电磁感应中的杆和导轨问题

合集下载

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。

v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。

1 ,每秒钟速度的增加量都是在变小的)2。

单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。

1 kg,空间存在磁感应强度B=0。

5 T、竖直向下的匀强磁场。

连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。

0 Ω,其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。

在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。

电磁感应中的“杆导轨”类问题(3大模型)解题技巧

电磁感应中的“杆导轨”类问题(3大模型)解题技巧

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L2,方向沿导轨平面向下。

(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+12mv m2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。

【内化模型】单杆+电阻+导轨四种题型剖析题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学观点杆以速度v切割磁感线产生感应电动势E=BLv,电流I=BLvR,安培力F=BIL=B2L2vR。

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。

[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。

(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。

现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。

电磁感应中双杆模型问题答案

电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

2020届浙江高考复习专题:电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)(解析版)

专题09 电磁感应的综合应用(能量问题、动量问题、杆+导轨模型)考点分类:考点分类见下表考点内容常见题型及要求考点一电磁感应中的能量问题选择题、计算题考点二电磁感应中的动量问题选择题、计算题考点三电磁感应中的“杆+导轨”模型选择题、计算题考点一: 电磁感应中的能量问题1.能量转化及焦耳热的求法(1)能量转化(2)求解焦耳热Q的三种方法2.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.3.方法技巧求解电能应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和电能.学科#网考点二电磁感应中的动量问题电磁感应问题往往涉及牛顿定律、动量守恒、能量守恒、电路的分析和计算等许多方面的物理知识,试题常见的形式是导体棒切割磁感线,产生感应电流,从而使导体棒受到安培力作用.导体棒运动的形式有匀速、匀变速和非匀变速3种,对前两种情况,容易想到用牛顿定律求解,对后一种情况一般要用能量守恒和动量守恒定律求解,但当安培力变化,且又涉及位移、速度、电荷量等问题时,用动量定理求解往往能巧妙解决.方法技巧动量在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv2-mv1,q=I t.③求位移:-BIlΔt=-22B l v tR总=0-mv0,即-22B lR总x=m(0-v0).(2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.考点三:电磁感应中的“杆+导轨”模型模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变常见类型单杆水平式(导轨光滑)设运动过程中某时刻棒的速度为v,加速度为a=Fm-22B L vmR,a,v同向,随v的增加,a减小,当a=0时,v最大,I=BLvR恒定单杆倾斜式(导轨光滑)杆释放后下滑,开始时a=gsin α,速度v↑→E=BLv↑→I=ER↑→F=BIL↑→a↓,当F=mgsin α时,a=0,v最大双杆切割式(导轨光滑)杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.对系统动量守恒,对其中某杆适用动量定理学科&网光滑不等距导轨杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,两杆以不同的速度做匀速运动含“源”水平光滑导轨(v0=0)S闭合,ab杆受安培力F=BLEr,此时a=BLEmr,速度v↑⇒E感=BLv↑⇒I↓⇒F=B IL↓⇒加速度a↓,当E感=E时,v最大,且v m=EBL含“容”水平光滑导轨(v0=0)拉力F恒定,开始时a=Fm,速度v↑⇒E=BLv↑,经过Δt速度为v+Δv,此时E′=BL(v+Δv),电容器增加的电荷量ΔQ=CΔU=C(E′-E)=CBLΔv,电流I=Qt∆∆=CBL vt∆∆=CBLa,安培力F安=BIL=CB2L2a,F-F安=ma,a=22Fm B L C+,所以杆做匀加速运动★考点一:电磁感应中的能量问题◆典例一:( 2019·浙江卷)如图所示,倾角θ=37°、间距l=0.1 m的足够长金属导轨底端接有阻值R=0.1 Ω的电阻,质量m=0.1 kg的金属棒ab垂直导轨放置,与导轨间的动摩擦因数μ=0.45.建立原点位于底端、方向沿导轨向上的坐标轴x.在0.2 m≤x≤0.8 m区间有垂直导轨平面向上的匀强磁场.从t=0时刻起,棒ab在沿x轴正方向的外力F作用下,从x=0处由静止开始沿斜面向上运动,其速度v与位移x满足v=kx(可导出a=kv),k=5 s-1.当棒ab运动至x1=0.2 m处时,电阻R消耗的电功率P=0.12 W,运动至x2=0.8 m处时撤去外力F ,此后棒ab 将继续运动,最终返回至x =0处.棒ab 始终保持与导轨垂直,不计其他电阻,求:(提示:可以用F-x 图象下的“面积”代表力F 做的功,sin 37°=0.6)(1)磁感应强度B 的大小; (2)外力F 随位移x 变化的关系式;(3)在棒ab 整个运动过程中,电阻R 产生的焦耳热Q.【解析】(1)在x 1=0.2 m 处时,电阻R 消耗的电功率P =(Blv )2R此时v =kx =1 m/s 解得B =PR (lv )2=305 T(2)在无磁场区间0≤x<0.2 m 内,有 a =5 s -1×v =25 s -2×xF =25 s -2×xm +μmgcos θ+mgsin θ=(0.96+2.5x) N 在有磁场区间0.2 m≤x≤0.8 m 内,有 F A =(Bl )2vR=0.6x NF =(0.96+2.5x +0.6x) N =(0.96+3.1x) N (3)上升过程中克服安培力做的功(梯形面积) W A1=0.6 N 2(x 1+x 2)(x 2-x 1)=0.18 J撤去外力后,设棒ab 上升的最大距离为x ,再次进入磁场时的速度为v′,由动能定理有 (mgsin θ+μmgcos θ)x =12mv 2(mgsin θ-μmgcos θ)x =12mv′2解得v′=2 m/s由于mgsin θ-μmgcos θ-(Bl )2v′R =0故棒ab 再次进入磁场后做匀速运动下降过程中克服安培力做的功W A2=(Bl )2v′R (x 2-x 1)=0.144 JQ =W A1+W A2=0.324 J 【答案】 (1)305T (2)(0.96+3.1x) N (3)0.324 J◆典例二:[用功能关系求焦耳热]两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d =1 m ,在左端弧形轨道部分高h =1.25 m 处放置一金属杆a ,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b ,杆a 、b 的电阻分别为R a =2 Ω、R b =5 Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B =2 T .现杆b 以初速度大小v 0=5 m/s 开始向左滑动,同时由静止释放杆a ,杆a 由静止滑到水平轨道的过程中,通过杆b 的平均电流为0.3 A ;从a 下滑到水平轨道时开始计时,a 、b 运动的速度—时间图象如图乙所示(以a 运动方向为正方向),其中m a =2 kg ,m b =1 kg ,g =10 m/s 2,求:(1)杆a 在弧形轨道上运动的时间;(2)杆a 在水平轨道上运动过程中通过其截面的电荷量; (3)在整个运动过程中杆b 产生的焦耳热. 【答案】(1)5 s (2)73 C (3)1156J【解析】(1)设杆a 由静止滑至弧形轨道与平直轨道连接处时杆b 的速度大小为v b0,对杆b 运用动量定理,有Bd I -·Δt =m b (v 0-v b0)其中v b0=2 m/s 代入数据解得Δt =5 s.(2)对杆a 由静止下滑到平直导轨上的过程中,由机械能守恒定律有m a gh =12m a v 2a解得v a =2gh =5 m/s设最后a 、b 两杆共同的速度为v′,由动量守恒定律得m a v a -m b v b0=(m a +m b )v′ 代入数据解得v′=83m/s杆a 动量的变化量等于它所受安培力的冲量,设杆a 的速度从v a 到v′的运动时间为Δt′,则由动量定理可得BdI·Δt′=m a (v a -v′)而q =I·Δt′代入数据得q =73C.(3)由能量守恒定律可知杆a 、b 中产生的焦耳热为 Q =m a gh +12m b v 20-12(m b +m a )v′2=1616 J b 棒中产生的焦耳热为Q′=52+5Q =1156 J.★考点二:电磁感应中的动量问题◆典例一:.(多选)(2019·高考全国卷Ⅲ)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上.t =0时,棒ab 以初速度v 0向右滑动.运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示.下列图象中可能正确的是( )【答案】AC【解析】棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到方向与v0方向相反的安培力的作用而做变减速运动,棒cd受到方向与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v1=v2,两相同的光滑导体棒ab、cd组成的系统在足够长的平行金属导轨上运动时不受外力作用,由动量守恒定律有mv0=mv1+mv2,解得v1=v2=v02,选项A、C均正确,B、D均错误.◆典例二:[动量定理和能量守恒结合](2018·江西九江模拟)如图所示,光滑水平面停放一小车,车上固定一边长为L=0.5 m的正方形金属线框abcd,金属框的总电阻R=0.25 Ω,小车与金属框的总质量m=0.5 kg.在小车的右侧,有一宽度大于金属线框边长,具有理想边界的匀强磁场,磁感应强度B=1.0 T,方向水平且与线框平面垂直.现给小车一水平速度使其向右运动并能穿过磁场,当车上线框的ab边刚进入磁场时,测得小车加速度a=10 m/s2.求:(1)金属框刚进入磁场时,小车的速度为多大?(2)从金属框刚要进入磁场开始,到其完全离开磁场,线框中产生的焦耳热为多少? 【答案】(1) v 0=5 m/s. (2) 4.0 J. 【解析】(1)设小车初速度为v 0,则线框刚进入磁场时,ab 边由于切割磁感线产生的电动势为E=BLv 0 回路中的电流I=ER,根据牛顿定律BIL=ma 由以上三式可解得v 0=5 m/s.学&科网(2)设线框全部进入磁场时小车速度为v 1,进入过程平均电流为1I ,所用时间为Δt,则1I =R t ∆Φ∆=2BL R t∆根据动量定理得-B 1I LΔt=mv 1-mv 0,解得v 1=4 m/s设线框离开磁场时小车速度为v 2,离开过程平均电流为2I ,所用时间为Δt 1,则2I =1R t ∆Φ∆=21BL R t ∆ 根据动量定理得-B 2I LΔt 1=mv 2-mv 1,解得v 2=3 m/s线框从进入到离开产生的焦耳热Q=12m 20v -12m 22v =4.0 J.★考点三:电磁感应中的“杆+导轨”模型◆典例一:(2018·高考江苏卷)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B.质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g.金属杆( )A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4【答案】BC【解析】根据题述,由金属杆进入磁场Ⅰ和进入磁场Ⅱ时速度相等可知,金属杆在磁场Ⅰ中做减速运动,所以金属杆刚进入磁场Ⅰ时加速度方向竖直向上,选项A 错误;由于金属杆进入磁场Ⅰ后做加速度逐渐减小的减速运动,而在两磁场之间做匀加速运动,所以穿过磁场Ⅰ的时间大于在两磁场之间的运动时间,选项B 正确;根据能量守恒定律,金属杆从刚进入磁场Ⅰ到刚进入磁场Ⅱ过程动能变化量为0,重力做功为2mgd ,则金属杆穿过磁场Ⅰ产生的热量Q 1=2mgd ,而金属杆在两磁场区域的运动情况相同,产生的热量相等,所以金属杆穿过两磁场产生的总热量为2×2mgd =4mgd ,选项C 正确;金属杆刚进入磁场Ⅰ时的速度v =2gh ,进入磁场Ⅰ时产生的感应电动势E =BLv ,感应电流I =ER ,所受安培力F =BIL ,由于金属杆刚进入磁场Ⅰ时加速度方向竖直向上,所以安培力大于重力,即F>mg ,联立解得h>m 2gR 22B 4L 4,选项D 错误.◆典例二(2019·高考天津卷)如图所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R ,两棒与导轨始终接触良好.MN 两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ 的质量为m ,金属导轨足够长、电阻忽略不计.(1)闭合S ,若使PQ 保持静止,需在其上加多大的水平恒力F ,并指出其方向;(2)断开S ,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q ,求该过程安培力做的功W.【解析】(1)设线圈中的感应电动势为E ,由法拉第电磁感应定律E =ΔΦΔt ,则E =k ①设PQ 与MN 并联的电阻为R 并,有 R 并=R 2②闭合S 时,设线圈中的电流为I ,根据闭合电路欧姆定律得I =ER 并+R③ 设PQ 中的电流为I PQ ,有 I PQ =12I ④设PQ 受到的安培力为F 安,有 F 安=BI PQ l ⑤保持PQ 静止,由受力平衡,有 F =F 安⑥联立①②③④⑤⑥式得 F =Bkl 3R⑦ 方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x ,所用时间为Δt ,回路中的磁通量变化量为ΔΦ ,平均感应电动势为E -,有E -=ΔΦΔt ⑧其中ΔΦ=Blx ⑨设PQ 中的平均电流为I -,有 I -=E -2R ⑩根据电流的定义得 I -=qΔt (11)由动能定理,有 Fx +W =12mv 2-0(12)联立⑦⑧⑨⑩(11) (12)式得W =12mv 2-23kq. (13)1.(2019·高考全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0【答案】BC【解析】根据楞次定律可知在0~t 0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R=ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.2.(2019·新课标全国Ⅱ卷)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

高分策略之电磁感应中的杆导轨模型

高分策略之电磁感应中的杆导轨模型

一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。

1.电路特点:导体棒相当于电源。

2.安培力的特点:安培力为阻力,并随速度减小而减小。

F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。

a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。

线圈在穿过磁场的过程中所受合外力为安培力。

电磁感应中的杆和导轨问题

电磁感应中的杆和导轨问题

电磁感应中的杆+导轨问题“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。

导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。

下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。

需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。

1.单杆水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a=Fm -=B2L2vmR,a、v同向,随速度的增加,棒的加速度a减小,当a=0时,v最大,电流I=BLv mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化2.单杆倾斜式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F =BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,速度达到最大v m=mgR sin αB2L2收运动形式匀速直线运动尾状态力学特征 受力平衡,a =0电学特征I 不再变化3、有初速度的单杆物理模型杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L动态分析杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLv R ,安培力F =BIL =B 2L 2vR.杆做减速运动:v ↓?F ↓?a ↓,当v =0时,a =0,杆保持静止能量转化情况动能全部转化为内能:Q =12mv 24、含有电容器的单杆物理模型轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定动态分析开始时a=Fm,杆ab速度v?感应电动势E=BLv,经过时间Δt速度为v+Δv,此时感应电动势E′=BL(v+Δv),Δt时间内流入电容器的电荷量Δq=CE′-C E=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa (所以电流的大小恒定)安培力F安=BLI=CB2L2a(所以安培力的大小恒定)F-F安=ma,a=Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量转化情况F做的功使其它形式的能E其它一部分转化为动能,一部分转化为电场能E电场能:W F=E其它=12mv2+E电场能5、含有电源时的单杆物理模型轨道水平光滑,单杆ab质量为m,电阻不计,两导轨间距为L。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的杆+导轨问题
“杆+导轨”模型是电磁感应问题高考命题的“基本道具”,也是各种考试的热点,考查的知识点多,题目的综合性强,物理情景富于变化,是我们学习中的重点和难点。

导轨放置方式可分为水平、竖直和倾斜;轨道可能光滑,也可能粗糙;杆可能有电阻也可能没有电阻;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,多种情景组合复杂,题目形式多变。

下面是几种最基本的模型及分析,有兴趣(无兴趣可以无视)的同学可以学习、体会、研究。

需要注意的是:模型中的结论是基于表中所述的基本模型而言,不一定有普遍性,物理情景有变化,结论可能不同,但分析的方法是相同的、有普遍性的。

1.单杆水平式
物理模型
匀强磁场与导轨垂直,磁感应强度为B,棒ab长为L,质量为m,
初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电
阻不计
动态分析设运动过程中某时测得的速度为v,由牛顿第二定律知棒ab的加速度为a=
F
m-=
B2L2v
mR,a、v同向,随速度的增加,棒的加速度a 减小,当a=0时,v最大,电流I=
BLv m
R不再变化
收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化
物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒质量为m,电阻为R,导轨光滑,电阻不计
动态分析棒ab刚释放时a=g sin α,棒ab的速度v↑→感应电动势E=BLv↑→电流I=
E
R↑→安培力F=BIL↑→加速度a↓,当安培力F =mg sin α时,a=0,速度达到最大v m=
mgR sin α
B2L2
收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化
3、有初速度的单杆
物理模型杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻
不计,两导轨间距为L
动态分析
杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLv
R ,安
培力F =BIL =B 2L 2v
R .杆做减速运动:v ↓F ↓a ↓,当v =0时,a =0,杆保持静止
能量转化情况 动能全部转化为内能:Q =1
2mv 20
4、含有电容器的单杆
物理模型
轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定
动态分析
开始时a =F
m ,杆ab 速度v 感应电动势E =BLv ,经过时间Δt 速度为v +Δv ,此时感应电动势E ′=BL (v +Δv ),Δt 时间内流入电容器的电荷量Δq =CE ′-C E =CBL Δv
电流I =Δq Δt =CBL Δv
Δt =CBLa (所以电流的大小恒定) 安培力F 安=BLI =CB 2L 2a (所以安培力的大小恒定)
F -F 安=ma ,a =F
m +B 2L 2C ,所以杆以恒定的加速度匀加速运动
能量转化情况
F 做的功使其它形式的能E 其它一部分转化为动能,一部分转化为
电场能E 电场能:W F =E 其它=1
2mv 2+E 电场能
物理模型
轨道水平光滑,单杆ab 质量为m ,电阻不计,两导轨间距为L
动态分析
S 闭合,ab 杆受安培力F =BLE r ,此时a =BLE
mr ,杆ab 速度v ↑感
应电动势E 感=BLv ↑I=
r
BLv
E ↓安培力
F =BIL ↓加速度a ↓,当E 感=E 时,a=0,速度v 最大,且v m =E
BL
收尾状态
运动形式 匀速直线运动 力学特征 合力为零,a =0 电学特征
E=E 感=BLv I 等于零。

相关文档
最新文档