电磁感应中的杆导轨类问题大模型解题技巧

合集下载

电磁感应中的“杆+导轨”类问题(大模型)解题技巧

电磁感应中的“杆+导轨”类问题(大模型)解题技巧
题型二(V0=0)轨道水平光滑,杆cd质量为m,电 阻不计,两导轨间 距为L,拉力F恒 疋
题型一(V0M0)杆cd以一定初速 度vo在光滑水平 轨道上滑动,质量 为m,电阻不计, 两导轨间距为L
杆以速度v切割磁 感线产生感应电 动势E=BLv,电 流I=BRv,安培力
2 2
F=BIL=BRv。杆
做减速运动:
产生感应电流T求出回路的电能
⑵闭合开关S-导体棒变加速运动-产生的感应电动势不断增大-达到电源的路端电压
T棒中没有电流-由此可求出电源与电阻所在回路的电流
(3)导体棒在外力作用下运动—回路中形成充电电流 顿第二定律列式分析。
【答案】:见解析
【解析】:(1)导体棒切割磁感线,E=BLv
导体棒做匀速运动,F=F安,又F安二BIL,其中I
的输出功率。
(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用
下从静止开始向右运动。电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻
电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
【思路点拨】:
(1)导体棒匀速运动T受力平衡T求出拉力做的功。导体棒切割磁感线产生感应电动势
r」
7

/
/d
K
F

Ll
L.__
F


J
外力F作用在金属杆cd上,使cd由静止开始沿导轨向上运动,求cd的最大加速度和最大速 度。
【答案】见解析
【解析】:分析金属杆运动时的受力情况可知, 金属杆受重力、导轨平面的支持力、拉力、
摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F—mgsin9-F安一f=ma

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

(完整版)电磁感应定律——单杆+导轨模型(含思路分析)

“单杆+导轨”模型1. 单杆水平式(导轨光滑) 物理模型动态分析 设运动过程中某时刻棒的速度为v ,加速度为a =F m -错误!,a 、v 同向,随v 的增加,a 减小,当a =0时,v 最大,I =错误!恒定收尾状态 运动形式 匀速直线运动力学特征 a =0,v 最大,v m =错误! (根据F=F 安推出,因为匀速运动,受力平衡)电学特征I 恒定注:加速度a 的推导,a=F 合/m (牛顿第二定律),F 合=F —F 安,F 安=BIL ,I=E/R整合一下即可得到答案。

v 变大之后,根据 上面得到的a 的表达式,就能推出a 变小这里要注意,虽然加速度变小,但是只要和v 同向,就是加速运动,是a 减小的加速运动(也就是速度增加的越来越慢,比如1s 末速度是1,2s 末是5,3s 末是6,4s 末是6。

1 ,每秒钟速度的增加量都是在变小的)2。

单杆倾斜式(导轨光滑)物理模型动态分析 棒释放后下滑,此时a =g sin α,速度v ↑E=BLv↑I=错误!↑错误!F=BIL↑错误!a↓,当安培力F=mg sin α时,a=0,v最大注:棒刚释放时,速度为0,所以只受到重力和支持力,合力为mgsin α收尾状态运动形式匀速直线运动力学特征a=0,v最大,v m=错误!(根据F=F安推出)电学特征I恒定【典例1】如图所示,足够长的金属导轨固定在水平面上,金属导轨宽度L=1.0 m,导轨上放有垂直导轨的金属杆P,金属杆质量为m=0。

1 kg,空间存在磁感应强度B=0。

5 T、竖直向下的匀强磁场。

连接在导轨左端的电阻R=3.0 Ω,金属杆的电阻r=1。

0 Ω,其余部分电阻不计。

某时刻给金属杆一个水平向右的恒力F,金属杆P由静止开始运动,图乙是金属杆P运动过程的v-t图象,导轨与金属杆间的动摩擦因数μ=0.5。

在金属杆P运动的过程中,第一个2 s内通过金属杆P的电荷量与第二个2 s内通过P的电荷量之比为3∶5。

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)(解析版)

电磁感应中的“杆+导轨”类问题(3大模型)电磁感应“杆+导轨”模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] 如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。

整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。

重力加速度为g ,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

[解析] (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12m v m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。

[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析开始时a =g sin α,B L[变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。

现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。

第九章解题模型练电磁感应中的“导轨+杆”模型[可修改版ppt]

第九章解题模型练电磁感应中的“导轨+杆”模型[可修改版ppt]
第九章解题模型练 电磁感应中的“导
轨+杆”模型
练出高分
1
2
3
4
5
6
7
8
9
►题组1 “导轨+单杆”模
型1. 如图 1 所示,开口向下的导线框固定在
竖直平面内,上端有一开关,线框处于与
其平面垂直的匀强磁场中,磁场的宽度为
h.一导体棒开始时静止于 A 位置,然后释
放,导体棒刚进入磁场时,闭合开关 S.用
导轨 MN、PQ 竖直放置,一磁感应强度为 B 的
匀强磁场垂直穿过导轨平面,导轨的上端 M 与
P 间连接阻值为 R 的电阻,质量为 m、电阻为 r
的金属棒 ab 紧贴在导轨上.现使金属棒 ab 由静
止开始下滑,经时间 t 下落距离 h 后达到最大速
图4
度,导轨电阻不计,重力加速度为 g.以下判断正确的是 ( )
定,i 恒定;下降 h 之后,E=0,i=0,a=g,v 要增加,所以 A 对,D 错; 如棒进入磁场时,就有 mg=B2Rl2v,则 a=0,h 之后,a=g 恒定,C 对; h 之后,Ek 应随 x 增加而变大,B 错. 答案 AC
练出高分
1

3
4
5
6
7
8
9
2. 如图 2 所示,水平放置的光滑平行金属导
R 消耗的功率 P=I2 2R,解得 P=10.24 W.
答案 (1)6 m/s2,方向沿导轨向上 (2)10.24 W
ab 增加的动能之和,ab 克服安培力做的功一定等于电路中产生
的电能,则 B 选项错误,D 选项正确; 当 ab 做匀速运动时,F=BIl,外力 F 做功的功率等于电路中的 电功率,则 C 选项正确.

电磁感应现象中“杆+导轨”模型梳理

电磁感应现象中“杆+导轨”模型梳理

电磁感应现象中“杆+导轨”模型梳理作者:董卫刚王梦娜
来源:《中学生数理化·高考理化》2023年第10期
電磁感应现象中的“杆+导轨”模型是近几年高考中的常见考点之一,比如2020年高考全国Ⅰ卷第21题、全国Ⅲ卷第24题,2021年高考全国乙卷第25 题、北京卷第7 题,2022年高考全国甲卷第20题、辽宁卷第15题,2023年高考全国甲卷第25题、湖南卷第14题、辽宁卷第10题等。

涉及“杆+导轨”模型的物理试题几乎涵盖了高中物理所有的核心内容,综合性较强,区分度较高。

下面将涉及“杆+导轨”模型的物理试题进行系统梳理,总结求解此类问题的思路和方法,为同学们的复习备考提供参考。

核心素养微专题6 电磁感应中的“杆+导轨”模型

核心素养微专题6  电磁感应中的“杆+导轨”模型

(1)若涉及变力作用下运动问题,可选用动量守恒和能量守恒的方法解决。
(2)若涉及恒力或恒定加速度,一般选用动力学的观点。若涉及运动时间
问题也可选用动量定理求解。
17
二轮 ·物理
[示例3] 如图所示,在大小为B的匀强磁场区域内跟磁场方向垂直的水 平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导 体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒的 质量都为m,电阻都为R,导轨部分电阻可忽略不计。设导体棒可在导 轨上无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求: (1)当cd棒速度减为0.8v0时的加速度大小; (2)从开始运动到最终稳定,电路中产生的电能; (3)两棒之间距离增加量Δx的上限。
×mgsin θ=ma,解得加速度大小为 2.5 m/s2,B 正确;金属杆滑至底端
的整个过程中,整个回路中产生的焦耳热为 mgh-12mv2m,电阻 R 产生的
13
二轮 ·物理
焦耳热一定小于 mgh-21mvm2 ,C 错误;金属杆达到最大速度后,根据受 力平衡可得 mgsin θ=F 安=BIL,得 I=mgBsiLn θ=neSv-,得v-=ρgnseiBn θ, 其中 n 为单位体积的电子数,ρ 为金属杆的密度,所以杆中定向运动的 电荷沿杆长度方向的平均速度与杆的粗细无关,D 正确。 [答案] BD
8
二轮 ·物理
⑦ ⑧
二轮 ·物理
2.单杆“倾斜导轨”模型 匀强磁场与导轨垂直,磁感应强度为 B,导轨间距 L,导体棒 质量 m,电阻 R,导轨光滑,电阻不计(如图)
物理 模型
9
二轮 ·物理
棒 ab 由静止释放后下滑,此时 a=gsin α,棒 ab 速度 v↑→

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型

热点专题系列(六) 电磁感应中的“杆和导轨”模型热点概述:电磁感应中的“杆-轨”运动模型,是导体切割磁感线运动过程中动力学与电磁学知识的综合应用,此类问题是高考命题的重点。

[热点透析]单杆模型初态v0≠0v0=0示意图质量为m、电阻不计的单杆ab以一定初速度v0在光滑水平轨道上滑动,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定轨道水平光滑,单杆ab质量为m,电阻不计,两平行导轨间距为L,拉力F恒定续表初态v0≠0v0=0运动分析导体杆做加速度越来越小的减速运动,最终杆静止当E感=E时,v最大,且v m=EBL,最后以v m匀速运动当a=0时,v最大,v m=FRB2L2,杆开始匀速运动Δt时间内流入电容器的电荷量Δq=CΔU=CBLΔv电流I=ΔqΔt=CBLΔvΔt=CBLa安培力F安=BLI=CB2L2a F-F安=ma,a =Fm+B2L2C,所以杆以恒定的加速度匀加速运动能量分析动能转化为内能,12m v2=Q电能转化为动能和内能,E电=12m v2m+Q外力做功转化为动能和内能,W F=12m v2m+Q外力做功转化为电能和动能,W F=E电+12m v2注:若光滑导轨倾斜放置,要考虑导体杆受到重力沿导轨斜面向下的分力作用,分析方法与表格中受外力F时的情况类似,这里就不再赘述。

(2020·山东省聊城市一模)(多选)如图所示,宽为L的水平光滑金属轨道上放置一根质量为m的导体棒MN,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R的电阻连接,匀强磁场的方向垂直于轨道平面向里,磁感应强度大小为B,电容器的电容为C,金属轨道和导体棒的电阻不计。

现将开关拨向“1”,导体棒MN在水平向右的恒力F作用下由静止开始运动,经时间t0后,将开关S拨向“2”,再经时间t,导体棒MN恰好开始匀速向右运动。

4.8专题:电磁感应现象中“杆+导轨”模型

4.8专题:电磁感应现象中“杆+导轨”模型

(2)电阻R上产生热量Q=I2Rt=0.075 J
答案:(1)2 T (2)0.075 J
探究三 倾斜轨道
两根足够长的直金属导轨平行放置在倾角为 α 的绝缘斜面上,导轨间距为 L,导轨间连接一电 阻R ,质量为m,电阻为r的金属棒 ab与导轨垂直 并接触良好,其余部分电阻不计,整套装置处 于磁感应强度为 B的匀强磁场中,磁场方向垂直 斜面向下。不计它们之间的摩擦,重力加速度 为g 。
光滑水平放置的金属导轨间距为 L,导轨间连接 一电阻 R,质量为 m,电阻为 r的金属棒ab与导轨 接触良好,其余部分电阻不计。平面内有垂直 纸面向里的匀强磁场,磁感应强度为B
问题3:施加恒定外力 F 后,能量如何变化?能不能 从能量的视角求ab棒的最大速度?
能量角度分析:
v
a
F安
v
E BLv
问题1:施加恒定外力F后,ab棒的加速度 a,速度v 如何变化?
动力学角度分析:
v
a
F安
v
E BLv
E I= Rr
F安 BIL
a
F F安 m
a、v同向
当F安=F时,a=0,速度达到最大vm匀速
解:运动特征:加速度减小的 加速运动,最终匀速。 F=F安=BIL=B2L2Vm/(R+r) 可得:vm=F(R+r)/B2L2
示。(g取10 m/s2)求:
(1)磁感应强度B;
(2)杆在磁场中下落0.1 s的
过程中电阻R产生的热量。
【规范解答】(1)由图像知,杆自由下落0.1 s进入磁场以v= 1.0 m/s做匀速运动产生的电动势E=BLv 杆中的电流I=
E Rr
杆所受安培力F安=BIL 由平衡条件得mg=F安 代入数据得B=2 T
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的杆导轨类问题大模型解题技巧集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:(1)杆cd下滑的最大加速度和最大速度;(2)上述过程中,杆上产生的热量。

【思路点拨】:【答案】:(1)g sinθ,方向沿导轨平面向下;,方向沿导轨平面向下;(2)mgx sinθ-【解析】:(1)设杆cd下滑到某位置时速度为v,则杆产生的感应电动势E=BLv回路中的感应电流I=杆所受的安培力F=BIL根据牛顿第二定律有mg sinθ-=ma当速度v=0时,杆的加速度最大,最大加速度a=g sinθ,方向沿导轨平面向下当杆的加速度a=0时,速度最大,最大速度v m=,方向沿导轨平面向下。

(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+mvm2又Q杆=Q总,所以Q杆=mgx sinθ-。

【内化模型】单杆+电阻+导轨四种题型剖析题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L【变式】:此题若已知金属杆与导轨之间的动摩擦因数为μ。

现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。

【答案】:见解析【解析】:分析金属杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有:F -mg sin θ-F 安-f =ma又F 安=BIL ,I ==,所以F 安=BIL =f =μN =μmg cos θ故F -mg sin θ--μmg cos θ=ma当速度v =0时,杆的加速度最大,最大加速度a m =-g sin θ-μg cos θ,方向沿导轨平面向上当杆的加速度a =0时,速度最大,v m =222)cos sin (LB Rmg mg F ⋅--θμθ。

类型二:单杆+电容器(或电源)+导轨模型类【初建模型】【例题2】(2017·北京模拟)如图所示,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。

一质量为m的导体棒cd垂直于MN、PQ放在轨道而上,与轨道接触良好。

轨道和导体棒的电阻均不计。

(1)如图1所示,若轨道左端M、P间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。

请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获得的电能相等。

(2)如图2所示,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻,闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m,求此时电源的输出功率。

(3)如图3所示,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。

电容器两极板间电势差随时间变化的图像如图4所示,已知t1时刻电容器两极板间的电势差为U1。

求导体棒运动过程中受到的水平拉力大小。

【思路点拨】:(1)导体棒匀速运动→受力平衡→求出拉力做的功。

导体棒切割磁感线产生感应电动势→产生感应电流→求出回路的电能。

(2)闭合开关S→导体棒变加速运动→产生的感应电动势不断增大→达到电源的路端电压→棒中没有电流→由此可求出电源与电阻所在回路的电流→电源的输出功率。

(3)导体棒在外力作用下运动→回路中形成充电电流→导体棒还受安培力的作用→由牛顿第二定律列式分析。

【答案】:见解析【解析】:(1)导体棒切割磁感线,E=BLv导体棒做匀速运动,F=F安,又F安=BIL,其中I=在任意一段时间Δt内,拉力F所做的功W=FvΔt=F安vΔt=Δt电路获得的电能ΔE=qE=EIΔt=Δt可见,在任意一段时间Δt内,拉力F所做的功与电路获得的电能相等。

(2)导体棒达到最大速度v m时,棒中没有电流,电源的路端电压U=BLv m电源与电阻所在回路的电流I=电源的输出功率P=UI=。

(3)感应电动势与电容器两极板间的电势差相等BLv=U由电容器的U-t图可知U=t导体棒的速度随时间变化的关系为v=t可知导体棒做匀加速直线运动,其加速度a=由C=和I=,得I==由牛顿第二定律有F-BIL=ma可得F=+。

【内化模型】单杆+电容器(或电源)+导轨模型四种题型剖析【变式】:例题2第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为μ,写出导体棒的速度大小随时间变化的关系式。

【答案】:v=t【解析】:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为:E=BLv电容器所带电荷量为:Q=CE=CBLv再经过很短一段时间Δt,电容器两端电压的增量和电荷量的增量分别为ΔU=ΔE=BLΔvΔQ=CΔU=CBLΔv流过导体棒的电流:I===CBLa导体棒受到的安培力:f1=BIL=CB2L2a导体棒所受到的摩擦力:f2=μmg由牛顿第二定律得:F-f1-f2=ma联立以上各式解得:a=显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为:v=t。

类型三:双杆+导轨模型类【初建模型】【例题3】(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。

在t=0时刻,两杆都处于静止状态。

现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。

(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路。

在整个导轨平面内都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度。

若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。

【思路点拨】:(1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断。

(2)导体棒ab运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况,即可得出结论。

【答案】:见解析【解析】:(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a,受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2)①2感应电流为:I=②对甲和乙分别由牛顿第二定律得:F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得a1=a2=⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大。

(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流。

ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速。

两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动。

【内化模型】三大观点透彻解读双杆模型示意图力学观点图像观点能量观点导体棒1受安培力的作用做加速度减小的减速运动,导体棒2受安培力的作用做加速度减小的加速运动,最后两棒以相同的速度做匀速直线运动棒1动能的减少量=棒2动能的增加量+焦耳热两棒以相同的加速度做匀加速直线运动外力做的功=棒1的动能+棒2的动能+焦耳热【变式】:若例题3(1)中甲、乙两金属杆受恒力作用情况如图所示,两杆分别在方向相反的恒力作用下运动(两杆不会相撞),试分析这种情况下甲、乙金属杆的收尾运动情况。

【答案】:见解析【解析】:设某时刻甲和乙的速度分别为v1和v2,加速度分别为a1和a2,甲、乙受到的安培力大小均为F1,则感应电动势为:E=Bl(v1-v2)①感应电流为:I=②对甲和乙分别应用牛顿第二定律得:F1-BIl=ma1,BIl-F2=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得:a1=a2=⑤可见甲、乙两金属杆最终做加速度相同的匀加速运动,速度一直增大。

辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧训练题1.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=,左端接有阻值R=Ω的电阻。

一质量m=、电阻r=Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=。

棒在水平向右的外力作用下由静止开始以a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1。

导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触。

求:(1)棒在匀加速运动过程中,通过电阻R的电荷量q;(2)撤去外力后回路中产生的焦耳热Q2;(3)外力做的功W F。

2.(2017·常州检测)如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d=,左端接有容量C=2000μF的电容。

质量m=20g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计。

整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2T。

现用一沿导轨方向向右的恒力F1=作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5m/s。

此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。

相关文档
最新文档