[高二物理期末复习简谐运动的知识点]

[高二物理期末复习简谐运动的知识点]
[高二物理期末复习简谐运动的知识点]

[高二物理期末复习简谐运动的知识点]

(1)简谐运动:

物体在跟位移大小成正比,且总是指向平衡位置的力作用下的振动。受力特征:kxF 对简谐运动的理解:

① 简谐振动是最简单最基本的振动

②简谐运动的位移按正弦规律变化,所以它不是匀变速运动,而是变力作用下的非匀变速运动。

③简谐运动具有重复性的运动轨迹,若轨迹不重复,则一定不是简谐运动。

(2)描述简谐运动的物理量

平衡位置:做往复运动的物体能够静止的位置,叫作平衡位置。振动:物体(或其一部分)在平衡位置附近所做的往复运动,对振动的三点透析:

振动的轨迹:振动物体可能作直线运动,也可能做曲线运动,所以其轨迹可能是直线或曲线。

振动的特征:往复性。

振动的条件:每当物体离开平衡位置后,它就受到一个指向平衡位置的力,该力使物体产生回到平衡位置的效果(即回复力)、并将其看作受到的阻力足够小。此时认为它做自由振动。

振幅A:

定义:振动物体离开平衡位置的最大距离,叫作振动的振幅(或省略作振幅) 单位:m(米) 物理意义:反映振动的强弱和振动的空间范围,对同一系统,振幅越大,系统的能量越大。

振幅和位移的区别

1. 振幅是振动物体离开平衡位置的最大距离,位移是振动物体相对平衡位置的位置变

2. 振幅时表示振动强弱的物理量,位移表示的是某一时刻振动质点的位置。

3. 振幅是标量,位移是矢量周期T:

定义:做简谐运动的物体完成一次全振动所需要的时间。单位:s

物理意义:表示振动的快慢,周期越长表示物体振动的越慢,周期越短表示物体振动得越快。

感谢您的阅读!

高中物理-简谐运动的图像和公式教学设计

高中物理-简谐运动的图像和公式教学设计 教学目标 1.理解振动图象的物理意义。 2.通过利用图象得到的信息,例如判断物体的位移、速度、加速度等物理量的大小与方向的变化规律,培养学生的抽象思维能力。 3.理解简谐运动的表达式,进一步使学生掌握解决物理问题的两种方法:公式法和图象法。 4.通过实验法得到简谐运动的图象,培养学生认真、严谨、实事求是的科学态度。 重点难点 重点:简谐运动图象的物理意义和特点;运用简谐运动的图象解决有关位移、周期、频率、加速度、回复力等问题。 难点:用实验法描绘出简谐运动的图象;运用简谐运动的图象求解实际问题。 设计思想 在高考中对本节的考查重点在于由振动图像获得振动的信息,并能理解振动方程,学生学习过程中重点在于理解振动图像的物理意义,并能很好得寻找出图像中包含的信息。这些重点知识,重要方法的学习,本课采用了学习自主探究的方式,培养学生的观察习惯,提高学生处理图像的能力。 教学资源《简谐运动的图像和公式》多媒体课件、、 实验器材:沙漏,悬挂支架,可拖动的长板,单摆 教学设计 【课堂引入】 质点做直线运动时,x-t图象能形象地说明质点的位移随时间变化的规律。物体做简 谐运动时,它的位移随时间变化的规律又是什么样的呢? 问题1:思考能否也用x-t图象来形象的描述简谐运动,还是你有其他的想法,并说明如 何获得你想要的图像? (学生分析、讨论:可以仍然作x-t图像,但此处的x与以往的位移不同,是指相对于平衡位置的位移;可以用拍照的方式,记下很多时刻做简谐运动的物体的位置,再用测量、描点的方式得到图像。) 老师引导: 老师小结:这位同学提的方案非常好,我们就以他的想法来画简谐运动的x-t图像,不过课堂上实验条件有限,下面我们就用最简便的装置来描绘x-t图像。 实验仪器介绍、分析:如图所示,沙摆装置,漏斗相对于绳子的长度是比较小的,并且摆动时角度较小,所以它的摆动近似可以看成是简谐运动,当它摆动时在沙漏的下方有一块可以拖动的薄板,薄板匀速拖动时接收漏下的沙子,就可以在板上留下一张图。下面我们就进行实验。 【课堂学习】 学习活动一:探究描述简谐运动的图像 实验演示:让砂摆振动,同时沿着与振动垂直的方向匀速拉 动摆下的长木板(即平板匀速抽动,如图所示)。 实验现象:砂子在长木板上形成一条曲线。现以板拖动的 反方向为横轴,以垂直于拖动方向为纵轴,得到了如图所示的图 像。 问题1:如图这样建立了坐标那么图线的横、纵坐标分别表 示什么物理量? (学生答案:横坐标表示时间,纵坐标表示质点在不同时刻相对

高二物理期中必考知识点大全

高二物理期中必考知识点大全 高二物理期中必考知识点大全(一) 电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电 体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109Nm2/C2,Q1、Q2:两点电荷的电量(C),r: 两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力, 同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距 离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两 点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所 做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电 场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位 置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量 等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电 压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两 极板间的垂直距离,ω:介电常数)常见电容器 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2, Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平抛垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的 平行极板中:E=U/d) 平抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异 种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向 为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与 等势线垂直; (3)常见电场的电场线分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面 附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有 净电荷,净电荷只分布于导体外表面; (6)电容单位换算:1F=106μF=1012PF;

上海市高中物理知识点总结完整版

直线运动 知识点拨: 1. 质点 用一个只有质量没有形状的几何点来代替物体。这个点叫质点。一个实际的物体能否看作质点处理的两个基本原则:(1)做平动的物体。(2)物体的几何尺寸相对研究的距离可以忽略不计。 2. 位置、路程和位移 (1) 位置:质点在空间所对应的点。 (2) 路程:质点运动轨迹的长度。它是标量。 (3) 位移:质点运动位置的变化,即运动质点从初位置指向末位置的有 向线段。它是矢量。 3. 时刻和时间 (1) 时刻:是时间轴上的一个确定的点。如“3秒末”和“4秒初”就 属于同一时刻。 (2) 时间:是时间轴上的一段间隔,即是时间轴上两个不同的时刻之差。 21t t t =- 4. 平均速度、速度和速率 (1) 平均速度(v ):质点在一段时间内的位移与时间的比值,即v = s t ?? 。它是矢量,它的方向与Δs 的方向相同。在S - t 图中是割线的斜率。 (2) 瞬时速度(v ):当平均速度中的Δt →0时,s t ??趋近一个确定的值。 它是矢量,它的方向就是运动方向。在S - t 图中是切线的斜率。 (3) 速率:速度的大小。它是标量。 5. 加速度 描写速度变化的快慢。它是速度的变化量与变化所用的时间之比值,即:

a =t v ??。 它是矢量,它的方向与Δv 的方向相同。当加速度方向与速度 方向一致时,质点作加速运动;当加速度方向与速度方向相反时,质点作减速运动。 6. 匀变速直线运动规律(特点:加速度是一个恒量) (1)基本公式: S = t + 12 a t2 = v0 + a t (2)导出公式: ① 2 - v02 = 2 ② S t - a t2 ③ v == 2 t v v + ④ 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数: S Ⅱ-S Ⅰ=2 (a 一匀变速直线运动的加速度 T 可导出: - =(M -N) ⑤ A B 段中间时刻的即时速度⑥ 段位移中点的即时速度注:无论是匀加速还是匀减速直线运动均有: 2 < 2 ⑦ 初速为零的匀加速直线运动, 在第1s 内、第 2s 内、第3s 内……第内的位移之比为: S Ⅰ:S Ⅱ:S Ⅲ:……: = 1:3:5……:(21); 1、 2、3、…… ⑧ 初速为零的匀加速直线运动,在第1米内、第2米内、第3米内……第n 米内的时间之比为: t Ⅰ:t Ⅱ:t Ⅲ:…:=1:( )21-:()23-……(n n --1); 1、2、3、 7. 匀减速直线运动至停止:

高二物理会考基本知识点

高二物理会考------基本知识点2013-12--29 第一章力学 一、力:力士物体间的相互作用; 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;(1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等; (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; (C)滑动摩擦力的大小F滑=μF N压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之和; (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 二、、既有大小又有方向的物理量叫矢量,(如:力、位移、速度、加速度、动量、冲量)标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量) 三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

知识讲解 简谐运动及其图象

简谐运动及其图象 编稿:张金虎审稿:吴嘉峰 【学习目标】 1.知道什么是弹簧振子以及弹簧振子是理想化模型。 2.知道什么样的振动是简谐运动。 3.明确简谐运动图像的意义及表示方法。 4.知道什么是振动的振幅、周期和频率。 5.理解周期和频率的关系及固有周期、固有频率的意义。 6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。 7.能用公式描述简谐运动的特征。 【要点梳理】 要点一、机械振动 1.弹簧振子 弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子. 2.平衡位置 平衡位置是指物体所受回复力为零的位置. 3.振动 物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动. 振动的特征是运动具有重复性. 要点诠释:振动的轨迹可以是直线也可以是曲线. 4.振动图像 (1)图像的建立:用横坐标表示振动物体运动的时间t,纵坐标表示振动物体运动过程中对平衡位置的位移x,建立坐标系,如图所示.

(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律. (3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻). (4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负表示振子运动方向与坐标轴的正方向相同或相反. 如图所示,在x 坐标轴上,设O 点为平衡位置。A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零. 在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负. 要点二、简谐运动 1.简谐运动 如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动. 简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动. 物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动. 2.实际物体看做理想振子的条件 (1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内. 3.理解简谐运动的对称性 如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有: (1)时间的对称: 4 OB BO OA AO T t t t t ==== , OD DO OC CD t t t t ===,

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理教案示例[简谐运动的图像].

教案示例 一、素质教育目标 (一)知识教学点 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)能力训练点 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)德育渗透点 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (二)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 (一)明确目标 (略) (二)整体感知 理解简谐运动图像的物理意义是认识简谐运动规律的关键。 (三)重点、难点的学习与目标完成过程 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接

高中物理课本基础知识填空汇总

高中物理基础知识汇总 一、重要结论、关系 1、质点的运动 1)匀变速直线运动 1.平均速度V平=______(定义式) 2.中间时刻速度V t/2=_________=__________ 3.末速度V t=__________ 4.中间位置速度V s/2=___________ 5.位移x=__________=________ 6.加速度a=________ (单位是________) 7.实验用推论Δs=_________{Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; ①初速度为零的匀变速直线运动的比例关系: 等分时间,相等时间内的位移之比 等分位移,相等位移所用的时间之比 ②处理打点计时器打出纸带的计算公式:v i=(S i+S i+1)/(2T), a=(S i+1-S i)/T2如图: 2)自由落体运动 注: g=9.8m/s2≈10m/s2(在赤道附近g较___,在高山处比平地___,方向________)。3)竖直上抛运动 1.上升最大高度H m=________ (抛出点算起) 2.往返时间t=____ _ (从抛出落回原位置的时间) 注: (1)全过程处理:是________直线运动,以向上为正方向,加速度取___值; (2)分段处理:向上为________直线运动,向下为__________运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 物体在斜面上自由匀速下滑μ=tanθ; 物体在光滑斜面上自由下滑:a=gsinθ 二、质点的运动 1)平抛运动1.水平方向速度:V x=___ 2.竖直方向速度:V y=____ 3.水平方向位移:x=____ 4.竖直方向位移:y=______ 5.运动时间t=________ 6.速度方向与水平夹角tgβ=______ 7.位移方向与水平夹角tgα=______ 注: (1) 运动时间由下落高度h(y)决定与水平抛出速度___关 (2);α与β的关系为tgβ=___tgα;

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高二物理下册知识点归纳5篇

高二物理下册知识点归纳5篇 高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。下面是我给大家带来的高二物理下册知识点总结,希望能帮助到大家! 高二物理下册知识点总结1 1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量 (C),t:时间(s)} 2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)} 3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)} 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外 {I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)} 5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)} 6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)} 7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P 总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比) 电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+ 电流关系I总=I1=I2=I3I并=I1+I2+I3+ 电压关系U总=U1+U2+U3+U总=U1=U2=U3 功率分配P总=P1+P2+P3+P总=P1+P2+P3+ 高二物理下册知识点总结2 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电=9.0×109Nm2/C2,Q1、Q2:两点电荷的(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

-简谐运动的图像

简谐运动的图像 知识要点: 一、简谐运动的图像 1、坐标轴:横轴表示时间,纵轴表示位移。 具体作法:以平衡位置为坐标原点,以横轴表示,以纵轴表示质点对平衡位置的位 移,根据实验数据在坐标平面上画出各个点,并用平滑曲线将各点连接起来,即得 到简谐运动的位移——时间图像。(通常称之为振动图像) 2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余 弦曲线。 3、简谐运动图像的物理意义:表示做简谐运动的质点的位移随时间变化的规律,即位 移——时间函数图像。 注意:切不可将振动图像误解为物体的运动轨迹。处理振动图像问题时,一定要把图像还原为质点的实际振动过程分析。 二、从简谐运动图像可获取的信息 1、任一时刻振动质点离开平衡位置的位移:纵坐标值。 2、振幅A:图像中纵坐标的最大值。 3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。 4、任一时刻的速度大小及方向:图线上该时刻对应的斜率大小反映速度大小,斜率正、 负反映速度方向。斜率大时速度大,斜率为正时速度为正,斜率为负值时速度为负。 5、任一时刻加速度(回复力)方向:与位移方向相反,总是指向平衡位置,即时间轴。 6、某一段时间内位移、回复力、加速度、速度、动能及势能的变化情况:当振动质点 向平衡位置方向运动时,速度、动能均增大,而位移、回复力、加速度、势能均减 小,否则相反。 典型例题: 例1、如图9-15所示为某质点简谐运动的振动图像,根据图像回答: ⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。 解析:⑴由图像可知振幅A=10cm,周期T=4s。 ⑵物体在平衡位置时有最大速度,顺着时间轴向后看,看它下一时刻的位移,就知道 它向哪个方向运动,故可知t=0,4s,8s,…4ns(n为非负整数)时,具有正向最 大速度。 ⑶物体在最大位移处时具有最大加速度,由于加速度与位方向相反,故只胡当质点位 为负时,加速度方为正,故可知t=3s,7s,11s,…(4n+3)s(n为非负整数)时, 具有正向最大加速度。 ⑷在3~4s内物体由负向最大位移处返回平衡位置,加速度逐渐减小,速度逐渐增大, 加速度和速度方向均为正,物体做加速度逐渐减小的加速运动。 ⑸1~4s内质点通过的路程s=3A=30cm。 例2、一弹簧振子做简谐运动,周期为T,则() A.若t时刻和(t+Δt)时刻振子运动位移的大小相等,方向相同,则Δt一定等于T 的整数倍;

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结 高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍;

五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质 六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2 七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强; 八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。1、电场线不是客观存在的线;2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷 远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;3、电场线的作用:1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;4、电场线的特点:1、电场线不是封闭曲线;2、同一电场中的电场线不向交; 九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

相关文档
最新文档