分关系是()()S dM x F x dx =、()()S dF x q x dx=±。

7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。

8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。

9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。

10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。

二、问答题1.什么是弹性变形?什么是塑性变形?解答:在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。

如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。

2.如图所示,有一直杆,其两端在力F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。

试问:(1)对于图示的三种受力情况,直杆的变形是否相同?(2)力的可传性原理是否适用于变形体?解答:(1)图示的三种情况,杆件的变形不相同。

图(a )的杆件整体伸长变形,图(b )的杆件只有局部伸长变形,图(c )的杆件是缩短变形。

工程力学第4次作业解答杆件的内力计算与内力图

工程力学第4次作业解答杆件的内力计算与内力图

6 .剪力 F 、弯矩 M 与载荷集度 q 三者之间的微分关系是 dM ( x)= F ( x ) 、dx《工程力学》第 4 次作业解答(杆件的内力计算与内力图)2008-2009 学年第二学期一、填空题1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的 伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。

2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向 与截面外法线方向相同,杆件受拉伸。

3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意 两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。

4.若传动轴所传递的功率为 P 千瓦,转速为 n 转/分,则外力偶矩的计算公式为M = 9549 ⨯ Pn。

5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负, 按右手螺旋法则确定。

S S dF ( x )S dx= ±q ( x ) 。

7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。

8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。

9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。

10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。

二、问答题1.什么是弹性变形?什么是塑性变形?解答:在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。

如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。

2.如图所示,有一直杆,其两端在力 F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。

试问:(1)对于图示的三种受力情况,直杆的变形是否相同? (2)力的可传性原理是否适用于变形体?问答题 2 图问答题 3 图。

解答:(1)图示的三种情况,杆件的变形不相同。

《工程力学》教学课件第十一章弯曲内力

《工程力学》教学课件第十一章弯曲内力
引发裂缝扩展
弯曲内力还可能导致结构中的裂缝扩展,进一步降低结构强度。
优化措施降低弯曲内力影响
合理布置荷载
通过合理布置荷载,降低结构 受到的弯曲内力,提高结构稳 定性。
采用预应力技术
对结构施加预应力,使结构在受到荷 载作用前产生一定的反弯曲内力,从 而抵消部分外荷载产生的弯曲内力。
加强结构刚度
增加结构刚度,提高结构抵抗 弯曲内力的能力,保证结构整 体性能。
机械工程
分析机械零件在受力时的弯曲变形和应力分布,提高零件的强度和刚 度,延长使用寿命。
案例分析中问题探讨
载荷与边界条件的确定
在实际工程中,如何准确确定结构所受的载荷和边界条件是进行 内力分析的关键问题。
内力与变形的计算精度
由于实际结构的复杂性和计算方法的局限性,如何保证内力和变形 计算的精度是另一个需要探讨的问题。
优化截面形状和尺寸
通过优化截面形状和尺寸,使 得截面在受力时能够更好地抵 抗弯曲内力,提高结构强度。
06 实验验证与工程应用案例
实验验证方法介绍
1 2
载荷实验
通过对实际结构或模型施加静态或动态载荷,观 察和分析结构的变形和内力分布情况。
应变测量
利用应变片、应变计等测量工具,定量测量结构 在载荷作用下的应变值,进而推算出内力大小。
性能。
弯曲内力与材料性质关系
弹性模量
材料的弹性模量越大,梁 的抗弯刚度越大,承受弯
曲内力的能力越强。
屈服强度
材料的屈服强度越高, 梁在承受弯曲内力时越 不容易发生塑性变形。
韧性
材料的韧性越好,梁在 承受弯曲内力时越不容
易发生脆性断裂。
疲劳强度
对于承受交变弯曲内力的 梁,材料的疲劳强度也是 一个重要的考虑因素。

《工程力学》第5章 杆件的内力图

《工程力学》第5章 杆件的内力图
➢扭矩沿杆轴线方向变化的图形,称为扭矩图; ➢T(x)的图象表示:
①扭矩变化规律; ②|T|max值及其截面位置,强度计算(危险截面)
27/65
5.2 轴力图与扭矩图----扭矩图
【例4】圆轴受有四个绕轴线转动的外加力偶,各 力偶的力偶矩的大小和方向均示于图中,其中力 偶矩的单位为N.m,尺寸单位为mm。试画出圆轴 的扭矩图。
【例3】 图示杆的A、B、C、D点分别作用着大小为5P 、8P、4P和 P 的力,试画出杆的轴力图。
OA
BC
D
PA
N1
A
PBPCBCPD D Nhomakorabeax
PA
PB
PC
PD
解: 求OA段内力N1:设置截面如图,列平衡方程
Fx 0 N1 PA PB PC PD 0
N1 PA PB PC PD 5P 8P 4P P 2P21/65
剪力方程和弯矩方程。
MO=2FPl
FP
B
A
C
l
l
39/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
解:1.确定控制面和分段
截面A、B、C均为控制面。需要分为AC和CB两段建
立剪力和弯矩方程。
2.建立Oxy坐标系
3.建立剪力方程和弯矩方程
y
MO=2FPl
O
A
C
F
P
x
B
l
l
40/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
41/65
5.3 剪力图与弯矩图--剪力方程与弯矩方程
y
MO=2FPl
O
A
C
l
FP
B l
x2
FP
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档